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Abstract. Space-time block codes from orthogonal designs recently proposed by Alamouti, and Tarokh-
Jafarkhani-Calderbank have attracted considerable attention due to the fast maximum-likelihood (ML) decoding
and the full diversity. There are two classes of space-time block codes from orthogonal designs. One class consists
of those from real orthogonal designs for real signal constellations which have been well developed in the math-
ematics literature. The other class consists of those from complex orthogonal designs for complex constellations
for high data rates, which are not well developed as the real orthogonal designs. Since orthogonal designs can
be traced back to decades, if not centuries, ago and have recently invoked considerable interests in multi-antenna
wireless communications, one of the goals of this paper is to provide a tutorial on both historical and most recent
results on complex orthogonal designs. For space-time block codes from both real and (generalized) complex
orthogonal designs (GCODs) with or without linear processing, Tarokh, Jafarkhani and Calderbank showed that
their rates cannot be greater than 1. While the maximum rate 1 can be reached for real orthogonal designs for any
number of transmit antennas from the Hurwitz–Radon constructive theory, Liang and Xia recently showed that rate
1 for the GCODs (square or non-square size) with linear processing is not reachable for more than two transmit
antennas. For GCODs of square size, the designs with the maximum rates have been known, which are related to
the Hurwitz theorem. In this paper, We briefly review these results and give a simple and intuitive interpretation of
the realization. For GCODs without linear processing (square or non-square size), we prove that the rates cannot
be greater than 3/4 for more than two transmit antennas.
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1. Introduction

In a high data rate wireless communication system, bandwidth limitation and channel fading
are two major obstacles to achieve the reliable communication. Teletar [1] and Foschini and
Gans [2] have recently shown that there is a huge potential capacity gain of multiple antenna
systems compared to single antenna systems. They showed that the capacity of a multiple
antenna system grows at least linearly with the number of transmit antennas, provided that
the number of receive antennas is greater than or equal to the number of transmit antennas. To
approach the potential huge capacity of multiple antenna systems, new coding and modulation,
which is called space-time coding, has attracted considerable attention lately, see for example,
[3–17].

The fundamental performance criteria of space-time codes were derived by Guey, Fitz,
Bell and Kuo [3], Tarokh, Seshadri and Calderbank [4], and later extended by Hammons and

� This work was supported in part by the Air Force Office of Scientific Research (AFOSR) under Grants
F49620-00-1-0086 and F49620-02-1-0157, and the National Science Foundation (NSF) under Grants MIP-
9703377 and CCR-0097240.

�� Present address: Department of Electrical and Computer Engineering, University of Maryland, College Park,
MD 20742, U.S.A. (E-mail: weifeng@isr.umd.edu).



2 Weifeng Su and Xiang-Gen Xia

El Gamal [8] for PSK modulations. In [4], Tarokh, Seshadri and Calderbank also presented
a few space-time trellis codes for 2–4 transmit antennas which perform well in slow-fading
channels and come close to the outage capacity promised by Teletar [1] and Foschini and
Gans [2]. However, the maximum-likelihood (ML) decoding complexity of the space-time
trellis codes is high.

Later, Alamouti in [5] introduced a simple transmit scheme for two transmit antennas
which achieves full diversity and has a fast ML decoding at the receiver. Motivated by the
Alamouti’s scheme, Tarokh, Jafarkhani and Calderbank in [6] proposed a general scheme,
space-time block codes, from orthogonal designs for any number of transmit antennas, which
has the full diversity and a fast ML decoding of space-time block codes. In particular, the
transmitted symbols can be decoded separately, not jointly. Thus, the decoding complexity
increases linearly, not exponentially, with the code size.

There are two classes of space-time block codes from orthogonal designs. One class
consists of those from real orthogonal designs for real constellations such as PAM. These
codes have been well developed. There are systematic constructions with optimal symbol
transmission rate 1 for any number of transmit antennas [6], which are based on the Hurwitz–
Radon constructive theory [20, 24]. Ganesan and Stoica later revisited this scheme from a
maximum SNR approach [9]. Real orthogonal designs have been motivated for the composi-
tions of quadratic forms started in the 1700s [24, 25]. The other class consists of those from
complex orthogonal designs for complex constellations such as QAM and PSK. Unlike space-
time block codes from real orthogonal designs, these codes or complex orthogonal designs or
Hermitian compositions of quadratic forms [25] are not well understood. In this paper, we
focus on the discussion of space-time block codes from complex orthogonal designs, while
they are important to achieve high data rates using QAM signal constellations in broadband
wireless communications.

A complex orthogonal design (COD) in variables x1, x2, . . . , xn is an n × n matrix O such
that: (i) the entries of O are 0,±x1,±x2, . . . ,±xn, or their conjugates ±x∗

1 ,±x∗
2 , . . . ,±x∗

n , or
multiples of them by i where i = √−1; and (ii) OHO = (|x1|2 +|x2|2 + . . .+|xn|2)In, where
the superscript H stands for the complex conjugate and transpose of a matrix, and In is the
n × n identity matrix. Tarokh, Jafarkhani and Calderbank showed in [6] that space-time block
codes constructed in this way exist only for two transmit antennas. Then they tried to relax
the definition of complex orthogonal designs to allow linear processing at the transmitter, i.e.,
the entries of O may be complex linear combinations of x1, x

∗
1 , x2, x

∗
2 , . . . , xn, x

∗
n . However,

they also proved that this extension fails to provide new designs. Later, Ganesan and Stoica
[9] revisited this result by connecting this problem to the amicable design theory [22, 24].

Tarokh, Jafarkhani and Calderbank [6] observed that it is not necessary for the complex or-
thogonal designs (with or without linear processing) to be square matrices in order to construct
space-time block codes. Space-time block codes allow non-square designs. Subsequently, they
introduced the definition of generalized complex orthogonal designs (GCODs). Furthermore,
they proposed generalized complex orthogonal designs with linear processing (GCODs with
linear processing for short). The detailed definitions are reviewed later. With these new def-
initions, there are space-time block codes from GCODs that can be used for any number of
transmit antennas. However, for more than six transmit antennas, the known space-time block
codes from GCODs with linear processing have symbol transmission rate only 1/2, far from
the maximum symbol transmission rate 1 of those codes from real orthogonal designs for real
constellations. The existing space-time block codes from (generalized) complex orthogonal
designs with or without linear processing can be summarized as follows:
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• For 2 transmit antennas, space-time block code exists with the maximum symbol
transmission rate 1 from COD (Alamouti’s scheme [5]);

• For 3 and 4 transmit antennas, space-time block codes exist with symbol transmis-
sion rate 3/4 from GCODs with linear processing [6] or from GCODs without linear
processing [9–11];

• For 5 and 6 transmit antennas, space-time block codes exist with symbol transmission
rates 7/11 and 3/5, respectively, from GCODs with linear processing [15];

• For any number of transmit antennas, space-time block codes exist with symbol transmis-
sion rate 1/2 from GCODs with linear processing (Tarokh, Jafarkhani and Calderbank
[6]).

For two transmit antennas, the Alamouti’s scheme achieves the maximum symbol trans-
mission rate 1. However, for more than two transmit antennas, it is not clear what is the
maximum symbol transmission rate of space-time block codes from generalized complex
orthogonal designs with or without linear processing.

Tarokh, Jafarkhani and Calderbank first mentioned in [6] that the symbol transmission rate
of space-time block codes from GCODs with or without linear processing cannot be greater
than 1 for any number of transmit antennas. Surprisingly, Liang and Xia later proved in [16]
that this symbol transmission rate cannot be 1 for more than two transmit antennas, contrast
to the space-time block codes from real orthogonal designs for real constellations in which
the symbol transmission rate can achieve the maximum rate 1 for any number of transmit
antennas. More precisely, for more than two transmit antennas they proved that k ≤ p − 1,
where k is the number of information symbols in each codeword, and p is the time delay.
The symbol transmission rate is defined as R = k/p, which means that each codeword of
time delay p carries k information symbols. Therefore, the symbol transmission rate R ≤
(p − 1)/p < 1.

In this paper we show that for GCODs without linear processing, the symbol transmission
rate cannot be greater than 3/4 for more than two transmit antennas.

The paper is organized as follows. In Section 2, we will briefly review the theory of space-
time block codes and design criteria. In Section 3, we focus on the discussion of GCODs
without linear processing. For GCODs of square size, the maximum symbol transmission rate
has been characterized completely, which is related to the Hurwitz theorem [18, 19, 23, 25, 10]
or the amicable design theory [22, 24, 9]. For GCODs of non-square size, we show that the
symbol transmission rate cannot be greater than 3/4 for more than two transmit antennas. In
Section 4, we discuss GCODs with linear processing. Finally, we conclude this paper with
some comments and open problems in Section 5.

2. Space-Time Block Codes and Design Criteria

In this section, we briefly review the theory of space-time block codes and diversity criterion.
More details can be seen in [6].

We consider a wireless communication system with n transmit antennas and m receive
antennas. The channel is assumed to be a quasi-static and flat Rayleigh fading channel. A
space-time block code is a collection of some matrices. Each matrix is of size p × n as
c = {ci

t : t = 1, 2, . . . , p; i = 1, 2, . . . , n}. Here, p represents the number of time slots,
or time delay, for transmitting one codeword. For some information symbols x1, x2, . . . , xk

which are selected from an arbitrary constellation, the entries of the matrix c are com-
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plex linear combinations of x1, x2, . . . , xk or their conjugates x∗
1 , x∗

2 , . . . , x∗
k . At time slot

t, t = 1, 2, . . . , p, the t th row of the matrix c is transmitted, i.e., c1
t , c

2
t , . . . , c

n
t are trans-

mitted simultaneously from the n transmit antennas. The symbol transmission rate is defined
as R = k/p, which means that there are k information symbols transmitted in one block with
time delay p.

The whole system can be modeled as

Y = cA + N, (2.1)

where Y = {yj
t : t = 1, 2, . . . , p; j = 1, 2, . . . , m} is the received symbol matrix of size

p × m whose entry y
j
t is the signal received at antenna j at time t ; A = {αi,j } is the channel

coefficient matrix of size n × m whose entry αi,j is the channel coefficient from transmit
antenna i to receive antenna j ; and N = {ηj

t } is the noise matrix of size p × m whose entry
η

j
t is the AWGN noise sample at receive antenna j at time t . The noise samples are inde-

pendent samples of a zero-mean complex Gaussian random variable with variance 1/(2SNR)
per dimension. The fading channel is quasi-static in the sense that the channel coefficients do
not change during one codeword transmission, and change independently from one codeword
transmission to the next.

Assume that perfect channel state information is available at the receiver, then the ML
decoding at the receiver is

minc‖Y − cA‖2
F = minc tr

[
(Y − cA)H (Y − cA)

]
= minc

[
tr(Y HY ) − tr(Y HcA + AHcHY ) + tr(cHcAAH )

]
,

(2.2)

where tr(V ) is the trace of matrix V , and ‖V ‖F is the Frobenius norm1 of matrix V . Notice
that tr(Y HcA + AHcHY ) is the linear combination of the first order of x1, x2, . . . , xk or their
conjugates x∗

1 , x∗
2 , . . . , x∗

k , and tr(cHcAAH ) is the linear combination of the second order of
them. Thus, if there are no terms of xixj , xix

∗
j and x∗

i x
∗
j with i �= j in tr(cHcAAH ), for

example cHc = (|x1|2 + |x2|2 + . . .+ |xk|2)In, then the decision metric in (2.2) can be written
as the sum of several functions whose variables depend on each xi , i.e.,

‖Y − cA||2F =
k∑

i=1

fi(xi).

Therefore, the minimization can be done separately on each xi , not jointly. This leads to the
fast ML decoding of the space-time block codes from orthogonal designs.

Suppose that codeword c be transmitted and the receiver erroneously in favor of codeword
e. Then the pairwise error probability is given by

P(c → e|A) = Q

(√
SNR

2
||(c − e)A||F

)

≤ 1

2
exp

{
−SNR

4
‖(c − e)A‖2

F

}
.

(2.3)

1 The Frobenius norm of V satisfies

‖V ‖2
F = tr(V HV ) = tr(V V H ) =

∑
i,j

|vi,j |2.
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For the quasi-static and flat Rayleigh fading channel, (2.3) can be further written as [3, 4]

P(c → e) ≤ 1

2

[
r∏

i=1

(
1 + λi

SNR

4

)]−m

≤ 1

2

(
r∏

i=1

λi

)−m

·
(

SNR

4

)−rm

,

(2.4)

where r = rank(c − e), and λ1, λ2, . . . , λr are the nonzero eigenvalues of (c − e)(c − e)H . For
high SNR, the upper bound in (2.4) is dominated by the term (SNR/4)−rm. Thus the rank r

should be as large as possible. This leads to the rank criterion or diversity criterion: in order
to achieve the maximum diversity, the difference matrix c − e has to be of full rank for any
pair of distinct codewords c and e [3, 4].

Therefore, a “good” space-time block code should possess two properties: (i) the difference
matrix between two distinct codewords should be of full rank, i.e., this code achieves the max-
imum diversity; and (ii) there is a fast ML decoding algorithm. The space-time block codes
from orthogonal designs do have these two properties. The special structure of orthogonal
designs not only guarantees the maximum diversity, but also provides a fast ML decoding.
The transmitted symbols can be decoded separately, not jointly. Thus the decoding complexity
increases linearly, not exponentially, with the code size.

Note that, the special structure of orthogonal designs is sufficient, but not necessary, to
construct space-time block codes having fast ML decoding and achieving maximum diversity.
In fact, if there exist some n × n positive definite matrices D1,D2, . . . ,Dk such that

cHc = |x1|2D1 + |x2|2D2 + · · · + |xk|2Dk , (2.5)

then the space-time block codes from (2.5) possess the two properties. We observe that the
difference matrix c − e satisfies

(c − e)H (c − e) = |x1 − x̃1|2D1 + |x2 − x̃2|2D2 + · · · + |xk − x̃k|2Dk .

Thus, the positive definiteness of the matrices D1,D2, . . . ,Dk guarantees that the difference
matrix of two distinct codewords is of full rank, and the fact of no terms of xixj , xix

∗
j and

x∗
i x

∗
j with i �= j in (2.5) implies that the ML decision metric in (2.2) can be minimized

separately on each xi . Space-time block codes from orthogonal designs can be considered
as some special cases of those from (2.5) when D1,D2, . . . ,Dk are some diagonal matrices.
Even for these special cases, the problem of the maximum symbol transmission rate has not
been well understood yet.

3. Generalized Complex Orthogonal Designs (GCODs)

In this section, we focus on the discussion of GCODs without linear processing. We will
discuss GCODs with linear processing in next section. For GCODs of square size, the problem
of the maximum symbol transmission rate has been solved completely, which is related to the
Hurwitz theorem [18, 19, 23, 25, 10] or the amicable design theory [22, 24, 9]. We briefly
review the results and give a simple and intuitive interpretation of the realization. For GCODs
of non-square size, we prove that the maximum symbol transmission rate cannot be greater
than 3/4 for more than two transmit antennas.
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DEFINITION 3.1. A generalized complex orthogonal design (GCOD for short) in variables
x1, x2, . . . , xk is a p × n matrix G such that:

(i) The entries of G are 0,±x1,±x2, . . . ,±xk , or their conjugates ±x∗
1 ,±x∗

2 , . . . ,±x∗
k , or

multiples of them by i where i = √−1;2

(ii) GHG = (|x1|2+|x2|2 + . . .+|xk|2)In, where GH is the complex conjugate and transpose
of G. We will use this notation in the rest of this paper.

The rate of G is defined as R = k/p. If p = n = k, then G is a classical complex orthogonal
design (COD for short).

In Definition 3.1, n is related to the number of transmit antennas, p is related to the
time delay in each codeword, and the variables x1, x2, . . . , xk can be arbitrary constellation
symbols. The relationship of n, k and p will be discussed later. In particular, for a fixed n,
there is an upper bound on the rate k/p. It is worth noting that for a space-time block code
from a GCOD, the difference matrix �G between two distinct codewords is also a GCOD of
the same structure, i.e., (�G)H(�G) = (|�x1|2 + · · · + |�xk|2)In, which implies that �G

has full rank unless �x1 = · · · = �xk = 0. Thus, from Definition 3.1 (ii), space-time block
codes from GCOD achieve the full diversity.

The first space-time block code from GCOD was proposed by Alamouti [5] for two
transmit antennas. It is, in fact, a 2 × 2 COD in two variables x1, x2:

G2(x1, x2) =
[

x1 x2

−x∗
2 x∗

1

]
.

Clearly, the rate of G2 is 1. From later discussion, we know that for space-time block codes
from GCODs, the rate 1 is achievable only for two transmit antennas.

For three and four transmit antennas, space-time block codes from GCODs with rate R =
3/4 are given by [9–11]:

G3(x1, x2, x3) =




x1 x2 x3

−x∗
2 x∗

1 0
−x∗

3 0 x∗
1

0 −x∗
3 x∗

2


 , G4(x1, x2, x3) =




x1 x2 x3 0
−x∗

2 x∗
1 0 x3

−x∗
3 0 x∗

1 −x2

0 −x∗
3 x∗

2 x1


 . (3.1)

In fact, G3 is obtained by taking the first three columns of G4. As a remark, based on the
amicable designs [22, 24], Tarokh, Jafarkhani and Calderbank [6] had earlier presented two
designs with rate R = 3/4 from GCODs with linear processing which are equivalent to the
above two designs by applying some unitary operations and changing variables.

For a fixed n, it is desired to have the rate of GCODs as large as possible. It was shown in
[6] that this rate cannot exceed 1, i.e., R ≤ 1. Later, Liang and Xia in [16] proved that this rate
cannot be 1, i.e., R < 1, for more than two transmit antennas, which is surprisingly different
from the real orthogonal designs. However, what is the maximum rate of GCODs for n > 2
transmit antennas remains open.

2 The results in this section remain true if each entry of G is multiplied by an arbitrary phase offset eiφ .
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3.1. GCODS OF SQUARE SIZE

For GCODs of square size, i.e., GCODs in Definition 3.1 with p = n, the problem of what is
the maximum achievable rate has been solved completely. Tarokh, Jafarkhani and Calderbank
[6] first proved that the GCOD of square size with the maximum rate 1 exists only for n =
2 transmit antennas. Later, Ganesan and Stoica [9] connected this problem to the amicable
design theory [22, 24] which is essentially a generalization of the Hurwitz theorem [21, 23,
25]. Recently, Tirkkonen and Hottinen [10] revisited the Hurwitz theorem and provided a
realization of GCODs with the maximum achievable rates directly. In this subsection, we
review the Hurwitz theorem at first, then clarify the relationships between the Hurwitz theorem
and the problem of the maximum achievable rate of GCODs, and finally give a simple and
intuitive interpretation of the realization.

A set of n × n complex matrices {C1, C2, . . . , Cl} is said to be Hurwitz family 3 of order n

[23], if

C2
i = −In, 1 ≤ i ≤ l; (3.2)

CiCj = −CjCi, 1 ≤ i �= j ≤ l. (3.3)

Denote H(n) − 1 be the maximum number of complex matrices in a Hurwitz family of
order n, then the Hurwitz theorem can be stated as follows4 ([23], [21], [25] p. 86).

THEOREM 3.1. (Hurwitz) If n = 2a · b, b odd, then

H(n) = 2a + 2.

Observing that, when n is odd, the maximum number of complex matrices in a Hurwitz family
of order n is 1. Josefiak in [21] presented a general realization of Hurwitz families as follows:
if {C1, C2, . . . , Cl} is a Hurwitz family of l matrices of order n, then the set

{M ⊗ In, iP ⊗ In} ∪ {Q ⊗ Ci : i = 1, 2, . . . , l}, (3.4)

3 Hurwitz family here is different from the Hurwitz–Radon family (see [20, 6, 24]). The matrices in a Hurwitz
family are complex, while those in a Hurwitz–Radon family are real.

4 It is well known that the maximum number of real matrices in a Hurwitz–Radon family of order n is denoted
as ρ(n) − 1. A similar result is the Hurwitz–Radon theorem [20, 6, 24]: if n = 2a · b, b odd, a = 4c + d with
c ≥ 0 and 0 ≤ d ≤ 3, then

ρ(n) = 8c + 2d .

The relationship between ρ(n) and H(n) is:

H(n) =



ρ(n) + 1, if a ≡ 0 (mod 4);
ρ(n) + 2, if a ≡ 1 or 2 (mod 4);
ρ(n), if a ≡ 3 (mod 4).
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is a Hurwitz family of l + 2 matrices of order 2n, where the symbol ∪ stands for a union of
two sets, the symbol ⊗ denotes the tensor product,5 and

M =
[

0 1
−1 0

]
, P =

[
0 1
1 0

]
, Q =

[
1 0
0 −1

]
.

Notice that C1 = iI1 when n = 1. Then by induction, one can obtain a Hurwitz family of any
even order recursively.

Now we go back to the problem of the maximum achievable rate of GCODs. Assume that
G be a GCOD of square size n × n in variables x1, x2, . . . , xk . We rewrite it as

G =
k∑

i=1

[Re(xi)Ai + Im(xi)Bi] , (3.5)

where Ai and Bi are n × n complex matrices, Re(xi) and Im(xi) are the real and imaginary
parts of xi , respectively. From Definition 3.1 (ii), we have

GHG =
k∑

i=1

(|Re(xi)|2 + |Im(xi)|2)In . (3.6)

Expressions (3.5) and (3.6) imply that

AH
i Ai = In, BH

i Bi = In, 1 ≤ i ≤ k;
AH

i Aj = −AH
j Ai, BH

i Bj = −BH
j Bi, 1 ≤ i �= j ≤ k;

AH
i Bj = −BH

j Ai, 1 ≤ i, j ≤ k.

Let Ak+i = Bi, i = 1, 2, . . . , k, then we have

AH
i Ai = In, 1 ≤ i ≤ 2k;

AH
i Aj = −AH

j Ai, 1 ≤ i �= j ≤ 2k.

Furthermore, let Ci = AH
1 Ai, i = 1, 2, . . . , 2k, then C1 = In, and

C2
i = −In, 2 ≤ i ≤ 2k;

CiCj = −CjCi, 2 ≤ i �= j ≤ 2k.

Therefore, {C2, C3, . . . , C2k} is a Hurwitz family of 2k − 1 complex matrices of order n.
According to the Hurwitz theorem, the number of complex matrices, 2k−1, cannot be greater
than H(n) − 1, i.e., 2k ≤ H(n). Thus we have the following corollary.

5 Let A = {αi,j } be a s × t matrix and B be an arbitrary matrix, the tensor product A ⊗ B is given by

A ⊗ B =



α11B · · · α1tB

..

. . . .
..
.

αs1B · · · αstB


 .

The rth tensor power of matrix B is defined as ⊗rB = B ⊗ B ⊗ · · · ⊗ B︸ ︷︷ ︸
r times

.
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COROLLARY 3.1. If n = 2a · b, b odd, then the rate of any GCOD of square size

R = k

p
≤ H(n)

2n
= a + 1

2a · b
,

and the bound can be achieved.

We observe that, when n = 2, R ≤ 1; when n = 4, R ≤ 3/4; when n = 8, R ≤ 1/2; . . .;
when n = 2r , R ≤ (r + 1)/2r . The GCODs achieving the bound can be constructed from the
Josefiak’s realization in (3.4). For example, when n = 2,{[

0 1
−1 0

]
,

[
i 0
0 −i

]
,

[
0 i
i 0

]}
is a Hurwitz family of order 2. Then, by the notations in (3.5), the realization of a 2×2 GCOD
can be expressed as

A1 =
[

1 0
0 1

]
, A2 =

[
0 1

−1 0

]
, B1 =

[
i 0
0 −i

]
, B2 =

[
0 i
i 0

]
,

in which besides the Hurwitz family, the 2 × 2 identity matrix is also used.
Ganesan and Stoica [9] obtained the result in Corollary 3.1 via the amicable design theory

[22, 24] which is essentially a generalization of the Hurwitz theorem [23, 21, 25]. There are
also realizations of GCODs from the amicable designs [22, 24, 9] which are similar to the
Josefiak’s realization in (3.4). Recently, Tirkkonen and Hottinen [10] revisited the Hurwitz
theorem and provided a realization of GCODs with the maximum achievable rate directly for
n = 2r , r ≥ 1 as follows:

G2r (x1, x2, . . . , xr+1) = x1 (In + ⊗rδ) /2 + x∗
1 (In − ⊗rδ) /2

+
r+1∑
i=2

(⊗r+1−iI2
) ⊗

[
0 xi

−x∗
i 0

]
⊗ (⊗i−2δ

)
,

where δ =
[

1 0
0 −1

]
.

In the following, we present a simple and intuitive interpretation of the realization of
GCODs with the maximum achievable rate for n = 2r , r ≥ 0. Let G1(x1) = x1I1, and

G2r (x1, x2, . . . , xr+1) =
[

G2r−1(x1, x2, · · · , xr) xr+1I2r−1

−x∗
r+1I2r−1 GH

2r−1(x1, x2, · · · , xr)

]
,

r = 1, 2, 3, . . . .

We can check that (in Appendix A)

(G2r (x1, x2, . . . , xr+1))
HG2r (x1, x2, . . . , xr+1) = (|x1|2 + |x2|2 + . . . + |xr+1|2)I2r ,

and the rate R = (r + 1)/2r , r ≥ 0.
To be explicit, here are some examples:

G2(x1, x2) =
[

G1(x1) x2

−x∗
2 GH

1 (x1)

]
=

[
x1 x2

−x∗
2 x∗

1

]
;
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G4(x1, x2, x3) =
[

G2(x1, x2) x3I2

−x∗
3I2 GH

2 (x1, x2)

]
=




x1 x2 x3 0
−x∗

2 x∗
1 0 x3

−x∗
3 0 x∗

1 −x2

0 −x∗
3 x∗

2 x1


 ;

G8(x1, x2, x3, x4) =
[

G4(x1, x2, x3) x4I4

−x∗
4 I4 GH

4 (x1, x2, x3)

]

=




x1 x2 x3 0 x4 0 0 0
−x∗

2 x∗
1 0 x3 0 x4 0 0

−x∗
3 0 x∗

1 −x2 0 0 x4 0
0 −x∗

3 x∗
2 x1 0 0 0 x4

−x∗
4 0 0 0 x∗

1 −x2 −x3 0
0 −x∗

4 0 0 x∗
2 x1 0 −x3

0 0 −x∗
4 0 x∗

3 0 x1 x2

0 0 0 −x∗
4 0 x∗

3 −x∗
2 x∗

1




.

3.2. GCODS OF NON-SQUARE SIZE

Tarokh, Jafarkhani and Calderbank mentioned in [6] that it is not necessary for the GCODs
to be of square size in order to construct space-time block codes. Actually, space-time block
codes can be constructed from GCODs of non-square size as shown in [6]. In this subsection,
we prove that the maximum rate of GCODs of non-square size cannot be greater than 3/4 for
n ≥ 3.

Let G be a GCOD in variables x1, x2, . . . , xk of size p × n. We rewrite it as

G = [E1x + F1x E2x + F2x · · · Enx + Fnx] , (3.7)

where Ei and Fi are p×k complex matrices, x = (x1, x2, . . . , xk)
T and x = (x∗

1 , x∗
2 , . . . , x∗

k )
T .

Here, the superscript T stands for the transpose of a matrix or a vector, and x is the complex
conjugate of x. Clearly, (x)T = xH . We use these notations throughout the paper. From
Definition 3.1 (ii), we obtain the constraints on Ei and Fi, i = 1, 2, . . . , n, as follows [16].

PROPERTY 3.1. GHG = (|x1|2 + |x2|2 + · · · + |xk|2)In is true, where G is represented in
(3.7), if and only if

EH
i Ei + FT

i F i = Ik, 1 ≤ i ≤ n; (3.8)

EH
i Ej + FT

j F i = 0k×k, 1 ≤ i �= j ≤ n; (3.9)

EH
i Fj + FT

j Ei = 0k×k, 1 ≤ i, j ≤ n. (3.10)

For convenience, we specify some definitions at first. A column (row) of a matrix is said
to be zero, if all elements of this column (row) are zeros. A matrix is said to be monomial, if
there is at most one non-zero element per row and column. Clearly, the rank of a monomial
matrix is equal to the number of non-zero elements in this matrix. Two matrices A and B of
same sizes are said to be disjoint, if a column (row) in A is non-zero, then the same column
(row) in B must be zero; and conversely if a column (row) in B is non-zero, then the same
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column (row) in A must be zero. From Definition 3.1 (i), we know that the entries of G cannot
be linear combination of x1, x2, . . . , xk or their conjugates x∗

1 , x∗
2 , . . . , x∗

k . Together with (3.8)
in Property 3.1, we have the following property.

PROPERTY 3.2. For any i, 1 ≤ i ≤ n,

(i) both Ei and Fi are monomial, so is Ei + Fi;
(ii) the pair of Ei and Fi is disjoint;

(iii) EH
i Fi = 0k×k, EiF

H
i = 0p×p;

(iv) rank(Ei + Fi) = rank(Ei) + rank(Fi).

Proof. See Appendix B. �
Notice that G allows row and column permutations. Without loss of generality, we may

assume that the first column of G be [x1 x2 · · · xk 0 · · · 0]T , i.e., E1 =
[

Ik

0(p−k)×k

]
and

F1 = 0p×k . If there are some x∗
i in the first column of G, we can always obtain the form of

[y1 y2 · · · yk 0 · · · 0]T by changing variables. Let

Ei =
[

Ei1

Ei2

]
, Fi =

[
Fi1

Fi2

]
, i = 2, 3, . . . , n,

where Ei1 and Fi1 are k × k complex matrices, Ei2 and Fi2 are (p − k)× k complex matrices.
From (3.9), we have

EH
1 Ei + FT

i F 1 = 0k×k, i = 2, 3, . . . , n.

It implies that Ei1 = 0k×k for any i = 2, 3, . . . , n. From (3.10), we have

EH
1 Fi + FT

i E1 = 0k×k, i = 2, 3, . . . , n.

It implies that Fi1 + FT
i1 = 0k×k for any i = 2, 3, . . . , n. From the above arguments, we have

the following property.

PROPERTY 3.3. If E1 =
[

Ik

0(p−k)×k

]
and F1 = 0p×k , then

Ei1 = 0k×k, Fi1 + FT
i1 = 0k×k, i = 2, 3, . . . , n.

For any i, i = 2, 3, . . . , n, denote βi,2, γi,1 and γi,2 as the ranks of Ei2, Fi1 and Fi2,
respectively. Since Ei + Fi, Ei and Fi are monomial, and the pair of Ei and Fi is disjoint, so
we have the following property.

PROPERTY 3.4. For any i, i = 2, 3, . . . , n,

βi,2 + γi,1 + γi,2 = k,

and

p ≥ k + βi,2 + γi,2 .

The following rank equalities and inequalities are useful in the rest of this paper [26]:
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• For any complex matrix A,

rank(AHA) = rank(AH ) = rank(A);
• For two complex matrices A and B of same sizes,

rank(A + B) ≤ rank(A) + rank(B);
• For two complex matrices A of size s × t and B of size t × l,

rank(A) + rank(B) − t ≤ rank(AB) ≤ min {rank(A), rank(B)} .

Now we can prove our main result.

THEOREM 3.2. For n ≥ 3, the rate of GCODs cannot be greater than 3/4. More pre-
cisely,

(i) When k = 3l, l = 1, 2, 3, . . . , R ≤ 3/4;
(ii) When k = 3l − 1, l = 1, 2, 3, . . . , R ≤ (3l − 1)/(4l);

(iii) When k = 3l − 2, l = 1, 2, 3, . . . , R ≤ (3l − 2)/(4l − 1);

and the above upper bounds can be reached for n = 3 and 4.

Proof. For any n ≥ 3, from (3.9) in Property 3.1, we have EH
2 E3 + FT

3 F 2 = 0k×k.
Replacing E2, E3, F2 and F3 by their partitions, we obtain

EH
22E32 + FT

31F 21 + FT
32F 22 = 0k×k . (3.11)

On one hand, we have an upper bound on the rank of EH
22E32 + FT

32F 22,

rank(EH
22E32 + FT

32F 22) ≤ rank(EH
22E32) + rank(F T

32F 22)

≤ 1

2
(β2,2 + β3,2) + 1

2
(γ3,2 + γ2,2).

(3.12)

On the other hand, we have a lower bound on the rank of FT
31F 21,

rank(F T
31F 21) ≥ γ3,1 + γ2,1 − k . (3.13)

Combining (3.11), (3.12) and (3.13), we have

γ2,1 + γ3,1 − k ≤ 1

2
(β2,2 + β3,2 + γ2,2 + γ3,2).

It follows that

2γ2,1 − k ≤ β2,2 + γ2,2 ,

or

2γ3,1 − k ≤ β3,2 + γ3,2 ,

i.e., 2γi0,1 − k ≤ βi0,2 + γi0,2 is true for i0 = 2 or 3. From Property 3.4, we know that
βi0,2 + γi0,1 + γi0,2 = k. Thus, we have

γi0,1 ≤ 2(βi0,2 + γi0,2). (3.14)
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Therefore, the rate of GCODs

R = k

p
≤ k

k + βi0,2 + γi0,2
= γi0,1 + (βi0,2 + γi0,2)

γi0,1 + 2(βi0,2 + γi0,2)
≤ 3

4
,

in which the first inequality follows by Property 3.4 that p ≥ k + βi0,2 + γi0,2, and the second
inequality follows by (3.14).

The proof of (i) is covered in the above arguments. For (ii) and (iii), we need to investigate
the property of γi0,1 more precisely. When k = 3l − 1, l = 1, 2, 3, . . ., we want to prove
R ≤ (3l − 1)/(4l). Sufficiently, we will prove

k

k + βi0,2 + γi0,2
≤ 3l − 1

4l
,

which is equivalent to γi0,1 ≤ 2l − 2. From (3.14), we have γi0,1 ≤ 2
3k = 2l − 2

3 . According to
Property 3.3, Fi0,1 + FT

i0,1 = 0k×k . Since Fi0,1 is monomial, so γi0,1, the rank of Fi0,1, is even.
Thus γi0,1 ≤ 2l − 2, which is what we need.

When k = 3l − 2, l = 1, 2, 3, . . ., we want to prove R ≤ (3l − 2)/(4l − 1). Sufficiently,
we will prove

k

k + βi0,2 + γi0,2
≤ 3l − 2

4l − 1
,

which is equivalent to γi0,1 ≤ 2l − 3. From (3.14), we have γi0,1 ≤ 2
3k = 2l − 4

3 . It implies
that γi0,1 ≤ 2l − 2. When γi0,1 �= 2l − 2, then γi0,1 ≤ 2l − 3, which is what we need. When
γi0,1 = 2l − 2, we prove R ≤ (3l − 2)/(4l − 1) directly in Appendix C.

For n = 3 and 4, it is easy to obtain GCODs with the upper bounds. We illustrate only for
n = 4. When k = 3l, l = 1, 2, 3, . . . ,

G(x1, x2, . . . , x3l) =




G4(x1, x2, x3)

G4(x4, x5, x6)
...

G4(x3l−2, x3l−1, x3l)




4l×4

.

When k = 3l − 1, l = 1, 2, 3, . . .,

G(x1, x2, . . . , x3l−1) =




G4(x1, x2, x3)

G4(x4, x5, x6)
...

G4(x3l−5, x3l−4, x3l−3)

G4(x3l−2, x3l−1, 0)




4l×4

.

When k = 3l − 2, l = 1, 2, 3, . . .,

G(x1, x2, . . . , x3l−2) =




G4(x1, x2, x3)

G4(x4, x5, x6)
...

G4(x3l−5, x3l−4, x3l−3)

x3l−2I3




(4l−1)×4

.

�
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The result presented in Theorem 3.2 implies that the two GCOD designs in (3.1) presented
in [9–11] have already achieved the maximum achievable rate for three and four transmit
antennas.

4. Generalized Complex Orthogonal Designs with Linear Processing (GCODs with
Linear Processing)

In this section, we discuss GCODs with linear processing.

DEFINITION 4.1. A generalized complex orthogonal design with linear processing (GCOD
with linear processing for short) in variables x1, x2, . . . , xk is a p × n matrix G such that:

(i) The entries of G are complex linear combinations of x1, x
∗
1 , x2, x

∗
2 , . . . , xk, x

∗
k ;

(ii) GHG = D, where D is an n×n diagonal matrix with the (i, i)th diagonal element of the
form

li,1|x1|2 + li,2|x2|2 + · · · + li,k|xk|2,
where all the coefficients li,1, li,2, . . . , li,k are strictly positive numbers.

The rate of G is defined as R = k/p.

It is not difficult to see that, for a GCOD G without linear processing in Definition 3.1, each
variable xi appears and only appears once in each column of G, which is, however, different
from that for a GCOD with linear processing G, in which each variable xi can appear multiple
times in a column of G.

It has been proved in [6, 7] that if there exists a p × n GCOD with linear processing in
variables x1, x2, . . . , xk such that

li,1 = li,2 = · · · = li,k (4.1)

for each i, then there exists a GCOD � with linear processing in the same variables and of the
same size such that

�H� = (|x1|2 + |x2|2 + · · · + |xk|2)In .

Clearly, space-time block codes do not need the constraint of li,1 = li,2 = · · · = li,k for each i.
Any GCOD with linear processing from Definition 4.1 can also provide the advantages of the
fast ML decoding and full diversity. The diagonal form of D guarantees the fast ML decoding,
since the orthogonal columns of G can separate the transmitted symbols x1, x2, · · · , xk from
each other at the decoder. And the strictly positive coefficients li,1, li,2, · · · , li,k imply the full
rank of G as we explained at the end of Section 2. This guarantees the full diversity advantage
of coding. For more details about the coding scheme, we refer the reader to [6].

For a fixed n, it is desired to have the rate of GCODs with linear processing as large as
possible. Tarokh, Jafarkhani and Calderbank mentioned in [6] that this rate cannot exceed 1.
From Liang and Xia’s result in [16], we know that the rate of GCODs with linear processing
must be strictly less than 1 for n ≥ 3.
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4.1. GCODS WITH LINEAR PROCESSING OF SQUARE SIZE

Assume that G be a GCOD with linear processing of square size n × n in variables
x1, x2, . . . , xk , and denote Dj = diag(l1,j , l2,j , . . . , ln,j ) for each j (1 ≤ j ≤ k), then
from Definition 4.1 (ii) we have

GHG = D1|x1|2 + D2|x2|2 + · · · + Dk|xk|2. (4.2)

We rewrite G as

G =
k∑

i=1

[Re(xi)Ai + Im(xi)Bi] , (4.3)

where Ai and Bi are n × n complex matrices, Re(xi) and Im(xi) are the real and imaginary
parts of xi respectively. Substituting (4.3) into (4.2) and comparing two sides of the resulting
equation, we have

AH
i Ai = Di, BH

i Bi = Di, 1 ≤ i ≤ k;

AH
i Aj = −AH

j Ai, BH
i Bj = −BH

j Bi, 1 ≤ i �= j ≤ k;

AH
i Bj = −BH

j Ai, 1 ≤ i, j ≤ k.

Let Ak+i = Bi and Dk+i = Di, i = 1, 2, . . . , k, then we have

AH
i Ai = Di, 1 ≤ i ≤ 2k;

AH
i Aj = −AH

j Ai, 1 ≤ i �= j ≤ 2k.

Furthermore, let Ci = D
−1/2
1 AH

1 AiD
−1/2
1 , i = 1, 2, . . . , 2k, then C1 = In, and

C2
i = −D−1

1 Di, 2 ≤ i ≤ 2k;
CiCj = −CjCi, 2 ≤ i �= j ≤ 2k.

Therefore, if D1 = D2 = · · · = Dk, then {C2, C3, . . . , C2k} is a Hurwitz family of 2k − 1
complex matrices of order n. According to the Hurwitz theorem, we know that the number
of complex matrices 2k − 1 cannot be greater than H(n) − 1, i.e., 2k ≤ H(n). Similar to
Corollary 3.1, we have the following result. Notice that the condition D1 = D2 = · · · = Dk

is equivalent to li,1 = li,2 = · · · = li,k for each i (1 ≤ i ≤ n).6

COROLLARY 4.1. If n = 2a · b, b odd, and G be a GCOD with linear processing of square
size n × n satisfying li,1 = li,2 = · · · = li,k for each i (1 ≤ i ≤ n), then the rate of G

R ≤ (a + 1)/(2a · b),

and the bound can be achieved, which is the same as the one for GCODs without linear
processing of square size in Definition 3.1.

6 Corollary 4.1 still holds if the condition li,1 = li,2 = · · · = li,k for each i (1 ≤ i ≤ n) is relaxed as
d1D1 = d2D2 = · · · = dkDk for some positive constants d1, d2, . . . , dk .
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Clearly, the maximum rate can be achieved by the GCODs of square size in Section 3.1.
Thus, for this situation, relaxing the definition of GCODs to the definition of GCODs with
linear processing fails to provide a higher rate. However, it is unclear whether this conclusion
is true or not if there are no positive constants d1, d2, . . . , dk such that d1D1 = d2D2 = · · · =
dkDk.

4.2. GCODS WITH LINEAR PROCESSING OF NON-SQUARE SIZE

GCODs with linear processing of non-square size have not been well understood by now. In
this subsection, we review some existing designs to illustrate the difficulty of this problem.

Tarokh, Jafarkhani and Calderbank in [6] presented a general design with rate 1/2 for
any number of transmit antennas as follows. Assume Ln(a1, a2, . . . , ak) be a generalized real
orthogonal design [6] in variables a1, a2, . . . , ak with rate 1 and of size k × n. Let

Gn(x1, x2, . . . , xk) =
[

Ln(x1, x2, . . . , xk)

Ln(x
∗
1 , x∗

2 , . . . , x∗
k )

]
, (4.4)

where Ln(x1, x2, . . . , xk) and Ln(x
∗
1 , x∗

2 , . . . , x∗
k ) are k × n matrices constructed by replac-

ing the symbols a1, a2, . . . , ak everywhere in Ln(a1, a2, . . . , ak) by x1, x2, . . . , xk and
x∗

1 , x∗
2 , . . . , x∗

k respectively. Clearly, the size of Gn in (4.4) is 2k × n, and the rate of Gn

is 1/2. For example, for four transmit antennas, the design is given by the following 8 × 4
matrix

G4(x1, x2, x3, x4) =




x1 x2 x3 x4

−x2 x1 −x4 x3

−x3 x4 x1 −x2

−x4 −x3 x2 x1

x∗
1 x∗

2 x∗
3 x∗

4−x∗
2 x∗

1 −x∗
4 x∗

3−x∗
3 x∗

4 x∗
1 −x∗

2−x∗
4 −x∗

3 x∗
2 x∗

1




8×4

.

Later in [15], two designs of GCODs with linear processing of rates higher than 1/2 were
presented for five and six transmit antennas. For five transmit antennas, the design is an 11×5
matrix given by

G5(x1, x2, . . . , x7) =




x1 x2 x3 0 x4

−x∗
2 x∗

1 0 x3 x5

x∗
3 0 −x∗

1 x2 x6

0 x∗
3 −x∗

2 −x1 x7

x∗
4 0 0 −x∗

7 −x∗
1

0 x∗
4 0 x∗

6 −x∗
2

0 0 x∗
4 x∗

5 −x∗
3

0 −x∗
5 x∗

6 0 x1

x∗
5 0 x∗

7 0 x2

−x∗
6 −x∗

7 0 0 x3

x7 −x6 −x5 x4 0




. (4.5)

Actually, G5 is constructed from G4(x1, x2, x3) in (3.1) as follows. At first, G4(x1, x2, x3) is
considered as a 4 × 4 sub-matrix of G5, and then symbols x4, x5, x6, x7 are added into the fifth
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column of G5. Finally, the entries of G5 from the fifth row to the end are arranged such that all
of the 5 columns are orthogonal to each other and the number of the total rows should be as
small as possible. From the resulting matrix in (4.5), we can check that GH

5 G5 = D, where D

is a 5 × 5 diagonal matrix with the (i, i)th diagonal element D(i, i) of the form

D(1, 1) = D(2, 2) = D(3, 3) = D(4, 4) =
7∑

m=1

|xm|2

and

D(5, 5) = 2
3∑

m=1

|xm|2 +
7∑

m=4

|xm|2.

The rate of G5 in (4.5) is R = 7/11 = 0.6364. Note that the diagonal matrix D here does not
satisfy the condition in (4.1).

For six transmit antennas, the design is a 30 × 6 matrix given by

G6(x1, x2, . . . , x18) =




x1 x2 x3 0 x4 x8

−x∗
2 x∗

1 0 x3 x5 x9

x∗
3 0 −x∗

1 x2 x6 x10

0 x∗
3 −x∗

2 −x1 x7 x11

x∗
4 0 0 −x∗

7 −x∗
1 x12

0 x∗
4 0 x∗

6 −x∗
2 x13

0 0 x∗
4 x∗

5 −x∗
3 x14

0 x∗
5 −x∗

6 0 −x1 x15

x∗
5 0 x∗

7 0 x2 x16

x∗
6 x∗

7 0 0 −x3 x17

x7 −x6 −x5 x4 0 x18

x∗
8 0 0 −x∗

11 −x∗
15 −x∗

1
0 x∗

8 0 x∗
10 x∗

16 −x∗
2

0 0 x∗
8 x∗

9 −x∗
17 −x∗

3
0 0 0 x∗

18 x∗
8 −x∗

4
0 0 −x∗

18 0 x∗
9 −x∗

5
0 −x∗

18 0 0 x∗
10 −x∗

6
x∗

18 0 0 0 x∗
11 −x∗

7
0 −x∗

9 x∗
10 0 x∗

12 x1

x∗
9 0 x∗

11 0 x∗
13 x2

−x∗
10 −x∗

11 0 0 x∗
14 x3

−x∗
12 −x∗

13 −x∗
14 0 0 x4

−x∗
16 −x∗

15 0 −x∗
14 0 x5

−x∗
17 0 x∗

15 −x∗
13 0 x6

0 −x∗
17 −x∗

16 x∗
12 0 x7

0 x14 −x13 −x15 x11 0
x14 0 −x12 −x16 x10 0

−x13 x12 0 x17 x9 0
x15 −x16 x17 0 x8 0

−x11 x10 x9 −x8 x18 0




. (4.6)
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Similarly, G6 is constructed form G5 in (4.5) as follows. At first, G5 is considered as an 11 × 5
sub-matrix of G6, and then symbols x8, x9, . . . , x18 are added into the sixth column of G6.
Finally, the entries of G6 from the twelfth row to the end are arranged such that all of the 6
columns of G6 are orthogonal to each other and the number of the total rows should be as
small as possible. The resulting matrix in (4.6) is of size 30 × 6. By a tedious check, we have
GH

6 G6 = D, where D is a 6 × 6 diagonal matrix with the (i, i)th diagonal element D(i, i) of
the form

D(1, 1) = D(2, 2) = D(3, 3) = D(4, 4) =
18∑

m=1

|xm|2

and

D(5, 5) =
18∑

m=1

|xm|2 +
3∑

m=1

|xm|2 +
11∑

m=8

|xm|2,

D(6, 6) = 2
7∑

m=1

|xm|2 +
18∑

m=8

|xm|2.

Clearly, the rate of G6 in (4.6) is R = 18/30 = 0.6.
The same procedure may be used to construct GCODs for other numbers of transmit an-

tennas. However, it is hard to obtain other designs with rate greater than 1/2. For example, G6

in (4.6) may be used to construct G7 for seven transmit antennas as follow. Similarly, we may
keep G6 as a 30×6 sub-matrix of G7 and add symbols x19, x20, . . . , x48 into the seventh column
of G7. However, it is hard to arrange the entries of G7 from the thirty-first row to the end such
that all of the seven columns are orthogonal to each other and the number of the total rows
should be as small as possible. Notice that in this case, the symbols x1, x2, . . . , x18 and their
complex conjugates x∗

1 , x∗
2 , . . . , x∗

18 should appear in the seventh column of G7. Therefore, the
number of rows in G7 will be at least 30 + 18 + 18 = 66.

To our best knowledge, there are no other known designs with rate higher than 1/2 for
more than four transmit antennas by now except for the two designs in (4.5) and (4.6) of rates
7/11 and 3/5, respectively. It is interesting to note that there are no known GCOD designs
without linear processing of rates more than 1/2 for five or more transmit antennas. The rate
3/4 GCOD designs in (3.1) presented in [9–11] are the only known GCOD designs without
linear processing of rates above 1/2 for more than 2 transmit antennas. As we mentioned
earlier, the result presented in Theorem 3.2 in this paper tells us that these two GCOD designs
have already achieved the maximum rate in all GCODs without linear processing for more
than 2 transmit antennas.

5. Conclusion and Some Comments

Orthogonal designs have a long history in mathematics literature, which have been mainly
motivated from the compositions of quadratic forms [24, 25]. Recently, orthogonal designs
have attracted considerable attention in space-time coding due to their special structure. Real
and complex orthogonal designs are used to construct space-time block codes for PAM and
PSK/QAM signals, respectively. As the real orthogonal designs are well understood, the com-
plex orthogonal designs are more difficult to deal with but can provide high transmission
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rates since they permit complex signal constellations. In this paper, at first we provided a
tutorial review of space-time block codes from complex orthogonal designs, in particular,
the Hurwitz theorem on complex orthogonal designs [18, 19, 23, 25] and its realizations
[21, 10]. We then presented a simple and intuitive interpretation of the realization. For GCODs
of square size, the designs of the maximum rates have been known from the Hurwitz theo-
rem [18, 19, 23, 25, 10] or amicable design theory [22, 24, 9]. For GCODs without linear
processing of non-square size, we proved that the maximum rate cannot be greater than 3/4
for more than two transmit antennas. Recently, Wang and Xia in [17] showed that this upper
bound, i.e., 3/4, still holds for some GCODs with linear processing and also provided an
upper bound (4/5) on the rates of GCODs with linear processing for more than two transmit
antennas.

What we have known about GCODs with or without linear processing is only a tip of the
iceberg as pointed out in [6]. There are many interesting and important problems unsolved.
We list a few of them below.

The first open problem is: what is the maximum rate of a GCOD with or without linear
processing for a given number (>2) of transmit antennas, and if it is known, then how to
achieve it, i.e., how to construct a GCOD with or without linear processing with the maximum
rate?

From Corollaries 3.1 and 4.1, for some cases of designs with square size, relaxing the
definition of GCODs to the definition of GCODs with linear processing fails to provide higher
rate. Thus, the second open problem is: is there any difference of the maximum rates for
GCODs with or without linear processing? In other words, is there any GCOD with linear
processing that has a rate higher than the maximum rate of GCODs without linear processing
for the same number of transmit antennas?

Another open problem is to construct GCODs with or without linear processing of rates
higher than 1/2 for more than six transmit antennas.
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Appendix A

CLAIM 1. GH
2r (x1, x2, . . . , xr+1)G2r (x1, x2, . . . , xr+1) = (|x1|2 + |x2|2 + · · · + |xr+1|2)I2r ,

r ≥ 0.
Proof. For simplicity, we omit the variables. Since for any r ≥ 1,

GH
2r G2r =

[
GH

2r−1G2r−1 + |xr+1|2 0
0 G2r−1GH

2r−1 + |xr+1|2
]

,

G2rGH
2r =

[
G2r−1GH

2r−1 + |xr+1|2 0
0 GH

2r−1G2r−1 + |xr+1|2
]

,

and GH
1 G1 = |x1|2I1 = G1G

H
1 , so by induction on r, we have

GH
2r G2r = G2rGH

2r = (|x1|2 + |x2|2 + · · · + |xr+1|2)I2r , r ≥ 0,

which is Claim 1. �
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Appendix B

Proof of Property 3.2. (i) Since the entries of G are 0,±x1,±x2, . . . ,±xk, or their conjugates
±x∗

1 ,±x∗
2 , . . . ,±x∗

k , or multiples of them by i, so there is at most one non-zero element per
row of Ei , Fi and Ei + Fi , and the modulus of non-zero elements is 1. If there are at least
two non-zero elements in k0th column of Ei , then the (k0, k0)th element of EH

i Ei is greater
than 1. It follows that the (k0, k0)th element of EH

i Ei + (FH
i Fi)

T is greater than 1, which is
contradictory to (3.8) that EH

i Ei + FT
i F i = Ik. Thus, there is at most one non-zero element

per column of Ei . According to the definition, Ei is monomial. Similarly, we can prove that
Fi is monomial.

To prove Ei + Fi is monomial, sufficiently we need only to prove (ii) that the pair of Ei

and Fi is disjoint. Suppose that both the k0th columns of Ei and Fi are non-zero, then both
the (k0, k0)th elements of EH

i Ei and FH
i Fi are greater than or equal to 1. It follows that the

(k0, k0)th element of EH
i Ei + (

FH
i Fi

)T
is greater than 1, which is contradictory to (3.8) that

EH
i Ei +FT

i F i = Ik. Thus, the columns in Ei and Fi cannot be non-zero at the same time. On
the other hand, we know that there is at most one non-zero element per row of Ei +Fi . So the
rows in Ei and Fi can not be non-zero at the same time. According to the definition, the pair
of Ei and Fi is disjoint.

(iii) Assume that the k1th column of Ei is [e1k1 e2k1 · · · epk1 ]T , and the k2th column of Fi is
[f1k2 f2k2 · · · fpk2]T , then the (k1, k2)th element of EH

i Fi is
∑p

j=1 e∗
jk1

fjk2 . From (ii), the pair
of Ei and Fi is disjoint, so if ejk1 is non-zero then fjk2 must be zero. Thus

∑p

j=1 e∗
jk1

fjk2 = 0
for arbitrary k1 and k2. It follows that EH

i Fi = 0k×k . Similarly, we can prove that EiF
H
i =

0p×p.
Since Ei + Fi , Ei and Fi are monomial, and the pair of Ei and Fi is disjoint, so we have

(iv) immediately. �
Appendix C

CLAIM 2. If k = 3l − 2, l = 1, 2, 3, . . ., and γi0,1 = 2l − 2, then R ≤ (3l − 2)/(4l − 1).

Proof. Without loss of generality, we assume i0 = 2, i.e., γ2,1 = 2l −2. We further assume
that γ3,1 ≥ 2l − 2. Otherwise, if γ3,1 ≤ 2l − 3, then we have

R = k

p
≤ k

k + β3,2 + γ3,2
= k

2k − γ3,1
≤ 3l − 2

4l − 1
,

which is the result in Claim 2.

The proof is divided into six steps. For convenience of description, let’s say the j th row
(column) is a common zero row (column) of F21 and F31 if the j th row (column) of F21 is
zero while the j th row (column) of F31 is also zero. Similarly, we say the j th row (column)
is a common non-zero row (column) of F21 and F31 if the j th row (column) of F21 is non-zero
while the j th row (column) of F31 is also non-zero. The ith and j th rows of a monomial matrix
are said to be a pair of relative rows if both the (i, j)th and (j, i)th elements of the matrix
are non-zero. Since F2 is monomial, so is F21. From Property 3.3, FT

21 = −F21. We know that
there are totally l − 1 pairs of relative rows in F21 since γ2,1, the rank of F21, is 2l − 2.
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Step 1. At first, we prove that there are at most l − 1 common non-zero rows (columns) in F21

and F31.

Suppose that there exist s (s ≥ l) common non-zero rows in F21 and F31. Since all 2l − 2
non-zero rows in F21 consist in l −1 pairs of relative rows, so there is a pair of relative rows in
these s rows in F21. Denote that this pair of relative rows is located at the k1th and k2th rows,
then both the (k1, k2)th and (k2, k1)th elements of F21 are non-zero. From the assumption,
both the k1th and k2th rows of F31 are non-zero. Denote further that the (k1, k3)th element in
the k1th row of F31 is non-zero. Since both the (k1, k3)th element of F31 and the (k1, k2)th
element of F21 are non-zero, and both F31 and F21 are monomial, so the (k3, k2)th element of
FT

31F 21 is non-zero.
On the other hand, since FT

31 = −F31 from Property 3.3, and the k2th row of F31 is non-
zero, so the k2th column of F31 is non-zero. Then the k2th column of E32 is zero since E3 +F3

is monomial. It follows that the (k3, k2)th element of EH
22E32 is zero. Similarly, since the

(k1, k2)th element of F21 is non-zero, we know that the k2th column of F22 is zero because F2

is monomial. It implies that the (k3, k2)th element of FT
32F 22 is zero.

From the above discussion, we know that both the (k3, k2)th elements of EH
22E32 and

FT
32F 22 are zero while the (k3, k2)th element of FT

31F 21 is non-zero. Thus, the (k3, k2)th
element of EH

22E32 + FT
31F 21 + FT

32F 22 is non-zero, which is contradictory to (3.11) that
EH

22E32 + FT
31F 21 + FT

32F 22 = 0k×k .
Thus we conclude that there are at most l − 1 common non-zero rows in F21 and F31.

Similarly, we can prove that there are at most l − 1 common non-zero columns in F21 and
F31.

Step 2. Denote N0 be the number of common zero columns in F21 and F31. In this step, we
will prove that N0 ≤ 1 and γ3,1 = 2l − 2.

Let Ñ0 be the number of common non-zero columns in F21 and F31. From Step 1, we know
that the number of common non-zero columns in F21 and F31 cannot be greater than l −1, i.e.,
Ñ0 ≤ l − 1. Since both F21 and F31 are k × k monomial matrices, so the number of common
zero columns in F21 and F31 satisfies

N0 = k − (γ2,1 + γ3,1 − Ñ0) ≤ 1,

in which k = 3l − 2, γ2,1 = 2l − 2 and γ3,1 ≤ 2l − 2 from the assumption. Moreover,

γ2,1 + γ3,1 − Ñ0 ≤ k,

so we obtain another constraint on γ3,1, i.e.,

γ3,1 ≤ k + Ñ0 − γ2,1 ≤ 2l − 1.

Therefore, we have 2l − 2 ≤ γ3,1 ≤ 2l − 1. Since γ3,1 must be even, so γ3,1 = 2l − 2.

Step 3. We prove rank(F T
31F 21) ≤ l − 1 in this step.

From Step 1, we know that there exist at most l −1 common non-zero rows in F21 and F31.
Since there are totally 2l − 2 non-zero rows in F21, so there exist at least l − 1 non-zero rows
in F21 such that the same rows in F31 are zero. Without loss of generality, we can assume that
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the first t (t ≥ l − 1) rows of F21 are non-zero while the first t rows of F31 are zero, since
there exist elementary row permutation operation U such that FT

31F 21 = (UF31)
T UF 21 and

the first t rows of UF21 are non-zero while the first t rows of UF31 are zero. We denote F21

and F31 as

F21 =
[

W1t×k

W2(k−t)×k

]
, F31 =

[
0t×k

W3(k−t)×k

]
,

where each row of W1 is non-zero. So

FT
31F 21 = [

0k×t WT
3

] ·
[

W 1

W 2

]
= WT

3 W 2 .

Thus we have

rank(F T
31F 21) ≤ rank(W 2) = γ2,1 − t ≤ l − 1.

Step 4. In this step, we show that EH
22F32 = 0k×k and EH

32F22 = 0k×k .

Let EH
22F32 = {ωi,j }k×k. According to (3.10) in Property 3.1, we have EH

22F32 =
− (

EH
22F32

)T
. So ωi,i = 0 for any i (1 ≤ i ≤ k), and ωi,j = −ωj,i for any 1 ≤ i �= j ≤ k.

If EH
22F32 �= 0k×k , then there exist i0 and j0 (i0 �= j0) such that ωi0,j0 �= 0 and ωj0,i0 �= 0. It

follows that the i0th and j0th columns of E22 are non-zero, while the i0th and j0th columns of
F32 are also non-zero. Since both E2 + F2 and F3 are monomial, so the i0th and j0th columns
of F21 are zero, while the i0th and j0th columns of F31 are also zero. Thus there are at least
two common zero columns in F21 and F31. This is contradictory to the fact that the number of
common zero columns in F21 and F31 can not be greater than 1, which is proved in Step 2. So
we have EH

22F32 = 0k×k . For the same reason, we have EH
32F22 = 0k×k.

Step 5. From (3.11) we have EH
22E32 + FT

31F 21 + FT
32F 22 = 0k×k. Thus, we have

rank(F T
31F 21) = rank(EH

22E32 + FT
32F 22).

If the following equation is true, (we will show it in next step.)

rank(EH
22E32 + FT

32F 22) = rank(EH
22E32) + rank(F T

32F 22), (C.1)

then we have

rank(F T
31F 21) = rank(EH

22E32) + rank(F T
32F 22)

= rank(EH
22E32) + rank(FH

22 F32)

≥ rank(EH
22E32 + FH

22 F32)

= rank
[
(E22 + F22)

H(E32 + F32)
]
,

(C.2)

in which the last equality follows by EH
22F32 = 0k×k and FH

22 E32 = 0k×k from the result of
Step 4. From Step 3, we know that rank(F T

31F 21) ≤ l − 1. So

l − 1 ≥ rank
[
(E22 + F22)

H (E32 + F32)
]

≥ rank(E22 + F22) + rank(E32 + F32) − (p − k)

= (β2,2 + γ2,2) + (β3,2 + γ3,2) − (p − k),

(C.3)
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in which the last equality follows by rank(Ei + Fi) = rank(Ei) + rank(Fi), and Ei + Fi, Ei

and Fi are monomial from Property 3.2. Since γ2,1 = 2l − 2 and k = 3l − 2, so β2,2 + γ2,2 =
k−γ2,1 = l. From the result in Step 2, we know γ3,1 = 2l−2. Thus, β3,2 +γ3,2 = k−γ3,1 = l.
Substituting β2,2 + γ2,2 = l and β3,2 + γ3,2 = l into (C.3), we have

p ≥ k − (l − 1) + (β2,2 + γ2,2) + (β3,2 + γ3,2) = 4l − 1.

Therefore, the rate R = k/p ≤ (3l − 2)/(4l − 1). By now we know that if (C.1) is true, then
we get the claim. We will prove (C.1) in next step.

Step 6. Finally, we want to show that

rank(EH
22E32 + FT

32F 22) = rank(EH
22E32) + rank(F T

32F 22). (C.4)

We observe that (C.4) is equivalent to

rank
[
(E22U)T E32U + (F 32U)T F 22U

] = rank
[
(E22U)T E32U

] + rank
[
(F 32U)T F 22U

]
,

for any k × k elementary column permutation matrix U which is of full rank. Thus, applying
column permutation operations on E2, E3, F2 and F3 at the same time does not effect the
result of (C.4). Without loss of generality, we may assume that the first 2l − 2 columns of F21

are non-zero. Since E2 +F2 is monomial, so the first 2l − 2 columns of E22 are zeros, and the
first 2l − 2 columns of F22 are also zeros.

From Step 2, we know that the number of common zero columns in F21 and F31 cannot be
greater than 1. If there is no common zero column in F21 and F31, then the last l columns of
F31 must be non-zero since the last l columns of F21 are zeros from the assumption. Because
E3 + F3 is monomial, we know that both the last l columns of E32 and F32 are zeros. Thus,
we have

EH
22E32 =

[
0(2l−2)×(2l−2) 0(2l−2)×l

∗ 0l×l

]
, F T

32F 22 =
[

0(2l−2)×(2l−2) ∗
0l×(2l−2) 0l×l

]
,

which implies (C.4). Therefore, (C.4) is true if there is no common zero column in F21 and
F31.

If there is one common zero column in F21 and F31. We assume that the (2l−1)th column is
the common zero column in F21 and F31. Otherwise, we can obtain it by column permutations.
Then the last l − 1 columns of F31 are non-zero since the last l − 1 columns of F21 are zeros.
It follows that both the last l − 1 columns of E32 and F32 are zero since E3 + F3 is monomial.
We prove (C.4) in the following four cases:

Case I. If both the (2l − 1)th columns of E22 and E32 are non-zero, then both the (2l − 1)th
columns of F22 and F32 are zeros since both E2 + F2 and E3 + F3 are monomial. Thus, we
have

EH
22E32 =

[
0(2l−2)×(2l−1) 0(2l−2)×(l−1)

∗ 0l×(l−1)

]
, F T

32F 22 =
[

0(2l−2)×(2l−1) ∗
0l×(2l−1) 0l×(l−1)

]
,

which implies (C.4).

Case II. If both the (2l − 1)th columns of E22 and E32 are zeros, then both the (2l − 1)th
columns of F22 and F32 are non-zero. In this case, we have

EH
22E32 =

[
0(2l−1)×(2l−2) 0(2l−1)×l

∗ 0(l−1)×l

]
, F T

32F 22 =
[

0(2l−1)×(2l−2) ∗
0(l−1)×(2l−2) 0(l−1)×l

]
,
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Thus (C.4) is true.

Case III. If the (2l − 1)th column of E22 is non-zero and the (2l − 1)th column of E32 is zero,
then the (2l − 1)th column of F22 is zero and the (2l − 1)th column of F32 is non-zero. Now
we have

EH
22E32 =

[
0(2l−2)×(2l−2) 0(2l−2)×l

∗ 0l×l

]
, F T

32F 22 =
[

0(2l−1)×(2l−1) ∗
0(l−1)×(2l−1) 0(l−1)×(l−1)

]
.

We observe that if the (2l − 1)th row of EH
22E32 + FT

32F 22 is zero, then (C.4) is true. From
the assumption that the (2l − 1)th column of F31 is zero, we know that the (2l − 1)th row
of FT

31F 21 is zero. Since EH
22E32 + FT

32F 22 = −FT
31F 21 from (3.11), so the (2l − 1)th row of

EH
22E32 + FT

32F 22 is zero.

Case IV. If the (2l − 1)th column of E22 is zero and the (2l − 1)th column of E32 is non-zero,
then the (2l − 1)th column of F22 is non-zero and the (2l − 1)th column of F32 is zero. With
this situation, we have

EH
22E32 =

[
0(2l−1)×(2l−1) 0(2l−1)×(l−1)

∗ 0(l−1)×(l−1)

]
, F T

32F 22 =
[

0(2l−2)×(2l−2) ∗
0l×(2l−2) 0l×l

]
.

We can see that if the (2l − 1)th column of EH
22E32 + FT

32F 22 is zero, then (C.4) is true. From
the assumption that the (2l − 1)th column of F21 is zero, we know that the (2l − 1)th column
of FT

31F 21 is zero. According to (3.11) again, EH
22E32 +FT

32F 22 = −FT
31F 21, we know that the

(2l − 1)th column of EH
22E32 + FT

32F 22 is actually zero.
Therefore, (C.4) is also true if there is one common zero column in F21 and F31. From the

above six steps, we have proved Claim 2 completely. �
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