
1814 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 4, APRIL 2008

ACKNOWLEDGMENT

The authors would like to thank Prof. Sandeep Pradhan, University
of Michigan, Ann Arbor, for insightful discussions and feedback. We
would also like to thanks the reviewers for their insightful comments
and suggestions.

REFERENCES

[1] Information Technology—Generic Coding of Moving Pictures and As-
sociated Audio Information: Video (MPEG-2), 2nd Edition, , 2000,
ISO/IEC JTC 1/SC 2913818-2.

[2] Information Technology—Generic Coding of Moving Pictures and As-
sociated Audio Information—Part 3: Audio (MP3), 2nd Edition, , 1998,
ISO/IEC JTC 1/SC 2913818-3.

[3] A. D. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol.
IT-22, no. 1, pp. 1–10, Jan. 1976.

[4] S. I. Gel’fand and M. S. Pinsker, “Coding for channel with random
parameters,” Probl. Contr. Inf. Theory, vol. 9, no. 1, pp. 19–31, 1980.

[5] T. M. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol.
IT-18, no. 1, pp. 2–14, Jan. 1972.

[6] T. J. Goblick, Jr, “Theoretical limitations on the transmission of data
from analog sources,” IEEE Trans. Inf. Theory, vol. IT-11, no. 4, pp.
558–567, Oct. 1965.

[7] T. Berger and D. W. Tufts, “Optimum pulse amplitude modulation part
I: Transmitter-receiver design and bounds from information theory,”
IEEE Trans. Inf. Theory, vol. IT-13, no. 2, pp. 196–208, Apr. 1967.

[8] S. Shamai (Shitz), S. Verdú, and R. Zamir, “Systematic lossy source/
channel coding,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 564–579,
Mar. 1998.

[9] U. Mittal and N. Phamdo, “Hybrid digital-analog (HDA) joint
source-channel codes for broadcasting and robust communications,”
IEEE Trans. Inf. Theory, vol. 48, no. 5, pp. 1082–1102, May 2002.

[10] Z. Reznic, M. Feder, and R. Zamir, “Distortion bounds for broadcasting
with bandwidth expansion,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp.
3778–3788, Aug. 2006.

[11] V. M. Prabhakaran, R. Puri, and K. Ramchandran, “Hybrid analog-
digital strategies for source-channel broadcast,” in Proc. 43rd Annu.
Allerton Conf. Communication, Control and Computing, Monticello,
IL, Sep. 2005.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[13] J. Ziv, “On universal quantization,” IEEE Trans. Inf. Theory, vol. IT-31,
no. 3, pp. 344–347, May 1985.

[14] R. Zamir and M. Feder, “On universal quantization by randomized uni-
form/lattice quantizers,” IEEE Trans. Inf. Theory,, vol. 38, no. 2, pp.
428–436, Mar. 1992.

[15] W. H. R. Equitz and T. M. Cover, “Successive refinement of informa-
tion,” IEEE Trans. Inf. Theory, vol. 37, no. 2, pp. 269–275, Mar. 1991.

[16] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory, vol.
IT-29, no. 3, pp. 439–441, May 1983.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[18] [Online]. Available: http://www.mosek.com
[19] N. Merhav and S. Shamai (Shitz), “On joint source–channel coding for

the Wyner–Ziv source and the Gel’fand–Pinsker channel,” IEEE Trans.
Inf. Theory, vol. 49, no. 11, pp. 2844–2855, Nov. 2003.

[20] Y. Oohama, “Gaussian multiterminal source coding,” IEEE Trans. Inf.
Theory, vol. 43, no. 6, pp. 1912–1923, Nov. 1997.

[21] A. D. Wyner, “The rate-distortion function for source coding with side
information at the decoder-ii: General sources,” Inf. Contr., vol. 38, pp.
60–80, Jul. 1978.

Optimal Normalized Diversity Product of
Lattice-Based Diagonal Space–Time Codes

From QAM Signal Constellations

Haiquan Wang and Xiang-Gen Xia, Senior Member, IEEE

Abstract—In this correspondence, we prove that the optimal normalized
diversity product of 2 � 2 lattice-based diagonal space–time block codes
with Gaussian integer (or QAM) signal constellations, i.e., [i], and any
generating matrices of complex entries (not necessarily algebraic exten-
sions of [i] as commonly used) is 1=

p
3. This result implies that 2 � 2

lattice-based diagonal space–time block codes with Gaussian integer signal
constellations and generating matrices of entries from quadratic algebraic
extensions of [i] have already reached the optimal normalized diversity
product.

Index Terms—Algebraic extension, Gaussian integers, geometry of num-
bers, lattice-based space–time block codes, normalized diversity product.

I. INTRODUCTION

Lattice-based diagonal space–time block codes (L-DSTBC) can be
used in single-input–single-output (SISO) wireless systems to achieve
signal space diversity, see for example [1]–[3] and can also be used
in multiple-input–multiple-output (MIMO) wireless systems, see for
example [4] and in the meantime they can be treated as the base of lay-
ered/threaded full-rate space–time codes [5]–[7], [10]. The basic idea
of L-DSTBC is as follows. Let n be the number of transmit antennas
in MIMO systems or the block size in SISO systems. Let s1; . . . ; sn
be n (complex) information symbols located on a two-dimensional
real lattice L called base lattice, such as the Gaussian integer ring
[i] or the Eisenstein integer ring [j]. These n information symbols

are linearly transformed into another n complex values x1; . . . ; xn:
(x1; . . . ; xn)

T = G(s1; . . . ; sn)
T with an n � n complex entry ma-

trix G such that

min
(s ;...;s ) 6=0

jx1 � � � xnj > 0: (1)

Then, these n transformed complex values are put onto the diagonal
to form an n � n L-DSTBC and the property (1) ensures that this
L-DSTBC has full diversity. To construct a full diversity L-DSTBC
as above depends on how to choose a base lattice L where information
symbols are located and how to choose a linear transformation matrix
G. Due to the existing algebraic number theory, there are many ways to
construct such G and L and they are based on algebraic extension ap-
proach, see for example [1]–[4], [8], [9]. Since there are many designs
of G and L for full diversity L-DSTBC, the question then is which one
is optimal in the sense that which one has the smallest mean transmis-
sion signal power when its diversity product (or determinant distance)
is fixed. By using the packing theory, the following normalized diver-
sity product has been introduced in [9] to design an L-DSTBC:

�(G;L)
min(s ;...;s )6=0 jx1 � � � xnj

j det(G)j � jLjn=2
(2)
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where jLj denotes the absolute value of the determinant of the 2 �
2 generating matrix of the two-dimensional real base lattice L. The
rule to design an L-DSTBC is to design G and L such that the above
normalized diversity product �(G;L) is as large as possible. When G
and L are over cyclotomic fields/rings, optimal L-DSTBC have been
obtained in [9], [10].

In [11], it is shown that, when the base latticeL = [i], the Gaussian
integer ring (or QAM, i.e., square lattice), and the entries of the 2 � 2
generating matrix G are the roots of a quadratic polynomial over [i],
the largest normalized diversity product �(G2; [i]) of 2� 2L-DSTBC
is 1=

p
3, and furthermore if the entries of the 2� 2 generating matrix

G are arbitrary complex numbers, then the largest normalized diversity
product �(G; [i]) of 2 � 2 L-DSTBC is upper bounded by 1=

p
2 and

this upper bound is not reachable.
In [11], it is also shown that, when the base lattice L = [j], the

Eisenstein integer ring (or equal-literal triangular lattice), and the en-
tries of the 2 � 2 generating matrix G are the roots of a quadratic poly-
nomial over [j], the largest normalized diversity product �(G2; [j])
is 2=(131=4

p
3).

In this correspondence, we show that the largest normalized diver-
sity product �(G; [i]) of 2 � 2 L-DSTBC when the entries of 2� 2
generating matrix G are general complex numbers (not necessarily al-
gebraic extensions) is also upper bounded by 1=

p
3. This implies that

2 � 2 L-DSTBC, when base lattice L = [i] and entries of generating
matrix G are quadratic algebraic extensions of [i], can already reach
the optimal normalized diversity product among all possible 2� 2 gen-
erating matrices G of any complex entries. This result also shows that
the L-DSTBC obtained in [9]

D2;2 =
s1 + exp(i�=6)s2 0

0 s1 + exp(i5�=6)s2
: s1; s22 [i]

(3)
has the optimal normalized diversity 1=

p
3 as long as the information

symbols s1 and s2 are from a QAM constellation, i.e., [i]. In this code
D2;2, the 2 � 2 generating matrix G2 is

G2 =
1 exp(i�=6)

1 exp(i5�=6)

and exp(i�=6) and exp(i5�=6) are the two roots of quadratic polyno-
mial x2 � ix � 1.

II. NEW UPPER BOUND OF NORMALIZED DIVERSITY PRODUCT OF

2 � 2 L-DSTBC

In what follows, we always consider [i] as the base lattice, i.e.,
L = [i], where i =

p�1. Thus, jLj = 1. We only consider 2 � 2
L-DSTBC, i.e., n = 2. For notational convenience, a 2 � 2 generating
matrix G is denoted as

G =
a b

c d
(4)

where a; b; c; d are complex numbers and det(G) = ad� bc 6= 0. We
are interested in the following L-DSTBC generated from G:

C(a; b; c; d) ax + by 0

0 cx+ dy
; x; y 2 [i]: (5)

Its normalized diversity product becomes

�(a; b; c; d) �(G; [i]) =
dmin(a; b; c; d)

jad� bcj (6)

where

dmin(a; b; c; d) min
x;y2 [i];(x;y) 6=(0;0)

jax + byj � jcx+ dyj: (7)

The main result is as follows.

Theorem 1: The largest possible normalized diversity product of
2 � 2 lattice based diagonal space–time block codes when information
symbols are taken from Gaussian integer ring [i] is 1=

p
3, i.e.

max
a;b;c;d2

�(a; b; c; d) = 1=
p
3 (8)

where denotes the field of complex numbers.
Proof: By a result from [9] that the normalized di-

versity product of code D2;2 in (3) is 1=
p
3, the inequality

maxa;b;c;d2 �(a; b; c; d) � 1=
p
3 is proved. The next is to prove the

upper bound side, i.e., we need to prove

max
a;b;c;d2

�(a; b; c; d) � 1=
p
3: (9)

To do so, we first list two lemmas and their proofs are straightforward
and therefore omitted.

Lemma 1: For any two nonzero complex numbers �1; �2, we have

�(�1a; �1b; �2c; �2d) =
dmin(�1a; �1b; �2c; �2d)

j(�1a)(�2d)� (�1b)(�2c)j
=

dmin(a; b; c; d)

jad� bcj = �(a; b; c; d):

This lemma is the scaling invariance of the normalized diversity
product as also mentioned in [9].

Lemma 2: Let T be an unimodular 2 � 2 matrix over [i], i.e.

T =
p1 q1
p2 q2

where p1; p2; q1; q2 2 [i] and j det(T )j = 1. Then, the
transformation

x0

y0
= T

x

y

on information symbols x; y does not change dmin(a; b; c; d) or
�(a; b; c; d) of the code C(a; b; c; d).

We now apply these two lemmas to simplify the following optimiza-
tion problem P :

max
a;b;c;d2

�(a; b; c; d): (10)

First, we may assume ac 6= 0. In fact, if a = 0, then the code
becomes

C(0; b; c; d) = by 0

0 cx+ dy
:

In this case, letting y = 0 implies dmin(0; b; c; d) = 0, and therefore
�(0; b; c; d) = 0, which can not be the maximum. The case of c = 0 is
similar.

Similarly, we may also assume bd 6= 0. Hence, it is enough to con-
sider the optimization problemP under conditions ac 6= 0 and bd 6= 0.

We next convert the form of the optimization problem P into a sim-
pler form. Assume that the minimum of jax+byjjcx+dyj is achieved
at point (x; y) = (p0; q0) with the minimal value d0, i.e.,

min
(x;y)6=(0;0);x;y2 [i]

jax + byjjcx + dyj
= d0 = jap0 + bq0jjcp0 + dq0j: (11)

We claim that p0 and q0 are coprime over [i], i.e., j gcd(p0; q0)j = 1.
In fact, let p = gcd(p0; q0). Then, jpj � 1 and p0=p and q0=p are
Gaussian integers. Dividing jpj2 at the two sides of (11), we obtain
another product form

d0
jpj2 = jap0

p
+ b

q0
p
jjc p0

p
+ d

q0
p
j:
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Since d0 is the minimum among all the above product forms, we have
jpj � 1. Hence, jpj = 1.

Since p0 and q0 are coprime over [i], by a basic result, see for
example pg. 13 in [12], there are Gaussian integers p1 and q1 such that
the following matrix:

T1 =
p0 p1
q0 q1

is an unimodular matrix over [i]. Using the following transformation

x

y
= T1

x0

y0
(12)

a code C(a; b; c; d) can be changed into code C(a0; b0; c0; d0), where

a0 = ap0 + bq0; b0 = ap1 + bq1;

c0 = cp0 + dq0; d0 = cp1 + dq1:

Since T1 is unimodular, by Lemma 2, the new code C(a0; b0; c0; d0) is
equivalent to the old one in terms of the normalized diversity product.
Noticing that ja0c0j = j(ap0 + bq0)(cp0 + dq0)j = d0, we know that
in this new code, point (x; y) = (1; 0) achieves the minimum.

Since ja0c0j = d0 6= 0, we set

�1
1

a0
=

1

ap0 + bq0
; �2

1

c0
=

1

cp0 + dq0
:

By Lemma 1, code C(�1a0; �1b0; �2c0; �2d0) and code
C(a0; b0; c0; d0) have the same normalized diversity product while
C(�1a0; �1b0; �2c0; �2d0) has the following form:

C(1; t1; 1; t2) = x+ t1y 0

0 x+ t2y
(13)

where t1 and t2 are complex numbers. Furthermore

min
(x;y) 6=(0;0);x;y2 [i]

jx + t1yjjx + t2yj = 1: (14)

In the following, we always assume that a code, i.e., C(a; b; c; d) =
C(1; t1; 1; t2), has the properties (13) and (14) without loss of gener-
ality. Note that the determinant absolute value of the 2 � 2 generating
matrix G of this code is jt1�t2j and therefore the normalized diversity
product is 1=jt1 � t2j. Then, we can change the optimization problem
P into the following equivalent one denoted by P1:

To find the minimum of jt1 � t2j among all nonzero complex num-
bers t1 and t2, subject to

jx + t1yjjx + t2yj � 1 (15)

for all (x; y) 6= (0; 0) and x; y 2 [i].
In the following, we prove that the minimum of the above optimiza-

tion problem P1 is greater than or equal to
p
3, which then implies

Theorem 1. Before going to the proof, we need the following lemma.

Lemma 3: Let be a convex quadrangle on the plane with four ver-
tices P1;P2;P3;P4 as shown in Fig. 1, where convex means that the
set of the points inside is a convex set. Let pi be the angle corre-
sponding to the vertex Pi for i = 1; 2; 3; 4, as shown in Fig. 1. Denote
the length of the segment from Pi to Pj as lij , where 1 � i; j � 4. If
l13 = 1, l12l14 � 1 and l32l34 � 1, then l24 �

p
3.

This lemma is about some basic plane geometry. Its proof is in
Appendix.

Assume that k 2 [i]. Then, the following transformation to the
information symbols x and y

1 �k
0 1

Fig. 1. Quadrangle 1.

does not change the normalized diversity product according to Lemma
2, since the transformation is unimodular. By absorbing this matrix into
G, it maintains the properties (13) and (14) while parameters (t1; t2)
are changed into (t1 � k; t2 � k), which does not change the above
optimization problem P1. Therefore, if we take k 2 [i] such that it
is the nearest point to t0 from the left-below side of the complex plane,
where t0 = t1 if Re(t1) > Re(t2) and jRe(t1 � t2)j > 1, or t0 = t2
if Re(t2) > Re(t1) and jRe(t1 � t2)j > 1; when jRe(t1 � t2)j � 1,
we let t0 2 ft1; t2g such that it has the greater imaginary part. Thus,
we have 0 � Re(t0 � k) � 1 and 0 � Im(t0 � k) � 1. In what
follows, without loss of generality, we assume t0 = t1. If we use the
polar coordinate to denote t1 and t2 as

t1 = r1 exp(i�) and t2 = r2 exp(i�)

then, we can assume

0 � r1 cos(�) � 1; 0 � r1 sin(�)�1 and 0 � � � �=2:

For �, by the above selection of t0 and the fact jt1 � t2j �
p
2 that

comes from the result maxa;b;c;d2 �(a; b; c; d) < 1=
p
2 obtained in

[11], we have �� � � � 0 or �=2 � � � �. If �=2 � � � �, we
consider (t01; t

0
2) (�it2;�it1). Clearly, the code using the numbers

(t01; t
0
2) has the same normalized diversity product as the one using

(t1; t2), but the angle of t02 is in the interval [��=2; 0] and the angle of
t01 is in the interval [0; �=2]. Therefore, we can assume �� � � � 0.
In summary, in the following, we always assume:

0 � r1 cos(�) � 1; 0 � r1 sin(�) � 1

and

0 �� � �=2;�� � � � 0: (16)

In condition (15), if we let (x; y) = (0; 1), we obtain jt1jjt2j � 1
and if we let (x; y) = (1;�1), we obtain j1�t1jj1�t2j � 1. Therefore

r1r2 � 1 and j1� r1 exp(i�)jj1� r2 exp(i�)j � 1: (17)

Define

f(t1; t2) jt1 � t2j2 = jr1 exp (i�)� r2 exp (i�)j2
= r21 + r22 � 2r1r2 cos(�� �):

We next prove that the minimum of the above function f is greater
than or equal to 3 under condition (15). Let us assume that there are
two points t1 and t2 such that f(t1; t2) < 3, and we will derive a
contradiction.

Since f(t1; t2) < 3, i.e., r21 + r22 � 2r1r2 cos(���) < 3, we have

3 > 2r1r2 � 2r1r2 cos(�� �)

= 2r1r2(1� cos(�� �)) � 2(1� cos(�� �)):

Therefore, cos(���) > �1=2, i.e., ��� < 1200 or ��� > 2400.
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Fig. 2. Quadrangle 2.

Fig. 3. Quadrangle 3.

Fig. 4. Quadrangle 4.

Similarly, if we denote the angle from vector t1�q1 to vector t2�q1
on the complex plane according to the inverse clock-wise direction by

 as shown in Figs. 2–4, where q1 = 1, then, by using triangle�t1q1t2
on the complex plane, we have

jt1 � q1j2 + jt2 � q1j2 � 2jt1 � q1j � jt2 � q1j cos(
)
= jt1 � t2j2 < 3:

Hence, 2jt1�q1j � jt2�q1j(1�cos(
)) < 3. Noticing that jt1�q1j =
jr1 exp(i�)�1j and jt2�q1j = jr2 exp(i�)�1j and by condition (17),
we also have cos(
) > �1=2, and therefore, 
 < 1200 or 
 > 2400.

Consider the case when 0 � � � � < 1200 and 0 � 
 <
1200. In this case, because point t1 is above the X-axis and point t2 is
below the X-axis, four complex numbers (or points) 0; t1; q1; t2 form
a convex quadrangle (see Fig. 2) on the complex plane. Furthermore,
in this quadrangle, the product of the lengthes of two segments from
0 to t1 and from 0 to t2 is r1r2, which is greater than or equal to 1;
and the product of two segments from q1 to t1 and from q1 to t2 is
j(1� t1)(1� t2)j, which is also greater than or equal to 1 from (17).
Thus, by Lemma 3, the length of the segment from t1 to t2 is greater
than or equal to

p
3, i.e., jt1 � t2j �

p
3, which contradicts with the

assumption f(t1; t2) < 3.
Consider the case when 0 � � � � < 1200 and 
 > 2400. Be-

cause �� � � � 00, point t2 on the complex plane is below the
X-axis. On the other hand, by condition (16), point t1 on the com-
plex plane is on the left side of the line X = 1. Thus, in this case,
four points q1; t1; q2; t2 on the complex plane form a convex quad-
rangle (see Fig. 3), where q2 = 1 + i. Let (x; y) = (1 + i;�1) in
(15), we get jq2 � t1j � jq2 � t2j � 1. Thus, combining conditions
jq1 � t1j � jq1 � t2j � 1 and jq1 � q2j = 1, again by Lemma 3,

we also have jt1 � t2j �
p
3, which contradicts with the assumption

f(t1; t2) < 3.
Consider the case when � � � > 2400 and 00 � 
 < 1200.

Because point t2 on the complex plane is below theX-axis and point t1
is on the right side of the Y -axis, four points 0; t1; q3; t2 form a convex
quadrangle (see Fig. 4), where q3 = i. Let (x; y) = (i;�1) in (15),
we get jq3 � t1j � jq3 � t2j � 1. Thus, by Lemma 3, we also have the
contradiction.

The last case is when 2400 � � � � < 2700 and 2400 � 
,which
is impossible because � � � + 
 � 4800 > 3600.

Summarizing the above cases, we have proved the theorem. q:e:d:

III. CONCLUSION

In this correspondence, we have proved that 1=
p
3 is the optimal

normalized diversity product of lattice based 2 � 2 diagonal space
time block codes (L-DSTBC) with generating matrices of complex
entries and information symbols in [i], i.e., a QAM constellation.
This result implies that for Gaussian integer information symbols, i.e.,
QAM signal constellations, the optimal normalized diversity product
of 2 � 2 L-DSTBC can be reached when their generating matrices are
over quadratic algebraic extensions of Gaussian integers.

APPENDIX

PROOF OF LEMMA 3

We use the notations given in Fig. 1. Assume that l24 <
p
3. We

will get a contradiction. Before we go to the proof, we cite a fact from
a book [14, p. 66]:

Lemma 4: For any four pointsA;B;C;D, the following identity
holds:

jACj2 � jBDj2 = jABj2 � jCDj2 + jADj2 � jBCj2
�2jABj � jBCj � jCDj � jDAj � cos(6 ABC + 6 CDA):

Applying this lemma to four points P1;P2;P3;P4, we get

cos(p2 + p4) =
l212l

2

34 + l214l
2

23 � l213l
2

24

2l12l23l34l41
:

Because l13 = 1; l12l14 � 1 and l23l34 � 1; l24 <
p
3, we have

cos(p2 + p4) >
2l12l23l34l41 � 3

2l12l23l34l41
= 1� 3

2l12l23l34l41

� 1� 3

2
= �1

2
:

Therefore

p2 + p4 < 1200 or p2 + p4 > 2400: (18)

Because p1 + p3 = 3600 � (p2 + p4), we also have

p1 + p3 > 2400 or p1 + p3 < 1200: (19)

On the other hand, on the triangle �P1P2P4, because l224 = l212 +
l214 � 2l12l14 cos(p1) < 3, i.e.

cos(p1) >
l212 + l214 � 3

2l12l14
� 2l12l14 � 3

2l12l14

� 1� 3

2l12l14
� 1� 3

2
= �1

2

where the last inequality is from the assumption l12l14 � 1. Therefore,
p1 < 1200 or p1 > 2400. Because is convex, we have p1 < 1200.
Similarly, using triangle �P3P2P4, we also have p3 < 1200. Thus,
from (18) and (19), we obtain

p1 + p3 < 1200 and p2 + p4 > 2400: (20)
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From p1+p3 < 1200, we know that p1 < 600 or p3 < 600. Without
loss of generality, we can assume

p1 < 600: (21)

Also from p2+p4 > 2400, we know that p2 > 1200 or p4 > 1200.
Without loss of generality, we can also assume

p2 > 1200: (22)

From the convexity of quadrangle , we have p2 � 1800. Hence,
cos(p2) < �1=2. Therefore, on the triangle �P1P2P3

1 = l213 = l212 + l232 � 2l12l32 cos(p2) > l212 + l232:

The above inequality implies l12 < 1 and l32 < 1. By conditions
l12l14 � 1 and l32l34 � 1, we have

l14 > 1; and l34 > 1:

Thus l14l34 > 1.
On the triangle �P1P4P3, we have 1 = l213 = l214 + l234 �

2l14l34 cos(p4). So,

cos(p4) =
l214 + l234 � 1

2l14l34
�

2l14l34 � 1

2l14l34

� 1�
1

2l14l34
> 1�

1

2
=

1

2
(23)

which implies p4 < 600. Thus, from (20), we have p2 > 2400� p4 >
2400� 600 = 1800, which contradicts with the fact that quadrangle
is convex. We have thus proved the lemma. q:e:d:
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Maximum Entropy for Sums of Symmetric
and Bounded Random Variables:

A Short Derivation

Yaming Yu

Abstract—Let X ; . . . ; X be n independent, symmetric, random vari-
ables on the interval [�1; 1]. Ordentlich (2006) showed that the differential
entropy of S = X is maximized when X , i = 1; . . . ; n � 1 are
symmetric Bernoulli random variables andX is uniform(�1; 1). We give
a short derivation of this result via an alternative proof of a key lemma of
Ordentlich (2006).

Index Terms—Differential entropy, maximum entropy.

I. INTRODUCTION

Given n independent, symmetric, random variables X1; . . . ; Xn on
the interval [�1; 1], Ordentlich (2006) has the following result.

Theorem 1.1: LetZ1; . . . ; Zn�1 be independent and identically dis-
tributed (i.i.d.) random variables taking on 1 and �1 with equal prob-
ability. Let U be independent of Z1; . . . ; Zn�1 and uniformly dis-
tributed on [�1; 1]. Then

h

n

i=1

Xi � h U +

n�1

i=1

Zi

where h(S) = � 1

�1

f(s) log
2
f(s)ds is the differential entropy for

a continuous random variable S with density f(s).

In other words, the entropy of n

i=1
Xi is maximized when

X1; . . . ; Xn�1 are symmetric Bernoulli random variables and Xn is
uniform(�1; 1). For the information-theoretic background on this
problem, see Ordentlich [1].

Theorem 1.1 is a consequence of the following key lemma.

Lemma 1.1: If Z1; . . . ; Zn are i.i.d. Bernoulli random variables
taking on values 1 and �1 with equal probability, and if constants
a1; . . . ; an satisfy 0 � ai � 1, then

Pr

n

i=1

Ziai 2 [�n + 2j; n� 2j]

� Pr

n�1

i=1

Zi 2 [�n+ 2j; n� 2j] (1)

where j is any integer such that n � 2j > 0.
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