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On Space-Time Code Design with A Conditional
PIC Group Decoding
Tianyi Xu and Xiang-Gen Xia,Fellow, IEEE

Abstract—Space-time code designs based on a partial inter-
ference cancellation (PIC) group decoding have been recently
proposed. The PIC group decoding complexity depends on the
group size and is between the lowest linear receiver complexity
and the highest ML decoding complexity. The symbol rate for
a space-time code achieving full diversity with the PIC group
decoding is also between those for the linear receivers and the
ML decoding. In this paper, we propose a new decoding, called
conditional PIC group decoding, that is between the PIC group
decoding and the ML decoding. With the proposed new decoding,
we obtain a new design criterion for space-time codes to achieve
full diversity, which is also between the one with the PIC group
decoding and the one with the ML decoding. We then present
some designs that satisfy the new criterion and in the meantime
have higher symbol rates than that for the PIC group decoding.

Index Terms—full diversity, partial interference cancellation,
group decoding, cyclotomic lattice design, space-time block codes.

I. I NTRODUCTION

FULL diversity achieving space-time code designs with
low complexity decodings include orthogonal space-time

codes (OSTC) [1]–[7], quasi OSTC type codes with simplified
ML decoding [8]–[16], extended OSTC with conditional ML
detection [17]–[20], codes with linear receivers [21]–[25],
and codes with PIC group decoding [26], [28]. Due to the
orthogonality constraint, the symbol rates for OSTC type codes
decrease to1/2 [4] when the number of transmit antennas gets
large. When the orthogonality is relaxed so that the full diver-
sity can be achieved with linear receivers, the symbol rates
can still be close to1 when the number of transmit antennas
gets large [23]. When the linear receiver is generalized/relaxed
to the PIC group decoding, the symbol rates for full diversity
achieving codes can be increased to be more than1 but upper
bounded by the group size [26]. It is known that the symbol
rates for full diversity codes with the ML decoding can be full,
i.e., nt, for nt transmit antennas [29]–[33], including perfect
codes [31], [32]. A natural question is whether there are full
diversity achieving codes with symbol rates higher than that
with the PIC group decoding, and with a decoding of a lower
complexity than the ML decoding.

Motivated from the results in [17]–[20] on extended OSTC
with conditional ML detection, in this paper we propose a
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conditional PIC group decoding that can be stated as follows.
For each trial of a fixed group of information symbols, the
remaining information symbols are decoded with the PIC
group decoding. The final decoding is the optimal solution
among all the trials of the fixed group of symbols. It is clear
that the complexity of this conditional PIC group decoding
is between those of the PIC group decoding in [26] and the
ML decoding. We obtain a new design criterion for space-time
codes to achieve full diversity with the conditional PIC group
decoding. The new criterion is also between those with the PIC
group decoding and with the ML decoding. We then propose
some designs that satisfy the new criterion, i.e., achieve full
diversity with the conditional PIC group decoding, and in the
meantime, their symbol rates are higher than those designed
for the PIC group decoding in [26], [28].

This paper is organized as follows. In Section II, we describe
the system model and the PIC group decoding. In Section III,
we introduce the conditional PIC group decoding and present
the new design criterion. In Section IV, we propose some code
designs. In Section V, we show some simulation results.

II. SYSTEM MODEL AND PIC GROUP DECODING

We consider an MIMO transmission withnt transmit and
nr receive antennas over a quasi-static Rayleigh block-fading
channel. The channel model is written as follows,

Y =

√

ρ

nt
XH + N, (1)

whereY ∈ Ct×nr is the received signal matrix int time slots,
X ∈ Ct×nt is a codeword matrix from a space-time block
code (STBC), or simplyX is an STBC,H = (hij)nt×nr

is
the nt × nr channel matrix whose entries are assumed i.i.d.
with distribution CN (0, 1), N ∈ Ct×nr is an additive white
Gaussian noise matrix with i.i.d. entriesni,j ∼ CN (0, 1) and
ρ is the average signal-to-noise-ratio at the receiver.

In this paper, for convenience we only consider that in-
formation symbolssl, l = 1, · · · , L, are coded by linear
dispersion STBC [35], [36] as

X = X(s1, · · · , sL) =

L
∑

l=1

Alsl, (2)

where Al ∈ Ct×nt is a linear STBC weight matrix. When
the complex conjugated information symbols are involved,
they can be converted into the above form if their real and
imaginary parts are split into two independent variables.

To decode the transmitted information symbol vectors =
[s1, s2, · · · , sL]T at the receiver, the system model in (1) needs
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to be rewritten as
y =

√
ρGs+ n, (3)

wherey ∈ Ctnr is the received signal vector,G ∈ Ctnr×L

is an equivalent channel matrix [23], [26],n ∈ Ctnr is the
additive white Gaussian noise vector.

We now describe the PIC group decoding algorithm studied
in [26]. Define the index setI asI = {1, 2, · · · , L}, whereL
is the number of information symbols ins. First we partition
I into N groups:I1, I2, · · · , IN . Each index subsetIk can
be written as follows,

Ik = {ik,1, ik,2, · · · , ik,nk
}, k = 1, 2, · · · , N,

where nk
∆
= |Ik| is the cardinality of the subsetIk. We

call I = {I1, I2, · · · , IN} a grouping scheme. For such a
grouping scheme, we have the following two equations

I =

N
⋃

i=1

Ii and

N
∑

i=1

ni = L.

Define sIk
as the information symbol vector that contains

the symbols with indices inIk, i.e.,

sIk
= [sik,1

, sik,2
, · · · , sik,nk

]T .

Let the column vectors of an equivalent channel matrixG be
g1, g2, · · · , gL. Similarly, we can defineGIk

as

GIk
= [gik,1

, gik,2
, · · · , gik,nk

].

In this case, the STBCX in (2) can be also written asX =
X(sI1

, · · · , sIN
). With these notations, equation (3) can be

rewritten as

y =
√

ρ
N
∑

i=1

GIi
sIi

+ n. (4)

Suppose we want to decode the symbols embedded in
group sIi

. The PIC group decoding first implements linear
interference cancellation with a suitable choice of matrixQIi

in order to completely eliminate the interferences from other
groups [26], i.e.,QIi

GIj
= 0, ∀j 6= i andi = 1, 2, · · · , N . To

satisfy this, we can, for example, chooseQIi
as the following

zero-forcing filter

QIi
= I tnr

− Gc
Ii

((Gc
Ii

)HGc
Ii

)−1(Gc
Ii

)H , i = 1, 2, · · · , N,

when the following matrix has full column rank:

Gc
Ii

= [GI1
, · · · , GIi−1

, GIi+1
, · · · , GIN

].

Then we have

zIi
= QIi

y =
√

ρQIi
GIi

sIi
+ QIi

n, i = 1, 2, · · · , N.

The symbols in groupsIi
can be decoded with the ML

decoding as follows [26]:

ŝIi
= arg min

sIi
∈Ani

‖zIi
−√

ρQIi
GIi

sIi
‖2. (5)

whereA is a signal constellation for the information symbols.
In [26], [27], an STBC design criterion was derived to

achieve full diversity with the PIC group decoding, which can
be stated as follows.

Theorem 2.1: For an STBCX with the PIC group decoding,
the full diversity is achieved when the codeX satisfies the
full rank criterion, i.e., it achieves full diversity when the ML
receiver is used; and for a fixedk, 1 ≤ k ≤ N , any nonzero
linear combination over∆A of the vectors in thekth group
GGGIk

does not belong to the space linearly spanned by all the
vectors in the remaining vector groups over the complex field,
i.e., VIk

defined in (12) in [26], for anyH 6= 0.
Notice that in the PIC group decoding algorithm, we may

use successive interference cancellation (SIC) strategy to aid
the decoding process. We call the SIC-aided PIC group decod-
ing as PIC-SIC group decoding [26]. The basic idea of this
method is to remove the already-decoded symbols from the
received signals to reduce the interferences. For a decoding
order, for example,(sI1

, sI2
, · · · , sIN

), first, we can decode
symbol groupsI1

by the PIC group decoding to obtain̂sI1
.

Remove the components of the already-detected symbol group
ŝI1

from (4):

y1 = y −√
ρGI1

ŝI1
. (6)

Then, decodesI2
from (6) by the PIC group decoding. Repeat

this process until all symbols are decoded. Then, the full
diversity criterion for the PIC-SIC group decoding can be
stated as follows[26], [27].

Theorem 2.2: For an STBCX with the PIC-SIC group
decoding, the full diversity is achieved when the codeX
satisfies the full rank criterion, i.e., it achieves full diversity
when the ML receiver is used; and at each decoding stage, for
GIk

, which corresponds to the current to-be decoded symbol
group sIk

, any nonzero linear combination over∆A of the
vectors inGGGIk

does not belong to the space linearly spanned
by all the vectors in the group[GGGIk+1

, · · · ,GGGIN
] over the

complex field for anyH 6= 0.
We next propose a new decoding algorithm called condi-

tional PIC group decoding.

III. C ONDITIONAL PIC GROUP DECODING AND A NEW

DESIGN CRITERION

Motivated from the conditional detection in [17]–[20] on
the conditional fast ML decoding for orthogonal codes, we
now propose a conditional PIC group decoding. Our proposed
conditional PIC group decoding method is implemented in
two major steps. First, estimate the information symbols in
the firstN−1 groupssI1

, sI2
, · · · , sIN−1

using the PIC group
decoding for every possible trial of the information symbols
in the last groupsIN

: for every s̄IN
∈ AnN , whereA is the

constellation used, cancel it from the received signal:

y−√
ρGIN

s̄IN
=

√
ρ

N−1
∑

i=1

GIi
sIi

+ n +
√

ρGIN
(sIN

− s̄IN
).

(7)
Apply the PIC group decoding to decodesIi

, 1 ≤ i ≤ N − 1,
from the abovey−√

ρGIN
s̄IN

for everys̄IN
, and denote the

decoding results bysPIC
Ii

(̄sIN
), which are functions of̄sIN

.
This first major step is named as the PIC group decoding step.
Then, the second major step is to choosesIN

to minimize the
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scondPIC
IN

= arg min
s̄IN

∈AnN

∣

∣

∣

∣

∣

y −√
ρ

(

N−1
∑

i=1

GIi
sPIC
Ii

(̄sIN
) + GIN

s̄IN

)
∣

∣

∣

∣

∣

2

(8)

ML metric from all the results in the first step as (8) above;
and for i = 1, 2, · · · , N − 1,

scondPIC
Ii

= sPIC
Ii

(

scondPIC
IN

)

. (9)

This second major step is named as the ML step.
Suppose thatAnN = {a1, a2, · · · , aq}. Then, the condi-

tional PIC group decoding algorithm can be described in
details as:

1) Let t = 1;
2) Let s̄IN

= at, cancel it from the received signal as (7);
3) Treat n +

√
ρGIN

(sIN
− s̄IN

) as noise, and decode
sI1

, · · · , sIN−1
using the PIC group decoding. The de-

coding results aresPIC
Ii

(̄sIN
);

4) Calculate the ML metric
∣

∣

∣

∣

∣

y −√
ρ

(

N−1
∑

i=1

GIi
sPIC
Ii

(̄sIN
) + GIN

s̄IN

)∣

∣

∣

∣

∣

2

;

5) If t < q, then sett := t + 1, go to Step 2; otherwise, go
to Step 6;

6) ChoosesIN
with the minimal ML metric in Step 4,

and the conditional PIC group decoding results are
sPIC
I1

(sIN
), · · · , sPIC

IN−1
(sIN

), sIN
.

The decoding complexity of the PIC group decoding
step is O(|A|c1 ), where c1 is the maximum cardinality of
I1, I2, · · · , IN−1, i.e., c1 = max{n1, n2, · · · , nN−1}. In the
ML step, since we need to enumerate all possible trials of
the groupsIN

, its complexity isO(|A|nN ). Thus, the total
decoding complexity isO(|A|c1+nN ). Comparing with the
complexity, O(|A|n1+n2+···+nN ), of the ML decoding, the
above complexity is much lower. Comparing with the PIC
group decoding, the complexity of this conditional PIC group
decoding method is higher. As shown in the following theo-
rem, the full diversity criterion is weaker, which implies that
we can design a higher rate code achieving the full diversity
than that using the PIC group decoding. Our proposed method
is also different from the PIC-SIC group decoding method. The
PIC-SIC group decoding method cancels the interference from
the already decoded symbol groups, but the proposed method,
for any possible trial of a group of symbols, removes them
from the received signal and decodes other symbol groups with
the PIC group decoding, and then chooses the best solutions.

Theorem 3.1: For an STBCX with the above conditional
PIC group decoding, the full diversity is achieved when the
code X satisfies the full rank criterion, i.e., it achieves full
diversity when the ML receiver is used; and for a fixedk,
1 ≤ k ≤ N − 1, any nonzero linear combination over∆A
of the vectors in thekth groupGGGIk

does not belong to the
space linearly spanned by all the vectors in the vector group
[GGGI1

, · · · ,GGGIk−1
,GGGIk+1

, · · · ,GGGIN−1
] over the complex field

for any H 6= 0, where a nonzero linear combination over∆A
means that all the coefficients in the linear combination are
taken from∆A and not all of them are zero.

Proof: Suppose information symbol vectorss0Ii
, i =

1, 2, · · · , N , are transmitted. Then, there are two types of
errors as follows. The first type of errors appear in the PIC
group decoding step when we sets̄IN

= s0IN
. In this case, the

equation (7) becomes

y′ ≡ y −√
ρGIN

s̄IN
=

√
ρ

N−1
∑

i=1

GIi
s0Ii

+ n.

Since the conditions in Theorem 2.1 are satisfied by
GI1

, · · · , GIN−1
, the pairwise error probability of the de-

tection of sIi
, i = 1, 2, · · · , N − 1, when s̄IN

= s0IN

is given, is upper bounded by (10) in the next page,
for a positive constantC1 and (s0I1

, s0I2
, · · · , s0IN−1

) 6=
(

sPIC
I1

(s0IN
), sPIC

I2
(s0IN

), · · · , sPIC
IN−1

(s0IN
)
)

.
The second type of errors appear in the ML step of the

decoding, but in the PIC group decoding step, when we set
s̄IN

= s0IN
, the detection results are correct, i.e.,sPIC

Ii
(s0IN

) =
s0Ii

for i = 1, 2, · · · , N − 1. In this step, for anȳsIN
, from

(7) we obtainsPIC
Ii

(̄sIN
), i = 1, 2, · · · , N − 1. Define set

A′ =
{(

sPIC
I1

(̄sIN
), · · · , sPIC

IN−1
(̄sIN

), s̄IN

)∣

∣

∣
s̄IN

∈ AnN

}

.

Due to the above error pattern, the above setA′ con-
tains the truely transmitteds0Ii

for i = 1, 2, · · · , N , i.e.,
(s0I1

, s0I2
, · · · , s0IN

) ∈ A′.
The detection of the remaining symbols can be processed

as (11) in the next page, where‖ · ‖F is the Frobenius norm
of a matrix. Let̂sIi

= sPIC
Ii

(̂sIN
) for i = 1, 2, · · · , N−1. It is

easy to see that(̂sI1
, ŝI2

, · · · , ŝIN
) ∈ A′ and it is the solution

of the ML decoding overA′.
SinceX satisfies the full rank criterion onAL, it is obvious

thatX satisfies the full rank criterion onA′ that is a subset of
AL. Thus, the pairwise error probability in the ML step above
can be bounded by

Pr

(

[s0I1
, s0I2

, · · · , s0IN
]

ML−−→ [̂sI1
, ŝI2

, · · · , ŝIN
]

)

≤ C2ρ
−ntnr ,

(12)
for a positive constantC2 and (s0I1

, s0I2
, · · · , s0IN

) 6=
(̂sI1

, ŝI2
, · · · , ŝIN

).
The total pairwise error probability for the proposed decod-

ing method,

Pr
(

[s0I1
, s0I2

, · · · , s0IN
] −→ [s′I1

, s′I2
, · · · , s′IN

]
)

,

for (s0I1
, s0I2

, · · · , s0IN
) 6= (s′I1

, s′I2
, · · · , s′IN

), can be ex-
pressed in two parts. One is that when in the PIC
group decoding step, settinḡsIN

= s0IN
, the detection

of sI1
, sI2

, · · · , sIN−1
has no error, i.e., the truely trans-

mitted symbol (sI1
, sI1

, · · · , sIN
) is in the set A′. And

in the ML step, we decode the symbols erroneously to
[s′I1

, s′I2
, · · · , s′IN

]. This part is due to the second type of
errors. The other is that error occurs in the PIC group decoding
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Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
|̄sIN

= s0IN
]

PIC group−−−−−−−→ [sPIC
I1

(s0IN
), sPIC

I2
(s0IN

), · · · , sPIC
IN−1

(s0IN
)|̄sIN

= s0IN
]

)

≤ C1ρ
−ntnr (10)

ŝIN
= arg min

sIN
∈AnN

∣

∣

∣

∣

∣

y −√
ρ

(

N−1
∑

i=1

GIi
sPIC
Ii

(sIN
) + GIN

sIN

)∣

∣

∣

∣

∣

2

= arg min
(sI1

,··· ,sIN
)∈A′

∣

∣

∣

∣

∣

y −√
ρ

(

N−1
∑

i=1

GIi
sIi

+ GIN
sIN

)∣

∣

∣

∣

∣

2

= arg min
(sI1

,··· ,sIN
)∈A′

∥

∥

∥

∥

Y −
√

ρ

nt
X(sI1

, · · · , sIN−1
, sIN

)H

∥

∥

∥

∥

2

F

(11)

step, when̄sIN
= s0IN

is given. This part is due to the first
type of errors.

For the first part, the pairwise error probability can be
expressed as

P1 = Pr

(

[s0I1
, s0I2

, · · · , s0IN
]

PIC group−−−−−−−→ [s0I1
,

s0I2
, · · · , s0IN−1

|̄sIN
= s0IN

]
ML−−→ [s′I1

, s′I2
, · · · , s′IN

]

)

,

which means that in the PIC group decoding step, withs̄IN
=

s0IN
, the detection result is(s0I1

, s0I2
, · · · , s0IN−1

), and, then, in
the ML step, we decode the symbols to(s′I1

, s′I2
, · · · , s′IN

).
Thus, we have

P1 = Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
|sIN

= s0IN
]

PIC group−−−−−−−→

[s0I1
, s0I2

, · · · , s0IN−1
|sIN

= s0IN
]
)

·Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
, s0IN

]
ML−−→

[s′I1
, s′I2

, · · · , s′IN
]
)

≤ Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
, s0IN

]
ML−−→

[s′I1
, s′I2

, · · · , s′IN
]
)

≤ C2ρ
−ntnr .

where the last inequality comes from (12).
The second part of the pairwise error probability can be

written as (13) in the next page. Each component in (13) can
be bounded as (14) in the next page, where the last inequality
comes from (10). Thus,

P2 ≤
∑

(s′′
I1

,s′′
I2

,··· ,s′′
IN−1

)∈AL−nN ,

(s′′
I1

,s′′
I2

,··· ,s′′
IN−1

) 6=(s0
I1

,s0
I2

,··· ,s0
IN−1

)

C1ρ
−ntnr

= (|A|l−nN − 1)C1ρ
−ntnr .

Based on these two parts, we have the pairwise error
probability of the conditional PIC group decoding as

Pr
(

[s0I1
, s0I2

, · · · , s0IN
] −→ [s′I1

, s′I2
, · · · , s′IN

]
)

= P1 + P2

≤ (C2 + (|A|l−nN − 1)C1)ρ
−ntnr .

This proves that the code can achieve full diversity with the
proposed decoding method.

We similarly propose a conditional PIC-SIC group decoding
by replacing the PIC group decoding with the PIC-SIC group
decoding [26] in the first step. We have the following theorem,
which can be similarly proved.

Theorem 3.2: For an STBCX with the conditional PIC-SIC
group decoding, the full diversity is achieved when the code
X satisfies the full rank criterion, i.e., it achieves full diversity
when the ML decoding is used; and at each decoding stage, for
GIk

, which corresponds to the current to-be decoded symbol
group sIk

, any nonzero linear combination over∆A of the
vectors inGGGIk

does not belong to the space linearly spanned
by all the vectors in the group[GGGIk+1

, · · · ,GGGIN−1
] over the

complex field for anyH 6= 0.
The full diversity criteria in Theorems 3.1 and 3.2 only

require a kind of linear independences (the second condition)
of the first N − 1 vector groups, which is weaker than the
requirement of the same kind of linear independences (the
second condition) of all theN vector groups in Theorems
2.1 and 2.2 [26], [27]. With this reduced requirement in the
criteria, we may add more symbol groups with the same
number of time slots using the conditional PIC (or PIC-SIC)
group decoding to achieve full diversity, as we shall see in next
section. Thus, it is possible to design a higher rate full diversity
code than using the PIC (or PIC-SIC) group decoding.

Example 1: Consider the full rate2× 2 STBC proposed in
[17]:

X =

[

as1 + bs3 as2 + bs4

−cs∗2 − ds∗4 cs∗1 + ds∗3

]

(15)

where (s1, s2, s3, s4) are information symbols and the star
stands for the complex conjugate,a, b, c and d are complex-
valued design parameters with the same magnitude1/

√
2, i.e.,

|a| = |b| = |c| = |d| = 1/
√

2. Suppose we use one receive
antenna. The equivalent channel matrixG can be written as

G =
1√
2
[g1, g2, g3, g4]

=
1√
2

[

ah1 ah2 bh1 bh2

c∗h∗
2 −c∗h∗

1 d∗h∗
2 −d∗h∗

1

]

. (16)

It is easy to verify thatg1 ⊥ g2, and, consequently,g1 andg2

are linearly independent and thus satisfy the second condition
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P2 =
∑

(s′′
I1

,s′′
I2

,··· ,s′′
IN−1

)∈AL−nN ,

(s′′
I1

,s′′
I2

,··· ,s′′
IN−1

) 6=(s0
I1

,s0
I2

,··· ,s0
IN−1

)

Pr

(

[s0I1
, s0I2

, · · · , s0IN
]

PIC group−−−−−−−→ [s′′I1
, s′′I2

, · · · , s′′IN−1
|sIN

= s0IN
]

ML−−→ [s′I1
, s′I2

, · · · , s′IN
]

)

.
(13)

Pr

(

[s0I1
, s0I2

, · · · , s0IN
]

PIC group−−−−−−−→ [s′′I1
, s′′I2

, · · · , s′′IN−1
|sIN

= s0IN
]

ML−−→ [s′I1
, s′I2

, · · · , s′IN
]

)

= Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
|sIN

= s0IN
]

PIC group−−−−−−−→ [s′′I1
, s′′I2

, · · · , s′′IN−1
|sIN

= s0IN
]

)

·Pr

(

[s′′I1
, s′′I2

, · · · , s′′IN−1
, s0IN

]
ML−−→ [s′I1

, s′I2
, · · · , s′IN

]

)

≤ Pr

(

[s0I1
, s0I2

, · · · , s0IN−1
|sIN

= s0IN
]

PIC group−−−−−−−→ [s′′I1
, s′′I2

, · · · , s′′IN−1
|sIN

= s0IN
]

)

≤ C1ρ
−ntnr , (14)

in Theorem 3.1. Therefore, with the grouping schemeI1 =
{1}, I2 = {2} andI3 = {3, 4}, we can decode this code by
the conditional PIC group decoding. This algorithm is then
the same as the one proposed in [17].

Before the ending of this section, we have a remark.
Regarding to the decoding complexity for the conditional
PIC group decoding, we may use sphere decoding [37]–
[43] to reduce the complexity. We only need to search the
information symbols in the last group,sIN

, in a hypersphere
around the received signal, not every possible trials inAnN .
Using the sphere decoding method in the ML step similar
to [19], the decoding complexity is much lower than before.
Moreover, in the PIC group decoding step, we can also use
sphere decoding in each group instead of the ML decoding
in (5). For an MIMO system with independent and identify
distributed channel coefficients, it has been shown that the
average complexity of sphere decoding is in polynomial order,
roughly cubic, of the number of unknown variables, for a
wide range of SNR and a moderate number of antennas and
constellation sizes, although the exact complexity depends on
the channels [41], [42]. Detailed complexity analysis for our
proposed conditional PIC group decoding combined with the
sphere decoding can be similarly done as [41], [42]. In Section
V, we show some simulation performances of the conditional
PIC group decoding combined with the sphere decoding,
which are similar to the performances of the conditional PIC
group decoding.

IV. N EW CODE DESIGNS

Let us first consider 2 transmit antennas. The proposed
code is (17) in the next page, whereθ = 1

2 arctan2 [26],
i =

√
−1, ands1, s2, · · · , s6 are information symbols chosen

from a QAM constellationA. This code is transmitted over
3 time slots and has a symbol rate of 2. For convenience,
we only consider the case of one receive antenna. According
to the codeword structure, we can calculate the equivalent
channel matrix (18) in the next page, whereh1 and h2 are

channel coefficients. It is not difficult to see that this code
does not satisfy the criterion for the PIC group decoding with
the group schemeI1 = {1, 2}, I2 = {3, 4} andI3 = {5, 6}.
Actually, for every group, any vector in this group can be
linearly expressed by the vectors in the other two groups. Thus,
this code does not satisfy the criterion to achieve full diversity
with the PIC group decoding in [26], [27].

Suppose the conditional PIC group decoding is used to
decode the code(17): first, estimates1, s2, s3, s4 using the
PIC group decoding for every possible trial of(s5, s6); then,
choose(s5, s6) to minimize the ML metric from all results
in the first step. Sincetan θ is an irrational number, we have
a1h1 cos θ + a2h1 sin θ 6= 0 for h1 6= 0 and anya1, a2 ∈ Z[i],
whereZ[i] is the number ring generated by the integer ringZ

and i. Similarly, −b1h2 sin θ + b2h2 cos θ 6= 0 for h2 6= 0 and
anyb1, b2 ∈ Z[i]. This implies that forh1 andh2 are not all 0,
any nonzero linear combination overZ[i] of vectors fromGI1

does not belong to the space linearly spanned by all the vectors
from GI2

over the complex field, since any complex linear
combination of the first components of the vectors inGI2

is
always0 and any complex linear combination of the second
components of the vectors inGI2

is always0 if h1 = 0. This
conclusion similarly holds when the order ofGI1

andGI2
is

switched. Since∆A is a subset ofZ[i], we have proved that,
for GI1

andGI2
, any nonzero linear combination over∆A of

vectors from one vector group can not be linearly expressed
by the vectors in the other vector group over the complex
field. The following property can guarantee that this code has
full rank property when a QAM constellation is used. Thus,
from the new criterion we obtained in Theorem 3.1, this code
can achieve full diversity with a QAM constellation and the
conditional PIC group decoding.

Property 4.1: The matrixX in (17) has full rank whensi ∈
Z[i] and at least one ofsi is not 0, whereZ[i] is the number
ring generated by the integer ringZ and i.
Proof: To prove this property, we need to verify that at least
one of the2 × 2 minors of matrixX is not 0.
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X =





s1 cos θ + s2 sin θ e−iπ/4(−s5 sin θ + s6 cos θ)
s3 cos θ + s4 sin θ −s1 sin θ + s2 cos θ

e−iπ/4(s5 cos θ + s6 sin θ) −s3 sin θ + s4 cos θ



 (17)

G =
1√
2





h1 cos θ h1 sin θ 0 0 −e−iπ/4h2 sin θ e−iπ/4h2 cos θ
−h2 sin θ h2 cos θ h1 cos θ h1 sin θ 0 0

0 0 −h2 sin θ h2 cos θ e−iπ/4h1 cos θ e−iπ/4h1 sin θ



 (18)

Suppose all the2×2 minors of matrixX are 0. For example,

det

([

s1 cos θ + s2 sin θ e−iπ/4(−s5 sin θ + s6 cos θ)
s3 cos θ + s4 sin θ −s1 sin θ + s2 cos θ

])

= 0.

Denote sin θ, cos θ, tan θ and e−iπ/4 by s, c, t and ǫ,
respectively, we have

0 = (s1c + s2s)(−s1s + s2c) − ǫ(−s5s + s6c)(s3c + s4s)

= c2[−(s1s2 − ǫs4s5)t
2

+(−s2
1 + s2

2 − ǫ(−s3s5 + s4s6))t + s1s2 − ǫs3s6].

Sincet = tan θ /∈ Q, whereQ is the rational number field, and
the minimal polynomial oft over Z[i] is f(x) = x2 + x − 1,
we have thatsi, i = 1, 2, · · · , 6, satisfy−(s1s2 − ǫs4s5) =
−s2

1 + s2
2 − ǫ(−s3s5 + s4s6) = −(s1s2 − ǫs3s6) 6= 0 or

−(s1s2 − ǫs4s5) = −s2
1 + s2

2 − ǫ(−s3s5 + s4s6) = s1s2 −
ǫs3s6 = 0.

Case 1. −(s1s2− ǫs4s5) = −s2
1 +s2

2− ǫ(−s3s5 +s4s6) =
s1s2 − ǫs3s6 = 0.

Sinceǫ = e−iπ/4 /∈ Q(i), whereQ(i) is the number field
generated by the rational number fieldQ and i, equationa +
ǫb = 0 holds for a, b ∈ Z[i] if and only if a = b = 0.
Thus, in this case, we haves1s2 = s4s5 = 0, −s2

1 + s2
2 =

−s3s5 + s4s6 = 0 and s1s2 = s3s6 = 0, which implies
s1 = s2 = s3 = s4 = 0 or s1 = s2 = s5 = s6 = 0.

Case 2. −(s1s2− ǫs4s5) = −s2
1 +s2

2− ǫ(−s3s5 +s4s6) =
−(s1s2 − ǫs3s6) 6= 0.

From the equation−(s1s2−ǫs4s5) = −s2
1+s2

2−ǫ(−s3s5+
s4s6), we have

s2
2 + s1s2 − s2

1 + ǫ(s3s5 − s4s5 − s4s6) = 0.

Sinceǫ /∈ Q(i), the above equation holds if and only ifs2
2 +

s1s2 − s2
1 = 0 and s3s5 − s4s5 − s4s6 = 0. If s1 6= 0, then

( s2

s1
)2 + s2

s1
− 1 = 0. We know that the roots of polynomial

x2 + x − 1 = 0 are t and−1 − t /∈ Q(i). Thus, the equation
( s2

s1
)2 + s2

s1
− 1 = 0 does not hold for anys1, s2 ∈ Z[i] with

s1 6= 0. Otherwise,s1 = 0, thens2 should also be 0.
From−(s1s2− ǫs4s5) = −(s1s2− ǫs3s6), we haves4s5 =

s3s6. Supposes4s5 = s3s6 6= 0, let s3

s4
= s5

s6
= k ∈ Q(i),

and substitutings3 and s5 by ks4 and ks6 in the equation
s3s5 − s4s5 − s4s6 = 0, we have

s4s6(k
2 − k − 1) = 0.

Similarly, k2 − k − 1 6= 0 for k ∈ Q(i), so one ofs4 and
s6 equals to 0, which contradicts to the assumption. Thus,
s4s5 = s3s6 = 0. Together withs3s5 − s4s5 − s4s6 = 0,

we can easily prove thats3 = s4 = 0 or s5 = s6 = 0.
Similar to Case 1, now we haves1 = s2 = s3 = s4 = 0 or
s1 = s2 = s5 = s6 = 0.

For another2 × 2 minor of matrixX,

det

([

s3 cos θ + s4 sin θ −s1 sin θ + s2 cos θ

e−iπ/4(s5 cos θ + s6 sin θ) −s3 sin θ + s4 cos θ

])

= 0.

Similar to the proof above, we haves3 = s4 = s1 = s2 = 0
or s3 = s4 = s5 = s6 = 0.

Hence, if all the minors of matrixX are zeros, we have
s1 = s2 = s3 = s4 = s5 = s6 = 0, which contradicts to that
at least one ofsi is not 0. The matrixX, consequently, has
full rank.

For a general case, consider anM -layer code (19), in the
next page, fornt transmit antennas withP time slots, where
P − nt + 1 ≤ M ≤ P , where ρ1, · · · , ρM are M fixed
complex numbers, thei-th descending diagonal from left to
right, denoted byXi = [Xi,1, Xi,2, · · · , Xi,nt

]T is given by

Xi = Θsi, (20)

where thent × 1 information symbol vectorsi is

si = [s(i−1)nt+1, s(i−1)nt+2, · · · , sint
]T ,

i = 1, 2, · · · , M, and Θ is a chosen constellation rotation
matrix [34]. The symbol rate for this code isMnt

P .
We can choose the rotation matrixΘ from [34], Table I.

For a pair of integers(l, m) andK = lm, nt = φ(K)
φ(l) , where

φ is the Euler totient function, a vaild rotation matrix is given
by

Θ =













ζK ζ2
K · · · ζnt

K

ζ1+m2l
K ζ

2(1+m2l)
K · · · ζ

nt(1+m2l)
K

...
...

...
...

ζ
1+mnt

l
K ζ

2(1+mnt
l)

K · · · ζ
nt(1+mnt

l)
K













(21)

whereζK = exp(2πi/K) and m2, m3, · · · , mnt
are distinct

integers such that1 + mil and K are co-prime for any2 ≤
i ≤ nt. A signal constellation for this code can beΛζl

(or
a subsetA of Λζl

), a subset ofZ[ζl] that is the number ring
generated by the integer ringZ and ζl, i.e., Λζl

⊂ Z[ζl]. Λζl

can also be thought of as the2-dimensional real lattice with
the generating matrix

[

1 cos(2π
l )

0 sin(2π
l )

]

defined in [34]. For example, whenl = 4, the constellation is
located on the square lattice, i.e., a QAM constellation. When
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X =




































ρ1X1,1 0 · · · 0 ρMXM,P−M+2 · · · ρP−nt+2XP−nt+2,nt

ρ2X2,1 ρ1X1,2
. . .

... 0
. . .

...
... ρ2X2,2

. . . 0
...

. . . ρMXM,nt

ρM−1XM−1,1

...
. . . ρ1X1,P−M+1 0

. . .
...

ρMXM,1 ρM−1XM−1,2
. . . ρ2X2,P−M+1 ρ1X1,P−M+2

. . . 0

0 ρMXM,2
. . .

... ρ2X2,P−M+2
. . . ρ1X1,nt

...
...

. . . ρM−1XM−1,P−M+1

...
. . .

...
0 0 · · · ρMXM,P−M+1 ρM−1XM−1,P−M+2 · · · ρP−nt+1XP−nt+1,nt





































(19)

l = 3, the signal constellation is located on the equal literal
triangular lattice.

To decode this code with the conditional PIC-SIC group
decoding, we first define the group ordering schemeI =
{I1, I2, · · · , IP−nt+2}, where

Ii = {(i−1)nt+1, (i−1)nt+2, · · · , int}, i = 1, 2, · · · , P−nt+1

and IP−nt+2 = {(P − nt + 1)nt + 1, (P − nt + 1)nt +
2, · · · , Mnt}.

WhenP = nt, the matrixX in (19) is a square matrix, and
this code is exactly the multilayer cyclotomic code proposed in
[33]. In this case, we split the information symbols into two
groups as above:I = {I1, I2}, whereI1 = {1, 2, · · · , nt}
andI2 = {nt + 1, nt + 2, · · · , Mnt}. When we use the con-
ditional PIC-SIC group decoding with this grouping scheme,
the decoding is equivalent to the ML decoding.

When P > nt, with M layers, the symbol rate
of this code is Mnt

P . With the grouping schemeI =
{I1, I2, · · · , IP−nt+2} as above, we use the conditional PIC-
SIC group decoding to decode the information symbols as
follows: first, for every possible trail of the symbols in the
last groupsIP−nt+2

, estimate the information symbols in other
symbol groupssI1

, sI2
, · · · , sIP−nt+1

with the PIC-SIC group
decoding; then choose the bestsIP−nt+2

to minimize the ML
metric from all results in the first step. The decoding complex-
ities of the codeX in (19) in the first step and second step
are O(|A|nt ) and O(|A|nt(M+nt−P−1)), respectively. Thus,
the total decoding complexity isO(|A|nt(M+nt−P )). For the
multilayer cyclotomic space time code proposed in [33] with
the ML decoding, if the decoding complexity is the same as
X in (19), i.e.,O(|A|nt(M+nt−P )), the multilayer cyclotomic
space time code should haveM + nt − P layers with nt

transmit antennas andnt time slots. So the corresponding
symbol rate isM + nt − P . It is not hard to see that this
symbol rate is less than the symbol rate of the proposed code
in (19), since

(M + nt − P ) − Mnt

P
=

1

P
(MP + ntP − P 2 − Mnt)

=
1

P
(P − nt)(M − P ) ≤ 0

where the last inequality is obtained fromP > nt andM ≤
P . The above less than sign≤ holds strictly, i.e.,<, when

P > M .
Comparing with the code proposed in [28], whenM =

P − nt + 1, the last groupIP−nt+2 does not appear and the
proposed code is the same that in [28]. ForM > P − nt + 1,
the symbol rate of the proposed code,Mnt

P , is always greater
than the symbol rate of the code in [28] with the same numbers
of transmit antennas and time slots, which isnt(P−nt+1)

P . The
decoding complexity of the proposed code with the conditional
PIC-SIC group decoding is, however, higher than that of the
code in [28] with the PIC-SIC group decoding.

The following property guarantees that the codeX above
achieves the full diversity with the conditional PIC-SIC group
decoding.

Property 4.2: For the STBCX in (19), if the received signal
is decoded using the conditional PIC-SIC group decoding with
the group ordering schemeI = {I1, I2, · · · , IP−nt+2}, then
the codeX achieves the full diversity, whenρi = ρi−1

0 , i =
1, · · · , M , satisfy one of the following conditions:

1) ρ0 = ζn with n = n0K and n0 = pr1

1 pr2

2 · · · pru
u , n0 ≥

nt(M − 1) + 1, wherep1, · · · , pu are some prime factors of
K;

2) ρ0 = ejλ for an algebraic numberλ 6= 0, i.e., ρ0 is
transcendental;

3) ρ0 =
√

β
1/ntζn′ with a proper integerβ and n′ ≤ n

with the samen as in 1).
Proof: Suppose that only one receive antenna is used and
the channel matrixH = [h1, h2, · · · , hnt

]T . For multi-
ple receive antennas, the proof is similar. Let the ro-
tation matrix Θ = [ΘT

1 , ΘT
2 , · · · , ΘT

nt
]T , where Θi =

[ζ1+mil
K , ζ

2(1+mil)
K , · · · , ζ

nt(1+mil)
K ] with m1 = 0, i.e., Θi be

the ith row vector ofΘ; andgi = hiΘi, i = 1, 2, · · · , nt. The
equivalent channel matrix is (22) in the next page, where for
i = 1, 2, · · · , P − nt + 1,

GIi
=





0(i−1)×nt

ρidiag(H)Θ
0(P−nt−i+1)×nt



 ,

andGIP−nt+2
can be expressed as (23) in the next page.

For a nonzero codeword, since the symmetry structure of the
codeword, we can supposeX1 in (19)-(20) is nonzero. First,
to prove the codeX has full rank, we want to show that the
determinant of the firstnt rows ofX does not equal to zero. It
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G =
1√
nt

[GI1
, GI2

, · · · , GIP−nt+2
] =

1√
nt





































ρ1g1 0 · · · 0 ρP−nt+2gnt
· · · ρMgP−M+2

ρ1g2 ρ2g1

. . .
... 0

. . .
...

... ρ2g2

. . . 0
...

. . . ρMgnt

ρ1gnt−1

...
. . . ρP−nt+1g1 0

. . .
...

ρ1gnt
ρ2gnt−1

. . . ρP−nt+1g2 ρP−nt+2g1

. . . 0

0 ρ2gnt

. . .
... ρP−nt+2g2

. . . ρM g1
... 0

. . . ρP−nt+1gnt−1

...
. . .

...
0 0 · · · ρP−nt+1gnt

ρP−nt+2gnt−1 · · · ρMgP−M+1





































(22)

GIP−nt+2
=





































ρP−nt+2gnt
ρP−nt+3gnt−1 · · · ρM gP−M+2

0 ρP−nt+3gnt

. . .
...

... 0
. . . ρM gnt

0
...

. . .
...

ρP−nt+2g1 0
. . . 0

ρP−nt+2g2 ρP−nt+3g1

. . . ρM g1
...

...
. . .

...
ρP−nt+2gnt−1 ρP−nt+3gnt−2 · · · ρM gP−M+1





































. (23)

is not hard to see that the determinant is a nonzero polynomial
of ρ0 of order no more thannt(M − 1) with coefficients in
Q(ζK), where Q(ζK) is the number field generated by the
rational number fieldQ andζK . Thus, the full rank property is
equivalent to stating thatρ0 is not a root of such a polynomial.
The proof of this property is the same as the proof of Theorem
2 in [33].

Second, suppose the channel coefficientsh1 = h2 = · · · =
hj−1 = 0 and hj 6= 0. By Theorem 2 in [34], any nonzero
linear combination over∆Λζl

of the entries ofΘj is not zero,
i.e.,

a1ζ
1+mj l
K + a2ζ

2(1+mj l)
K + · · · + ant

ζ
nt(1+mj l)
K 6= 0,

for [a1, a2, · · · , ant
] 6= [0, 0, · · · , 0] and a1, a2, · · · , ant

∈
∆Λζl

. Thus, any nonzero linear combination over∆Λζl
of

the entries of the(i + j − 1)-th row GIi
, ρihjΘj, is nonzero.

At the same time, the entries in the same row ofGIk
are

either ρkgj+i−k = ρkhj+i−kΘj+i−k with hj+i−k = 0,
i.e., 0, for k = i + 1, i + 2, · · · , j + i − 1 or 0 for
k = j + i, j + i + 1, · · · , P − nt + 1, which implies that
any nonzero linear combination over∆Λζl

of the vectors in
GGGIi

does not belong to the space linearly spanned by all the
vectors in the group[GGGIi+1

, · · · ,GGGIP−nt+1
] over the complex

field for anyH 6= 0.
Thus, this code can achieve the full diversity using the

conditional PIC-SIC group decoding, since the two conditions
in Theorem 3.2 are satisfied.

When M = P − nt + 2, the last group of information
symbol indices isIM = {(M − 1)nt + 1, · · · , Mnt} that has

nt symbols from the last layer in codeX. In this case, we
have the following simplified result.

Property 4.3: For the STBCX in (19), if the received signal
is decoded using the conditional PIC-SIC group decoding with
the group ordering schemeI = {I1, I2, · · · , IP−nt+2}, then
the codeX achieves the full diversity, whenM = P −nt +2,
ρi = 1, i = 1, 2, · · · , M−1, andρM = ζn with n = n0K and
n0 = pr1

1 pr2

2 · · · pru
u , wherep1, · · · , pu are some prime factors

of K, such thatn0 ≥ nt − M + 3 for nt ≥ M or n0 ≥ 2 for
nt < M .
Proof: Similar to the proof of Property 4.2, we can show that
this code satisfies the second condition in Theorem 3.2. So we
only need to prove that the codeword matrix,

X =





































X1,1 0 · · · 0 ρMXM,nt

X2,1 X1,2
. . .

... 0
... X2,2

. . . 0
...

XM−1,1

...
. . . X1,nt−1 0

ρMXM,1 XM−1,2
. . . X2,nt−1 X1,nt

0 ρMXM,2
. . .

... X2,nt

...
...

. . . XM−1,nt−1

...
0 0 · · · ρMXM,nt−1 XM−1,nt





































(24)
has full rank with the information symbolssi ∈ Z[ζl], for
i = 1, 2, · · · , Mnt, where at least one ofsi is not zero.

If X1 = [X1,1, X1,2, · · · , X1,nt
]T = 0, by the row permu-
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tation, we can express the codeX in (24) as follows:

X =





































X2,1 0 · · · 0 0
... X2,2

. . .
...

...

XM−1,1

...
. . . 0 0

ρMXM,1 XM−1,2
. . . X2,nt−1 0

0 ρMXM,2
. . .

... X2,nt

...
...

. . . XM−1,nt−1

...

0 0
. . . ρMXM,nt−1 XM−1,nt

0 0 · · · 0 ρMXM,nt





































.

(25)
Similarly to the codeC4,6,3 in [28], we can show that the code
X in (25) has the full rank property.

Otherwise, whenX1 6= 0, if nt ≥ M , consider the square
matrix (26), in the next page, of the firstnt rows of the code
X in (24). The determinant of this square matrix is a nonzero
polynomial of ρM of the order no more thannt − M + 2
with the coefficients inQ(ζK). By the definition ofn, we
have thatQ(ζK) ⊂ Q(ζn). The dimension of the vector space
Q(ζn) over the fieldQ(ζK) is

[Q(ζn) : Q(ζK)] =
φ(n)

φ(K)
= n0 ≥ nt − M + 3.

Thus, we have that the minimal polynomial ofζn over field
Q(ζK) is of the ordern0, which implies that the determinant
of this square matrix does not equal to zero. Hence, the code
X has the full rank property.

If nt < M , the square matrix of the firstnt rows of the
codeX in (24) can be expressed as


















X1,1 0 · · · 0 ρMXM,nt

X2,1 X1,2
. . .

... 0
... X2,2

. . . 0
...

Xnt−1,1

...
. . . X1,nt−1 0

Xnt,1 Xnt−1,2 · · · X2,nt−1 X1,nt



















. (27)

The determinant of this square matrix is a nonzero polynomial
of ρM of the order at most1 with the coefficients inQ(ζK).
Similarly, the square matrix has the full rank withn0 ≥ 2.

Thus, we have proved that the codeX in (24) has the
full rank property. Therefore, this code can achieve the full
diversity using the conditional PIC-SIC group decoding.

V. NUMERICAL SIMULATIONS

In this section, we present some simulation results for the
cases of (i) two transmit and three receive antennas, and
(ii) four transmit and four receive antennas. The channel is
assumed quasi-static Rayleigh flat fading.

For Case (i), we compare our proposed code (17) with the
code (called Guo-Xia code for convenience) in [26]. In Fig.1,
the bandwidth efficiencies are 8 bits/sec/Hz for all the codes.
For Guo-Xia code, we use the PIC group decoding. For our
proposed code, we use the conditional PIC group decoding.
From Fig.1, it is easily observed that the new code offers better

performance than Guo-Xia code in [26], while its decoding
complexity is higher. We also show the performances of the
proposed code (17) with two different decoding methods: the
conditional PIC group decoding with sphere decoding in the
ML step marked by⋄ and the conditional PIC group decoding
with sphere decoding in both the ML step and the PIC group
decoding step marked by+. These performances are similar
to that of the conditional PIC group decoding.

For Case (ii), we compare our proposed code (19)
with the parameters in Property 4.3 withn0 = 4 and
K = 16 of symbol rate 8/3, with the perfect code in
[31] of symbol rate4, and with the codeC4,6,3 in [28] of
symbol rate2. In both Fig.2 and Fig.3, the group ordering
schemes of the conditional PIC-SIC group decoding are
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}
for the proposed code and the perfect code and
{{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}} for the code
C4,6,3, respectively. In Fig.2, the codeC4,6,3 gives the
best performance, mainly because it has a lower bandwidth
efficiency than the proposed code. We can see that the perfect
code cannot achieve the full diversity with the conditional
PIC-SIC group decoding. Even with a higher bandwidth
efficiency, the proposed code has a better performance than
the perfect code with the same conditional PIC-SIC group
decoding. We also show the performances of the proposed
code using the conditional PIC group decoding with sphere
decoding in the ML step marked by⋄ and in both the ML
decoding and the PIC group decoding steps marked by
+. In Fig.3, the bandwidth efficiencies for all codes are8
bits/s/Hz. The perfect code with the ML decoding has the best
performance. However, without the full diversity, the perfect
code with the conditional PIC-SIC group decoding performs
worse than the proposed code at high SNRs. Comparing to
the codeC4,6,3 with the ML decoding, the proposed code
with the conditional PIC-SIC group decoding has a better
performance. As a result, the proposed code will give a
better performance than the codeC4,6,3 with the conditional
PIC-SIC group decoding, whileC4,6,3 is proposed in [28]
for the PIC-SIC group decoding that has a lower complexity
than the conditional PIC-SIC group decoding proposed in
this paper does.

VI. CONCLUSION

In this paper, we proposed a conditional PIC group decoding
whose complexity is between those of the PIC group decoding
and the ML decoding. We then obtained a new STBC design
criterion for full diversity achieving STBC with the conditional
PIC group decoding, which is also between those of the PIC
group decoding and the ML decoding. Finally, we proposed
some new STBC designs that satisfy the new criterion and
therefore achieve full diversity with the conditional PIC (or
PIC-SIC) group decoding and in the meantime, have higher
symbol rates than those designed for the PIC (or PIC-SIC)
group decoding.
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Fig. 1. Performance comparison of the new code and Guo-Xia code with
bandwidth efficiency 8 bits/sec/Hz, two transmit and three receive antennas
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Fig. 2. Performance comparison of the proposed code (19), the perfect code,
and the codeC4,6,3 using the conditional PIC-SIC group decoding with four
transmit and four receive antennas
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