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Abstract—In this paper, we propose a partial interference
cancellation (PIC) group decoding strategy/scheme for linear dis-
persive space-time block codes (STBC) and a design criterion for
the codes to achieve full diversity when the PIC group decoding is
used at the receiver. A PIC group decoding decodes the symbols
embedded in an STBC by dividing them into several groups
and decoding each group separately after a linear PIC operation
is implemented. It can be viewed as an intermediate decoding
between the maximum likelihood (ML) receiver that decodes all
the embedded symbols together, i.e., all the embedded symbols
are in a single group, and the zero-forcing (ZF) receiver that
decodes all the embedded symbols separately and independently,
i.e., each group has and only has one embedded symbol, after
the ZF operation is implemented. The PIC group decoding
provides a framework to adjust the complexity-performance
tradeoff by choosing the sizes of the information symbol groups.
Our proposed design criterion (group independence) for the
PIC group decoding to achieve full diversity is an intermediate
condition between the loosest ML full rank criterion of codewords
and the strongest ZF linear independence condition of the
column vectors in the equivalent channel matrix. We also propose
asymptotic optimal (AO) group decoding algorithm which is an
intermediate decoding between the MMSE decoding algorithm
and the ML decoding algorithm. The design criterion for the
PIC group decoding can be applied to the AO group decoding
algorithm because of its asymptotic optimality. It is well-known
that the symbol rate for a full rank linear STBC can be full, i. e.,
nt, for nt transmit antennas. It has been recently shown that
its rate is upper bounded by 1 if a code achieves full diversity
with a linear receiver. The intermediate criterion proposed in
this paper provides the possibility for codes of rates between nt

and 1 that achieve full diversity with the PIC group decoding.
This therefore provides a complexity-performance-rate tradeoff.
Some design examples are given.

Index Terms—full diversity, group decoding, linear dispersion
codes, partial interference cancellation, space-time block codes,
zero-forcing,

I. I NTRODUCTION

M IMO technology is an important advancement in wire-
less communications since it offers significant increase

in channel capacity and communication reliability without
requiring additional bandwidth or transmission power. Space-
time coding is an effective way to explore the promising
potential of an MIMO system. In the coherent scenario, where
the channel state information (CSI) is available at the receiver,
the full rank design criterion is derived in [13], [40] to achieve
the maximum diversity order in a quasi-static Rayleigh fading
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channel. However, the derivation of the full rank criterion
is based on the assumption of the optimal decoding at the
receiver. In order to achieve the maximum diversity order, re-
ceived signals must be decoded using the maximum likelihood
(ML) decoding. Unfortunately, the computational complexity
of the ML decoding grows exponentially with the number
of the embedded information symbols in the codeword in
general. This often makes the ML decoding infeasible for
codes with many information symbols embedded in. Although
near-optimal decoding algorithms, such as sphere decodingor
lattice-reduction-aided sphere decoding, exist in the literature,
[4], [5], [28], [29], [45], their complexities may depend ona
channel condition.

In order to significantly reduce the decoding complexity,
one may decode one symbol at a time and make the decoding
complexity grow linearly with the number of the embedded
information symbols. This can be achieved by passing the
received signals through a linear filter, which strengthensa
main symbol and suppresses all the other interference symbols
and then one decodes the main symbol from the output of the
filter. By passing the received signal through a filter bank, one
can decode each symbol separately. There are different criteria
to strengthen the main symbol and suppress the interference
symbols. If the filter is designed to completely eliminate the
interferences from the other symbols, we call such decoding
methodzero-forcing(ZF) or interference nullingdecoding. If
the filter is designed according to the minimum mean square
error (MMSE) criterion, we call the decoding methodMMSE
decoding. The well known algorithms with the above idea are
BLAST-SIC algorithms [48]. Since these symbol-by-symbol
decoding methods may not be ML but only suboptimal, the
full rank criterion can not guarantee the codes to achieve the
maximum diversity order. In some special cases, the symbol-
by-symbol decoding is equivalent to the ML decoding and
thus the full rank property ensures the codes achieve full
diversity in these cases. The first such code is the Alamouti
code for two transmit antennas [1]. The orthogonality structure
of the Alamouti code ensures that symbol-by-symbol decoding
is equivalent to the ML decoding. The Alamouti code has
inspired many studies on orthogonal STBC (OSTBC) [23],
[24], [27], [39], [41], [47]. However, OSTBC suffers from a
low symbol rate. In [47], it has been proved that the symbol
rate of an OSTBC is upper bounded by3/4 with or without
linear processing among the embedded information symbols
or their complex conjugates for more than2 transmit antennas
and conjectured that it is upper bounded byk+1

2k
for 2k − 1

and 2k transmit antennas, wherek is a positive integer (this
upper bound was shown in [23] when no linear processing
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is used among information symbols). Explicit designs of
OSTBCs with rates achieving the conjectured upper bound
have been given in [23], [27], [39]. Note that the rate only
approaches1/2 when the number of transmit antennas goes
large. For a general linear dispersion STBC [15], [16] that
has no orthogonality structure, the full diversity criterion for
STBC decoded with a symbol-by-symbol decoding method
has not been discovered until recently. In [51], Zhang-Liu-
Wong proposed a family of STBC calledToeplitz codesand
proved that a Toeplitz code achieves full diversity with the
ZF receiver. The symbol rate of a Toeplitz code approaches
1 as the block length goes to infinity. Later in [34]–[36],
Shang-Xia extended the results in [51] and proposed a design
criterion for the codes achieving full diversity with ZF and
MMSE receivers. They also proposed a new family of STBC
called overlapped Alamouti codes (OAC), which has better
performance than Toeplitz codes for any number of transmit
antennas. The symbol rate of an OAC also approaches1 as
the block length goes to infinity. It has been proved in [36]
that the symbol rate of an STBC achieving full diversity with
a linear receiver is upper bounded by1. Simulation results in
[36] show that OAC outperform OSTBC for over4 transmit
antennas. Note that it is shown in [36] that for any OSTBC,
its ZF receiver is the same as the ML receiver.

Although OSTBCs can be optimally decoded in a symbol-
by-symbol way, the orthogonality condition is too restrictive
as we mentioned above. From an information theoretical point
of view, this can cause a significant loss of channel capacity
[32]. By relaxing the orthogonality condition on the code
matrix, quasi-orthogonal STBC (QOSTBC) was introduced
by Jafarkhani in [17], Tirkkonen-Boariu-Hottinen in [43] and
Papadias-Foschini in [32] to improve the symbol rate at the
tradeoff of a higher decoding complexity. The basic idea of
QOSTBC is to group the column vectors in the code matrix
into pairs and keep the orthogonality among the groups of
the column vectors while relax the orthogonality requirement
within each group. Because of this partial orthogonality struc-
ture, QOSTBC can be (ML) decoded pair-by-pair complex
symbols, which has a higher decoding complexity compared
to the OSTBC. The original QOSTBCs do not possess the full
diversity property. The idea of rotating information symbols in
a QOSTBC to achieve full diversity and maintain the complex
symbol pair-wise ML decoding has appeared independently in
[37], [38], [42], and the optimal rotation anglesπ/4 andπ/6
of the above mentioned information symbols for any signal
constellations on square lattices and equal-literal triangular
lattices, respectively, have been obtained in Su-Xia [38] in the
sense that the diversity products (coding gains) are maximized.
In [20], [46], [49], the authors further studied QOSTBC with
minimum decoding complexity. The underlying constellation
is assumed to be rectangular QAM, which can be viewed as the
cartesian product of two PAM constellations. The minimum
decoding complexity means the code can be optimally decoded
in a real-pair-wise way. Compared to the complex-pair-wise
decodable QOSTBC, the decoding complexity of real-pair-
wise decodable QOSTBC is lower. In [7], [18], [19], [22],
[46], [50], the pair-by-pair decoding was generalized to a
general group-by-group decoding. The symbols in a code

matrix are separated into several groups and each group is
decoded separately. With the help of graph theory, a rate5
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code was obtained in [50] that can be decoded in two groups,
each group contains5 real symbols. In [18], [19], a Clifford
algebra approach is applied for multi-group decodable STBCs.

In this paper, we propose a general decoding scheme
called partial interference cancellation (PIC) group decoding
algorithm for linear dispersion (complex conjugated symbols
may be embedded) space-time block codes (STBC) [15], [16].
A PIC group decoding decodes the symbols embedded in an
STBC by dividing them into several groups and decoding each
group separately after a linear PIC operation is implemented.
It can be viewed as an intermediate decoding between the
ML receiver that decodes all the embedded symbols together,
i.e., all embedded symbols are in a single group, and the ZF
receiver that decodes all the embedded symbols separately
and independently, i.e., each group has and only has one
embedded symbol, after the ZF operation is implemented.
The PIC group decoding provides a framework to adjust
the complexity-performance tradeoff by choosing the sizes
of the information symbol groups. It contains the previously
studied decoding algorithms for codes such as OSTBC [1],
[41], QOSTBC [17], [20], [37], [38], [43], [46], [49], and
STBC achieving full diversity with linear receivers [36], [51]
as special cases. Note that a similar algorithm as the PIC
group decoding has been proposed by Dai, Sfar, and Letaief
in [25] for layered space-time block codes. We propose a
design criterion for STBC achieving full diversity with the
PIC decoding algorithm. Our proposed design criterion is
an intermediate criterion between the loosest ML full rank
criterion [13], [40] of codewords and the strongest ZF linear
independence criterion of the column vectors in the equivalent
channel matrix [36]. We then propose asymptotic optimal (AO)
group decoding algorithm which is an intermediate decoding
between the MMSE decoding algorithm and the ML decoding
algorithm. The design criterion for the PIC group decoding
can be applied to the AO group decoding algorithm because
of its asymptotic optimality. It is well-known that the symbol
rate for a full rank linear STBC can be full, i.e.,nt, for nt

transmit antennas. It has been recently shown in [36] that its
rate is upper bounded by1 if a code achieves full diversity with
a linear receiver. It will be shown in this paper that symbol
rates for STBC achieving full diversity with the PIC group
decoding of group sizeK is upper bounded byK. Thus,
the intermediate criterion proposed in this paper providesthe
possibility for codes of rates betweennt and1 that achieve full
diversity with the PIC group decoding. This therefore provides
a complexity-performance-rate tradeoff. Design examplesof
STBC achieving full diversity with the PIC group decoding are
finally presented. Our simulations show that these codes can
perform better than the Alamouti code for 2 transmit antennas
and the QOSTBC with the optimal rotation for 4 transmit
antennas. Note that a similar algorithm and an STBC design
have been proposed lately in [30] but they do not achieve full
diversity.

This paper is organized as follows. In Section II, we describe
the system model; in Section III, we propose the PIC group de-
coding algorithm, its connection with ZF decoding algorithm
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and the corresponding successive interference cancellation
(SIC) aided decoding algorithm or PIC-SIC; In Section IV,
we systematically study the diversity property of the codes
decoded with the PIC group decoding and the PIC-SIC group
decoding, and derive the design criterion. In Section V, we
propose AO group decoding. In Section VI, we present two
design examples. In Section VII, we present some simulation
results.

Some notations in this paper are defined as follows.

• C: complex number field;
• R: real number field;
• A: a signal constellation;
• tr: trace of a matrix;
• Bold faced upper-case letters, such asAAA, represent ma-

trices;
• Bold faced lower-case letters, such asx, represent column

vectors;
• SuperscriptsT, H, ∗: transpose, complex conjugate trans-

pose, complex conjugate, respectively;
• ‖·‖: l2-norm of a vector or a matrix;
• ‖·‖F : Frobenius norm of a matrix;
• i:

√
−1.

II. SYSTEM MODEL

We consider a quasi-static Rayleigh block-fading channel
with coherence timet. Assume there arent transmit andnr

receive antennas. The channel model is written as follows,

YYY =

√
SNR

nt

HHHXXX + WWW, (1)

where YYY = (yi,j) ∈ Cnr×t is the received signal matrix
that is received int time slots,HHH = (hi,j) ∈ Cnr×nt is
the channel matrix, the entries ofHHH are assumed i.i.d. with
distributionCN (0, 1), XXX ∈ Cnt×t is the codeword matrix that
is normalized so that its average energy istnt, i.e.,

tr
(
E
{
XXXHXXX

})
= tnt,

WWW ∈ Cnr×t is the additive white Gaussian noise matrix with
i.i.d. entrieswi,j ∼ CN (0, 1), SNR is the average signal-to-
noise-ratio (SNR) at the receiver.

In this paper, we only consider linear dispersion STBC,
which covers most existing STBCs, [15]:

XXX =

n−1∑

i=0

xiAAAi + x∗
iBBBi, (2)

where xi ∈ A, i = 0, 1, . . . , n − 1, are the embedded
information symbols,A is a signal constellation,AAAi,BBBi ∈
Cnt×t, i = 0, 1, . . . , n − 1, are constant matrices called
dispersion matrices. We useX to denote the codebook, i.e.,

X =

{
XXX =

n−1∑

i=0

xiAAAi + x∗
iBBBi, xi ∈ A, i = 0, 1, . . . , n − 1

}
.

(3)
For convenience, we also useX to denote the coding scheme
that is associated with the codebook.

In order to apply a linear operation, the system model in
(1) needs to be rewritten as

y =
√

SNRGGGx + w, (4)

wherey ∈ Ctnr is the received signal vector,GGG ∈ Ctnr×n

is an equivalent channel matrix[15], [16], [36]; x =
[x0, x1, . . . , xn−1]

T ∈ An is the information symbol vector;
w = [w0, w1, . . . , wtnr

]T ∈ Ctnr is the additive white
Gaussian noise,wi ∼ CN (0, 1). For many (if not all) existing
linear dispersion (or linear lattice) STBCs, such as those in
[1], [2], [9]–[11], [16], [17], [21], [31], [33], [36], [38], the
channel model can be rewritten in the form of (4). One simple
observation is that for a linear dispersion STBC that is defined
as

XXX =
n−1∑

i=0

xiAAAi, (5)

which is a special case of the linear dispersion STBC in (2),
the channel model can always be written in the form of (4).
All the codes in [2], [9]–[11], [16], [21], [31], [33] fall into
this category. Another case in which the channel model can be
rewritten in the form of (4) is that each column ofXXX contains
linear combinations of either onlyxi, i = 0, 1, . . . , n − 1 or
only x∗

i , i = 0, 1, . . . , n − 1. Examples of such codes include
the Alamouti code [1] and QOSTBCs [17], [38] and OAC
[36]. For instance, the channel model of the Alamouti code
with one receive antenna is

[
y0,0 y0,1

]

=

√
SNR

2

[
h0,0 h0,1

] [x0 −x∗
1

x1 x∗
0

]
+
[
w0,0 w0,1

]
.

By taking unitary linear operations and conjugations, which
do not change the probabilistic property of the white Gaussian
noise, we can extract the embedded information symbol vector
and rewrite the above channel model as follows,
[
y0,0

y∗
0,1

]
=

√
SNR

(
1√
2

[
h0,0 h0,1

h∗
0,1 −h∗

0,0

])[
x0

x1

]
+

[
w0,0

w∗
0,1

]
. (6)

It is shown in [36] that for any OSTBC (a column may include
both xi and x∗

j simultaneously), its equivalent channel (4)
exists. In the case when there are multiple receive antennas,
an equivalent channel matrix can be derived by noting that at
each receiver antenna, the received signal model is of the same
form as in (6). For example, if there are two receive antennas
for the Alamouti code, then an equivalent channel model is



y0,0

y∗
0,1

y1,0

y∗
1,1


 =

√
SNR




1√
2




h0,0 h0,1

h∗
0,1 −h∗

0,0

h1,0 h1,1

h∗
1,1 −h∗

1,0







[
x0

x1

]
+




w0,0

w∗
0,1

w1,0

w∗
1,1


 .

It is not hard to see that the original channelHHH and an
equivalent channelGGG satisfy the following property,

‖HHH (XXX1 −XXX2)‖F = ‖GGG (x1 − x2)‖ , (7)

whereXXX1,XXX2 ∈ X , x1 and x2 are vectors of information
symbols embedded inXXX1 andXXX2, respectively.

For a linear dispersion code with a rectangular signal con-
stellationA, which can be viewed as two PAM constellations,
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if it does not have its equivalent channel model in (4), the
channel model can always be written in the following form
[6], [15],

y =
√

SNRGGG

[
Re(x)
Im(x)

]
+ w, (8)

wherey ∈ R2tnr is the received signal vector,GGG ∈ R2tnr×2n

is theequivalent channel matrix, w = [w0, w1, . . . , w2tnr
]T ∈

R2tnr is the real white Gaussian noise vector,wi ∼ N (0, 1
2 ).

The entries of [
Re(x)
Im(x)

]

can be viewed as drawn from a PAM constellation. Hence
there is no essential difference between the models in (4) and
(8) except that the noise in (8) is real.

Note that for both channel models in (4) and (8), the entries
of the equivalent channel matrixGGG are linear combinations of
hi,j andh∗

i,j , 0 ≤ i ≤ nr − 1, 0 ≤ j ≤ nt − 1. If we use the
notationh = [h0, h1, . . . , hl−1] , vec(HHH), then both (4) and
(8) are special cases of the following model,

y =
√

SNRGGG(h)x + w, (9)

whereGGG(h) ∈ Cm×n is an equivalent channel matrix, which
is a function of h = [h0, h1, . . . , hl−1], hi ∼ CN (0, 1),
x = [x0, x1, . . . , xn−1] ∈ An is the information symbol
vector, w = [w0, . . . , wm−1] is the additive white Gaussian
noise vector,l

∆
= nrnt, and m

∆
= tnr. For convenience, we

always assume that noisew is complex Gaussian, while for
real Gaussianw, the derivation is exactly the same. From
the following discussions, we shall see later that not only the
channel model in (9) contains the equivalent channel model
derived from transforming the original channel model of linear
dispersion STBC in (1), but also it is a resulted form after each
PIC operation.

III. PIC GROUP DECODING ALGORITHM

In this section, we present a PIC group decoding algorithm
that is, as we mentioned before, an intermediate decoding
algorithm between the ML decoding algorithm and the ZF
decoding algorithm, and has the ML decoding and the ZF
decoding as two special cases. In the first subsection, we
describe the PIC group decoding algorithm; in the second
subsection, we discuss its connection with the ZF decoding
algorithm; in the third subsection, we discuss the successive
interference cancellation aided PIC group decoding algorithm
(PIC-SIC); some examples are given in the last part of this
section to illustrate the PIC group decoding algorithm.

A. Partial Interference Cancellation Group Decoding Algo-
rithm

We now present a detailed description of the PIC group
decoding algorithm. As mentioned in Introduction, a similar
algorithm has been proposed by Dai, Sfar, and Letaief in
[25] for layered space-time block codes. All the following
discussions are based on the equivalent channel model in (9).
First let us introduce some notations. Define index setI as

I = {0, 1, 2, . . . , n − 1},

where n is the number of information symbols inx. First
we partitionI into N groups:I0, I1, . . . , IN−1. Each index
subsetIk can be written as follows,

Ik = {ik,0, ik,1, . . . , ik,nk−1}, k = 0, 1, . . . , N − 1,

where nk , |Ik| is the cardinality of the subsetIk. We
call I = {I0, I1, . . . , IN−1} a grouping scheme, where, for
simplicity, we still useI to denote a grouping scheme. For
such a grouping scheme, the following two equations must
hold,

I =

N−1⋃

i=0

Ii and
N−1∑

i=0

ni = n.

DefinexIk
as the information symbol vector that contains the

symbols with indices inIk, i.e.,

xIk
=
[
xik,0

, xik,1
, . . . , xik,nk−1

]T
.

Let the column vectors of an equivalent channel matrixGGG(h)
be ggg0, ggg1, . . . , gggn−1 that have sizem × 1. Then, we can
similarly defineGGGIk

as

GGGIk
=
[
gggik,0

, gggik,1
, . . . , gggik,nk−1

]
. (10)

With these notations, equation (9) can be written as

y =
√

SNR

N−1∑

i=0

GGGIi
xIi

+ w. (11)

Suppose we want to decode thek-th symbol groupxIk
.

Note that in the ZF decoding algorithm, to decode thek-
th symbol, the interferences from the other symbols are
completely eliminated by a linear filter (thek-th row of the
pseudo-inverse matrix of the equivalent channel). The same
idea can be applied here. We want to find a matrix (linear
filter) PPP Ik

such that by multiplyingy byPPPIk
to the left (linear

filtering), all the interferences from the other symbol groups
can be eliminated. Such a matrixPPPIk

can be found as follows.
DefineQQQIk

∈ Cm×m as the projection matrix that projects a
vector inCm to the subspaceVIk

that is defined as

VIk
= span {gggi, 0 ≤ i < n, i 6∈ Ik} . (12)

Let GGGc
Ik

∈ Cm×(n−nk) denote the matrix that is obtained by
removing the column vectors inGGG with indices inIk, i.e.,

GGGc
Ik

=
[
GGGI0

,GGGI1
, . . . ,GGGIk−1

,GGGIk+1
, . . . ,GGGIN−1

]
. (13)

Then, the projection matrixQQQIk
can be expressed in terms of

GGGc
Ik

as follows,

QQQIk
= GGGc

Ik

((
GGGc

Ik

)H
GGGc

Ik

)−1 (
GGGc

Ik

)H
, (14)

when matrixGGGc
Ik

is full column rank. IfGGGc
Ik

is not full column
rank, then we need to pick a maximal linear independent vector
group fromGGGc

Ik
and in this case a projection matrix can be

found too. DefinePPP Ik
as

PPP Ik
= IIIm −QQQIk

, (15)

thenPPP Ik
is the projection matrix that projects a vector inCm

onto the orthogonal complementary subspaceV⊥
Ik

. Since the
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projection of any vector inVIk
ontoV⊥

Ik
is a zero vector, we

have

PPP Ik
GGGIi

= 0, i = 0, 1, . . . , k − 1, k + 1, . . . , N − 1, (16)

which is due toPPP Ik
GGGc

Ik
= 0. Define zIk

, PPP Ik
y. By

applying (16), we get

zIk
=

√
SNRPPP Ik

N−1∑

i=0

GGGIi
xIi

+ PPP Ik
w

=
√

SNRPPP Ik
GGGIk

xIk
+ PPP Ik

w.

(17)

From (17), we can see that by passing the received signal
vectory through the linear filterPPP Ik

, the interferences from
the other symbol groups are completely canceled and the
outputzIk

only contains the components of the symbol group
xIk

. There may exist other matrices that can remove the
components of the interference symbol groups iny. The
following lemma shows that the linear filter matrixPPP Ik

defined above is the best choice among all the ZF filters.

Lemma 1. Consider the channel model in(11)and letSNR be
the SNR of the system. Suppose we want to detect the symbol
group xIk

. Let PIk
be the matrix set that contains all the

matrices that can cancel the interferences fromxIi
, 0 ≤ i <

N, i 6= k, i.e.,

PIk
=
{
P̃PP Ik

∣∣∣ P̃PP Ik
GGGIi

= 0, 0 ≤ i < N, i 6= k
}

. (18)

The block error probability of the system

z̃Ik
, P̃PPIk

y =
√

SNRP̃PP Ik
GGGIk

xIk
+ P̃PP Ik

w (19)

from ML decoding is denoted asPerr(P̃PP Ik
, SNR). Then for any

givenSNR, we always have

PPP Ik
= arg min

P̃PPIk
∈PIk

Perr(P̃PP Ik
, SNR),

wherePPP Ik
is defined as in(15).

A proof of this lemma is given in Appendix A. Note that
the above optimality is among all the filters in (18) and the
MMSE based filter discussed later does not belong to (18)
although it may perform better as we shall discuss it later. Also
note that since in our PIC group decoding, all the symbols
in a group are decoded together, using highest SNR as the
optimality may not be proper. This is the reason why in the
above lemma, block error probability is used as the criterion
for the optimality of a filter. Equation (17) can be viewed
as a channel model in whichxIk

is the transmitted signal
vector andzIk

is the received signal vector. As we mentioned
before in Section II, this channel model is derived from the
interference cancellation procedure, and fits into the general
channel model in (9). Note that in (17), the noise termPPP Ik

w is
no longer a white Gaussian noise. Despite the presence of this
non-white Gaussian noise term, the following lemma shows
that the minimum distance decision is still the ML decision in
this case.

Lemma 2. Consider the channel model

y =
√

SNRGGGx + w̃, (20)

whereGGG ∈ Cm×n is the channel matrix that is known at the
receiver,x ∈ An is the information symbol vector,̃w = PPPw ∈
Cm, w is the white Gaussian noise vector andPPP ∈ Cm×m is
a projection matrix that projects a vector inCm to a subspace
V ⊂ Cm. Assume the column vectors ofGGG belong toV. Then,
the decision made by

x̂ = arg min
x̄∈An

∥∥∥y −
√

SNRGGGx̄

∥∥∥

is the ML decision.

An intuitive explanation for the above lemma is thatw̃ is
a degenerated white Gaussian noise, which can be a white
Gaussian noise by removing some extra dimensions. Its de-
tailed proof is given in Appendix B. According to Lemma 2,
the optimal detection ofxIk

from zIk
is made by

x̂Ik
= arg min

x̄∈Ank

∥∥∥zIk
−
√

SNRPPP Ik
GGGIk

x̄

∥∥∥ , (21)

which is thePIC group decoding algorithmwe propose in this
paper. The complexity of the ML decoding of the dimension-
reduced system in (17) is obviously lower than that of the
original system in (11). The PIC group decoding algorithm
(21) can be viewed as a decomposition of the original high-
dimensional decoding problem with high complexity into low-
dimensional decoding problem with relatively low decoding
complexity. In the extreme case when all the symbols are
grouped together, i.e., the problem is not decomposed at all,
the PIC group decoding is the same as the ML decoding.
In another extreme case when each symbol forms a group,
i.e., the problem is completely decomposed, the PIC group
decoding is equivalent to the ZF decoding. The detailed
description of the connection between these two is given in
the following subsection.

B. Connection Between PIC Group Decoding and ZF Decod-
ing

In this subsection we discuss the connection between the
PIC group decoding algorithm and the ZF decoding algorithm.
In the case when the decoding problem is completely decom-
posed, i.e., each symbol group contains only one symbol, the
PIC group decoding algorithm becomes a symbol-by-symbol
decoding algorithm. It is not hard to check that, in this case,
the PIC group decoding is equivalent to ZF decoding [14].

One negative effect of the interference cancellation proce-
dure is that it may reduce the power gain of the symbolxk.
Before the interference cancellation, the power gain ofxk is
‖gggk‖2, while after the interference cancellation, the power gain
of xk becomes‖PPP Ik

gggk‖2, whereIk = {k}. SincePPP Ik
is a

projection matrix, we always have

‖PPP Ik
gggk‖ ≤ ‖gggk‖ .

The equality holds if and only ifgggk is orthogonal to the space
spanned bygggi, i = 0, 1, . . . , k − 1, k + 1, . . . , n − 1. In the
case of OSTBC, the columns of the equivalent channel are
orthogonal to each other, and therefore, there is no power
gain loss during the interference cancellation. Hence the
performance of the ZF receiver is the same as the ML receiver
for OSTBC. For all non-orthogonal STBC, an interference
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cancellation algorithm usually causes a power gain loss and
therefore performance loss compared to the ML decoding.

C. PIC-SIC Group Decoding Algorithm

Notice that in the ZF decoding algorithm, we may use
successive interference cancellation (SIC)strategy to aid the
decoding process. We call the SIC-aided ZF decoding algo-
rithm ZF-SIC decoding algorithm[44], [48]. The basic idea of
SIC is simple: remove the already-decoded symbols from the
received signals to reduce the interferences. When the SNR is
relatively high, the symbol error rate (SER) of the already-
decoded symbols is low and there is a considerable SER
performance gain by using the SIC strategy. The same strategy
can also be used to aid the PIC group decoding process to
improve the SER performance. We call the SIC-aided PIC
group decoding algorithmPIC-SIC group decoding algorithm.
In the PIC group decoding algorithm, the decoding order has
no effect on the SER performance. For the PIC-SIC group
decoding algorithm, different decoding orders will resultin
different SER performances. We can obtain a better perfor-
mance by choosing a proper decoding order. The decoding
order can be chosen so that the dimension-reduced system at
the current decoding stage has the best upper-bound of pair-
wise error probability performance. At the beginning, we have
N symbol groups to decode, and we have computedPPP Ik

GGGIk
,

k = 0, 1, . . . , N−1. Let xIk
andx̃Ik

be two different symbol
vectors and∆xIk

= xIk
− x̃Ik

. For the k-th dimension-
reduced system, the pair-wise error probability is

Ph(xIk
→ x̃Ik

) = Q
(√

SNR ‖PPP Ik
GGGIk

∆xIk
‖
)

.

Let PPP Ik
GGGIk

= UUU1 diag(σ0, σ1, . . . , σnk−1)UUU2 be the SVD
decomposition ofPPP Ik

GGGIk
, then we have

Ph(xIk
→ x̃Ik

)

=Q
(√

SNR ‖diag(σ0, σ1, . . . , σnk−1)UUU2∆x‖
)

≤Q



√
SNR





√√√√
nk−1∑

i=0

σ2
i



 [UUU2∆xIk
]min





=Q
(√

SNR ‖PPP Ik
GGGIk

‖F [UUU2∆xIk
]min

)
,

where[UUU2∆x]min denotes the minimum among the absolute
values of the entries of the vectorUUU2∆x. The above inequality
shows that among all the dimension-reduced systems, the one
with the largest‖PPP Ik

GGGIk
‖F has the smallest upper-bound of

pair-wise error probability. Although this upper-bound may not
be tight, it provides an intuitive explanation: the dimension-
reduced system with the largest‖PPP Ik

GGGIk
‖F has the largest

signal-to-noise ratio (we considerPPP Ik
GGGIk

xIk
as the signal,

and disregard the interference within the symbol group) andin
the case when there is one symbol in each group, it is the same
as the BLAST ordered SIC algorithm. Note that, due to the
reason that the above pair-wise error probability upper-bound
may not be tight for a general grouping scheme, the ordering
using the signal-to-noise ratio criterion may not be optimal.

Suppose the ordered symbol sets are as follows,

xIi0
, xIi1

, . . . , xIiN−1
. (22)

The ordered PIC-SIC group decoding algorithm is then:

1) Decode the first set of symbolsxIi0
using the PIC

group decoding algorithm (21);
2) Let k = 0, y0 = y, wherey is defined as in (11);
3) Remove the components of the already-detected

symbol setxIik
from (11),

yk+1 , yk −
√

SNRGGGIik
xIik

=
√

SNR

N−1∑

j=k+1

GGGIij
xIij

+ w;
(23)

4) DecodexIik+1
in (23) using the PIC group decoding

algorithm;
5) If k < N − 1, then setk := k + 1, go to Step 3;

otherwise stop the algorithm.

Remark 1. For the PIC group decoding algorithm, the equiv-
alent channel matrixGGG(h) ∈ Cm×n must satisfy the condition
VIk

( Cm, otherwisezIk
= 0, i.e., there is no information

left in zIk
aboutxIk

. This requirement is generally weaker
than that of the ZF decoding, which requires thatm ≥ n. For
example, consider an uncoded MIMO system with5 transmit
antennas and4 receive antennas. In this case, the ZF receiver
can not decode the received signals, while the PIC group
decoding with the grouping schemeI = {I0 = {0, 1, 2}, I1 =
{3, 4}} can do the decoding.

Remark 2. For the PIC-SIC group decoding algorithm, we
require that at each decoding stage,VIk

( Cm. This require-
ment is even weaker than that of the PIC group decoding.
Since we remove the interferences from the already-decoded
symbols, the subspaceVIk

shrinks each time when we finish
decoding one symbol group. Consider the uncoded MIMO
system in Remark 1. LetI = {I0 = {0, 1, 2, 3}, I1 = {4}}
be the grouping scheme. Then it is not possible to decode
the second group symbolx4 with the PIC group decoding
algorithm, because after we remove the interferences from
x0, x1, x2, x3, there is nothing left (zI1

= 0) due to the lack of
dimensionality. However, we can decodex4 with the PIC-SIC
group decoding.

D. Examples

Next we give some examples to illustrate the PIC group
decoding algorithm.

1) Example 1: Consider the Alamouti code with one re-
ceive antenna. The equivalent channel matrix can be written
as

GGG = [ggg0, ggg1],

where

ggg0 =
1√
2

[
h0

h∗
1

]
, ggg1 =

1√
2

[
h1

−h∗
0

]
.

The grouping scheme isI = {I0, I1} = {{0}, {1}}. By a
direct computation, we get the projection matrixPPP 0 as follows,

PPP 0 =
1

|h0|2 + |h1|2
[
|h0|2 h0h1

h∗
0h

∗
1 |h1|2

]
.
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Then, the optimal detection ofx0 is

x̂0 =arg min
x̄0∈A

∥∥∥PPP 0y −
√

SNRPPP 0ggg0x̄0

∥∥∥

=arg min
x̄0∈A

∣∣∣∣∣h
∗
0y0 + h1y1 −

√
SNR

2

(
|h0|2 + |h1|2

)
x̄0

∣∣∣∣∣ ,

which is the same as the optimal detection formula derived in
[1]. Eq. (24) in next page shows the detailed derivation of this
detection formula. Similarly, the optimal detection forx1 is

x̂1 = arg min
x̄1∈A

∣∣∣∣∣h
∗
1y0 − h0y1 −

√
SNR

2

(
|h0|2 + |h1|2

)
x̄1

∣∣∣∣∣ .

2) Example 2: Consider the quasi-orthogonal STBC pro-
posed in [43]. The code has the following form,

XXX =




x0 −x∗
1 x2 −x∗

3

x1 x∗
0 x3 x∗

2

x2 −x∗
3 x0 −x∗

1

x3 x∗
2 x1 x∗

0


 .

Suppose we use one receive antenna. The equivalent channel
matrix GGG(h) can be written as

GGG = [ggg0, ggg1, ggg2, ggg3],

where

ggg0 =
1

2




h0

h∗
1

h2

h∗
3


 , ggg1 =

1

2




h1

−h∗
0

h3

−h∗
2


 ,

ggg2 =
1

2




h2

h∗
3

h0

h∗
1


 , ggg3 =

1

2




h3

−h∗
2

h1

−h∗
0


 .

Let I0 = {0, 2} andI1 = {1, 3}. Then, the optimal detection
of xI0

is

x̂I0
= arg min

x̄I0
∈A2

∥∥∥PPPI0
y −

√
SNRPPP I0

GGGI0
x̄I0

∥∥∥ . (25)

It is easy to verify that

ggg0⊥ggg1, ggg0⊥ggg3, ggg2⊥ggg1, ggg2⊥ggg3,

so VI0
⊥VI1

. This fact implies thatPPP I1
GGGI0

= 0. The
decoding rule in (25) can be simplified as

x̂I0
=arg min

x̄I0
∈A2

(∥∥∥PPP I0
y −

√
SNRPPPI0

GGGI0
x̄I0

∥∥∥+ ‖PPP I1
y‖
)

=arg min
x̄I0

∈A2

(∥∥∥PPP I0
y −

√
SNRPPPI0

GGGI0
x̄I0

∥∥∥

+
∥∥∥PPP I1

y −
√

SNRPPPI1
GGGI0

x̄I0

∥∥∥
)

=arg min
x̄I0

∈A2

∥∥∥y −
√

SNRGGGI0
x̄I0

∥∥∥ .

The decoding rule ofxI1
can be similarly derived,

x̂I1
= arg min

x̄I1
∈A2

∥∥∥y −
√

SNRGGGI1
x̄I1

∥∥∥ .

From the above equations, we can see that if the groups are
orthogonal to each other, then the decomposition of the system

is easy: just to pick up the column vectors corresponding to a
group inGGG(h) and get a new equivalent channel matrix, then
use this new channel matrix and the received signaly to do
the ML decoding. In this case, no linear filtering is needed
in the PIC group decoding and the ML decoding and the PIC
group decoding are the same.

3) Example 3:Consider the3 by 8 overlapped Alamouti
code in [36],

XXX =




x∗

0 0 x∗
2 x1 x∗

4 x3 0 x5

0 x0 −x∗
1 x2 −x∗

3 x4 −x∗
5 0

0 x∗
1 x0 x∗

3 x2 x∗
5 x4 0



 .

An equivalent channel matrix can be written as

GGG =
[
ggg0 ggg1 ggg2 ggg3 ggg4 ggg5

]

=
1√
3




h∗
0 0 0 0 0 0

h1 h2 0 0 0 0
h∗

2 −h∗
1 h∗

0 0 0 0
0 h0 h1 h2 0 0
0 0 h∗

2 −h∗
1 h∗

0 0
0 0 0 h0 h1 h2

0 0 0 0 h∗
2 −h∗

1

0 0 0 0 0 h0




.

Let the grouping scheme be

I = {I0 = {0, 2, 4} , I1 = {1, 3, 5}} .

It is easy to verify that

gggi⊥gggj , i = 0, 2, 4, j = 1, 3, 5.

Similar to Example 2, the system can be decomposed into
two systems without performance degrading. For general over-
lapped Alamouti codes, if we choose the grouping scheme as

I = {I0 = {0, 2, 4, . . . , n − 2} , I1 = {1, 3, 5, . . . , n − 1}} ,

for evenn or

I = {I0 = {0, 2, 4, . . . , n − 1} , I1 = {1, 3, 5, . . . , n − 2}} ,

for oddn, then the system can always be decomposed into two
systems without performance degrading. This property is the
reason why overlapped Alamouti codes perform better than
Toeplitz codes, since the interference comes from only halfof
the symbols.

IV. FULL DIVERSITY CRITERION FOR PIC AND PIC-SIC
GROUPDECODINGS

In this section, we propose a design criterion for linear
dispersion STBC to achieve full diversity with the PIC and
the PIC-SIC group decodings.

A. Notations and Definitions

For convenience, let us first introduce some notations and
definitions. LetS be a subset of the complex number fieldC,
we define the difference set∆S as follows,

∆S = {a − ã,
∣∣ a, ã ∈ S}.
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x̂0 =arg min
x̄0∈A

∥∥∥PPP 0y −
√

SNRPPP 0ggg0x̄0

∥∥∥

=arg min
x̄0∈A

1

|h0|2 + |h1|2

∥∥∥∥∥

[
|h0|2 h0h1

h∗
0h

∗
1 |h1|2

] [
y0

y1

]
−
√

SNR

2

[
h0

h∗
1

]
x̄0

∥∥∥∥∥

=arg min
x̄0∈A

∥∥∥∥∥
1

|h0|2 + |h1|2
[
h0

h∗
1

] [
h∗

0 h1

] [y0

y1

]
−
√

SNR

2

[
h0

h∗
1

]
x̄0

∥∥∥∥∥

=arg min
x̄0∈A

∥∥∥∥∥
1

|h0|2 + |h1|2
[
h0

h∗
1

]
(h∗

0y0 + h1y1) −
√

SNR

2

[
h0

h∗
1

]
x̄0

∥∥∥∥∥

=arg min
x̄0∈A

∣∣∣∣∣h
∗
0y0 + h1y1 −

√
SNR

2

(
|h0|2 + |h1|2

)
x̄0

∣∣∣∣∣

(24)

We also introduce the following definition, which can be
viewed as an extension of the conventional linear indepen-
dence concept.

Definition 1. Let S be a subset ofC and vi ∈
Cm, i = 0, 1, . . . , n − 1, be n complex vectors. Vectors
v0, v1, . . . , vn−1 are calledlinearly dependent overS if there
exista0, a1, . . . , an−1 ∈ S so that

a0v0 + a1v1 + · · · + an−1vn−1 = 0, (26)

where a0, a1, . . . , an−1 are not all zero; otherwise, vectors
v0, v1, . . . , vn−1 are called linear independent overS.

For diversity order, the following definition is known.

Definition 2. Consider a communication system as described
in (9). The system is said to achieve diversity orderm if the
symbol error ratePPP SER(SNR) decays as the inverse of the
m-th power ofSNR, i.e.,

PPP SER(SNR) ≤ c · SNR
−m,

wherec > 0 is a constant independent ofSNR.

The conventional concepts of linear independence and or-
thogonality are defined among vectors. Next, we define them
among vector groups.

Definition 3. Let V = {vi ∈ Cn, i = 0, 1, 2, . . . , k − 1} be a
set of vectors. Vectorvk is said to beindependent ofV if for
any ai ∈ C, i = 0, 1, . . . , k − 1,

vk −
k−1∑

i=0

aivi 6= 0.

Vector vk is said to beorthogonal toV if vk⊥vi, i =
0, 1, . . . , k − 1.

Definition 4. Let V0,V1, . . . ,Vn−1,Vn be n + 1 groups
of vectors. Vector groupVn is said to be independent of
V0,V1, . . . ,Vn−1 if every vector inVn is independent of⋃n−1

i=0 Vi. Vector group Vn is said to be orthogonal to
V0,V1, . . . ,Vn−1 if every vector in Vn is orthogonal to⋃n−1

i=0 Vi. Vector groupsV0,V1, . . . ,Vn are said to be linearly
independent if for0 ≤ k ≤ n, Vk is independent of
the remaining vector groupsV0,V1, . . . ,Vk−1,Vk+1, . . . ,Vn.
Vector groupsV0,V1, . . . ,Vn are said to be orthogonal if for

0 ≤ k ≤ n, Vk is orthogonal to the remaining vector groups
V0,V1, . . . ,Vk−1,Vk+1, . . . ,Vn.

In the remaining of this paper, for convenience, a matrix
notation such asGGG is also used to denote the vector group
that is composed of all the column vectors ofGGG.

B. Design Criterion of STBC with the PIC Group Decoding

In this subsection, we derive a design criterion of codes
decoded with the PIC group decoding. First we introduce the
following lemma, which gives a sufficient condition to achieve
full diversity for the general channel model in (9) with the ML
receiver.

Lemma 3. Consider a communication system modeled as in
(9). A is a signal constellation used in the system. If the
channel matrixGGG(h) satisfies the following inequality,

‖GGG(h)∆x‖2 ≥ c ·
r−1∑

k=0

|hik
|2 ‖∆x‖2

, ∀∆x ∈ ∆An,

for some positive constantc, where{i0, i1, . . . , ir−1} is any
subset of{0, 1, 2, . . . , l−1} and l = nrnt is the total number
of the channel coefficients, then the system achieves diversity
order r with the ML receiver.

The proof of this lemma is simply a matter of computation
of some integrals, which is quite similar to those derivations
in [13], [40]. A detailed proof is given in Appendix C. To
understand the meaning of Lemma 3, let us first define the
power gain for the channel model in (9).

Definition 5. Consider the communication system modeled as
in (9). A is a signal constellation used in the system. The
power gain of the system is defined as

P = min
∆x∈∆An

‖GGG(h)∆x‖2

‖∆x‖2 .

If the power gainP satisfies the following inequality,

P ≥ c ·
r−1∑

k=0

|hik
|2 ,

for some positive constantc, where{i0, i1, . . . , ir−1} is any
subset of{0, 1, 2, . . . , l − 1} and l is as before, then we say
that the system achieves power gain orderr.
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From Lemma 3, one can see that the diversity order is
ensured by the above power gain order and it can be further
interpreted as follows. Suppose that there are two different
symbol vectorsx0, x1 ∈ An. The distance between the two
symbol vectors is‖∆x‖ , ‖x0 − x1‖. Assume there is no
noise in the channel, i.e.,w = 0, then after the symbol vectors
pass through the channel, we getGGG(h)x0 andGGG(h)x1. Now
the distance between received signalsGGG(h)x0 andGGG(h)x1 is
‖GGG(h)∆x‖, which is greater than

√
P ‖∆x‖, i.e., the channel

“expanded” the distance betweenx0 andx1 by a factor of at
least

√
P . The expansion factor

√
P determines the diversity

order that can be achieved. Lemma 3 tells us that if the
expansion factor

√
P of the symbol vector is greater than(

c ·∑r−1
k=0 |hik

|2
) 1

2

for somec > 0, then diversity orderr can
be achieved. Note that the power gain order can be viewed as
a count of the number of path gains summed up inP . We can
rephrase Lemma 3 simply as: if the power gain is a sum of
r path gains, then the diversity order of the communication
system in (9) isr.

Next, we present the main result of this paper, which
characterizes the power gain order of a linear dispersion
STBC decoded with the PIC and the PIC-SIC group decoding
algorithms.

Theorem 1 (Main Theorem). Let X be a linear dispersion
STBC. There arent transmit andnr receive antennas. The
channel matrix isHHH ∈ Cnr×nt . The received signal is
decoded using the PIC group decoding with a grouping scheme
{I0, I1, . . . , IN−1}. The equivalent channel isGGG(h), where
h = vec(HHH) = {h0, h1, . . . , hnr·nt−1} ∈ Cnr·nt . Then, each
of the following dimension-reduced systems (i.e., the STBC
with the PIC group decoding),

zIk
=

√
SNRPPP Ik

GGGIk
xIk

+ PPP Ik
w, k = 0, 1, . . . , N − 1,

(27)
has power gain ordernr · nt if and only if the following two
conditions are satisfied:

• for any two different codewordsXXX,X̃XX ∈ X , ∆XXX , XXX −
X̃XX has the full rank property, i.e., the codeX achieves
full diversity with the ML receiver;

• GGGI0
,GGGI1

, . . . ,GGGIN−1
defined in(10) fromGGG = GGG(h) are

linearly independent vector groups as long ash 6= 0.

When the received signals are decoded using the PIC-
SIC group decoding with the ordering (22), each dimension-
reduced system derived during the decoding process (i.e., the
STBC with the PIC-SIC group decoding) has power gain order
nr · nt if and only if

• for any two different codewordsXXX,X̃XX ∈ X , ∆XXX , XXX −
X̃XX has the full rank property, i.e., the codeX achieves
full diversity with the ML receiver;

• at each decoding stage,GGGIik
, which corresponds to

the current to-be decoded symbol groupxik
, and

[GGGIik+1
, . . . ,GGGIiN−1

] are linearly independent vector
groups as long ash 6= 0.

With the above theorem and the preceding discussions on
the relationship between diversity order and power gain order,
the two conditions in the above theorem provide a criterion

for a linear dispersion code to achieve full diversity with the
PIC group decoding.

Let us see an example to use the above main theorem.
Consider the rotated quasi-orthogonal scheme proposed in [38]
for a QAM signal constellation, where the codeXXX has the
following structure,

XXX =




x0 −x∗
1 αx2 −α∗x∗

3

x1 x∗
0 αx3 α∗x∗

2

αx2 −α∗x∗
3 x0 −x∗

1

αx3 α∗x∗
2 x1 x∗

0


 , α = exp

(
iπ

4

)
.

(28)
Suppose we use one receive antenna, the column vectors of
the equivalent channelGGG are as follows,

ggg0 =
1

2




h0

h∗
1

h2

h∗
3


 , ggg1 =

1

2




h1

−h∗
0

h3

−h∗
2


 ,

ggg2 =
1

2




αh2

αh∗
3

αh0

αh∗
1


 , ggg3 =

1

2




αh3

−αh∗
2

αh1

−αh∗
0


 .

(29)

It has also been proved in [38] that this code achieves full
diversity with the ML receiver, hence the first condition is
satisfied. Let the grouping scheme be{I0 = {0, 2}, I1 =
{1, 3}}, then GGGI0

and GGGI1
are linearly independent. Thus,

both conditions are satisfied. Note that the two groups are
actually orthogonal, which means that every vector inGGGI0

is
orthogonal toGGGI1

and vice versa. Hence after the interference
cancellation, there is no power gain loss. In this case, the PIC
group decoding is exactly the same as the ML receiver.

In the above example, we showed that when there is only
one receive antenna, the group independence condition is
satisfied. It is easy to see that when there are multiple receive
antennas, the group independence condition is also satisfied.
This is because the equivalent channel matrix for multiple
receive antennas is a stacked version of the equivalent channel
matrices of all individual receive antennas amd therefore has
the same structure as the equivalent channel matrix for a single
receive antenna. In general, we have the following corollary.

Corollary 1. Consider the channel described in Theo-
rem 1 with nr receive antennas and a linear dispersion
STBCX . Then, for the equivalent channel matrices ofX ,
GGGI0

,GGGI1
, . . . ,GGGIN−1

are linearly independent vector groups
for h 6= 0 whennr > 1 if and only if GGGI0

,GGGI1
, . . . ,GGGIN−1

are linearly independent vector groups forh 6= 0 when
nr = 1.

The proof is straightforward and omitted here. According to
this corollary, the full diversity conditions given in the main
theorem only need to be verified for one receive antenna case
nr = 1, which is similar to what is obtained for linear receivers
in [36].

C. Proof of the Main Theorem

In order to prove the main theorem, let us first introduce
the following lemma.
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Lemma 4. Consider a communication system modeled as in
(9). A is a signal constellation used in the system. If the
equivalent channel matrixGGG(h) satisfies the following two
conditions:

• scaling invariance:

1

‖h‖GGG(h) = GGG

(
h

‖h‖

)
; (30)

• the column vectors ofGGG(h) are linearly independent over
∆A for any 0 6= h ∈ Cl,

then the system has power gain orderl and thus achieves
diversity orderl with the ML receiver.

A proof is given in Appendix D. Note that if each entry
of GGG(h) is a linear combination ofh0, h1, . . . , hl−1 and
h∗

0, h
∗
1, . . . , h

∗
l−1, then the scaling invariance (30) always

holds. So we have the following corollary.

Corollary 2. Consider a communication system modeled
as in (9). Each entry ofGGG(h) is a linear combination of
h0, h1, . . . , hl−1 and h∗

0, h
∗
1, . . . , h

∗
l−1. A is a signal constel-

lation used in the system. If the column vectors ofGGG(h)
are linearly independent over∆A for any 0 6= h =
[h0, h1, . . . , hl−1]

T ∈ Cl, then the system has power gain
order l thus achieves diversity orderl with the ML receiver.

One may wonder for linear dispersion STBC, whether the
above condition is an equivalent condition of thefull rank
criterion. The following theorem gives a positive answer to
this question.

Theorem 2. Let X be a linear dispersion STBC. LetA be a
signal constellation for the coding schemeX . LetGGG(h) be the
equivalent channel ofX and h and h 6= 0. ThenX has the
full rank property if and only if the column vectors ofGGG(h)
are linearly independent over∆A.

Its proof is in Appendix E.
Now we are ready to prove the main theorem. The main

idea is to prove that the dimension-reduced systems in (27)
satisfy the two conditions in Lemma 4.

1) Sufficiency part:First we prove that the two conditions
in the main theorem are sufficient conditions for codes to
achieve the full power gain with the PIC group decoding
algorithm. According to Theorem 2, the first condition is
equivalent to that the column vectors ofGGG(h) are linearly
independent over∆A. This further implies that the column
vectors ofGGGIk

are linearly independent over∆A, i.e., for any
a0, a1, . . . , ank−1 ∈ ∆A, aj , j = 0, 1, . . . , nk−1, not all zero,
we have

nk−1∑

j=0

ajgggik,j
6= 0. (31)

SinceGGGI0
,GGGI1

, . . . ,GGGIN−1
are linearly independent, the col-

umn vectorsgggik,j
, j = 0, 1, . . . , nk−1, in GGGIk

do not belong1

to the vector spaceVIk
defined in (12). From (31) and the

1Here the linear independence over the whole complex field of the vector
sets is needed/used and the linear independence over∆A is not sufficient.

fact thatgggik,j
6∈ VIk

, we have

QQQIk




nk−1∑

j=0

ajgggik,j


 6=

nk−1∑

j=0

ajgggik,j
.

By applying the above inequality, we get the following in-
equality,

nk−1∑

j=0

ajPPP Ik
gggik,j

= PPP Ik




nk−1∑

j=0

ajgggik,j




= (IIIm −QQQIk
)

nk−1∑

j=0

ajgggik,j
6= 0,

i.e., the column vectors ofPPP Ik
GGGIk

are also linearly indepen-
dent over∆A.

Now we prove thatPPP Ik
GGGIk

satisfies the scaling invariance
(30) in Lemma 4. Since bothPPP Ik

andGGGIk
are determined by

the parameter vectorh, for a clear exposition, we temporarily
usePPP Ik

(h) to denotePPPIk
and useGGGIk

(h) to denoteGGGIk
.

Then we have

1

‖h‖PPP Ik
(h)GGGIk

(h) = PPPIk
(h)

(
1

‖h‖GGGIk
(h)

)

= PPPIk
(h)GGGIk

(
h

‖h‖

)

= PPPIk

(
h

‖h‖

)
GGGIk

(
h

‖h‖

)
,

where the second equality holds since the entries in
GGGIk

are all linear combinations ofh0, h1, . . . , hnr·nt
and

h∗
0, h

∗
1, . . . , h

∗
nr ·nt

, and the last equality holds since

PPP Ik
(h) = PPPIk

(
h

‖h‖

)
,

which is a direct result from the definition ofQQQIk
in (14) and

the fact thatPPPIk
= IIIm −QQQIk

.
Thus, the two conditions in Lemma 4 are all satisfied and

therefore for anyk, the dimension-reduced system

zIk
=

√
SNR (PPP Ik

GGGIk
) xIk

+ PPP Ik
w,

has power gain ordernr · nt.
Now let us consider the case when the received signals

are decoded with the PIC-SIC group decoding. We use the
conventional assumption that the previous decoded symbols
are correct. Thus, there is no error introduced when we
use these decoded symbols to reduce the interferences from
the received signals. Under this assumption, the PIC-SIC
group decoding algorithm is always better than the PIC group
decoding algorithm. Thus, the two conditions are sufficientfor
the PIC-SIC case.

2) Necessity part: We next prove that these two con-
ditions are also necessary conditions. IfGGGIk

and GGGc
Ik

=
[GGGI0

, . . . ,GGGIk−1
,GGGIk+1

, . . . ,GGGIN−1
] are not linearly indepen-

dent, i.e., there exists a column vector inGGGIk
such that this

vector belongs to the subspaceVIk
. Without loss of generality,

we assume this vector isgggik,0
. In this case, we have

PPP Ik
GGGIk

=
[
0,PPPIk

gggik,1
,PPP Ik

gggik,2
, . . . ,PPP Ik

gggik,nk−1

]
.
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Take∆xIk
= [a, 0, 0, . . . , 0]T ∈ ∆Ank , wherea ∈ ∆A, a 6=

0, then we have‖PPP Ik
GGGIk

∆xIk
‖ = 0, which contradicts with

the condition that the systems in (27) have power gain order
nr · nt. Thus, we must have thatGGGIk

is linearly independent
of GGGc

Ik
. Since k is an arbitrary integer number in[0, N −

1], GGGI0
,GGGI1

, . . . ,GGGIN−1
are linearly independent. This proves

that the second condition in the main theorem must hold.
Let ∆x 6= 0 ∈ ∆An and ∆xIk

, k = 0, 1, . . . , N − 1, be
the corresponding sub-vectors of∆x to the grouping scheme.
Thus, there is at least one∆xIk

6= 0. Without loss of
generality, we assume∆xI0

6= 0. Then,

‖GGG(h)∆x‖2

=

∥∥∥∥∥GGGI0
∆xI0

+

N−1∑

i=1

GGGIk
∆xIk

∥∥∥∥∥

2

=

∥∥∥∥∥PPP I0
GGGI0

∆xI0
+ QQQI0

GGGI0
∆xI0

+

N−1∑

i=1

GGGIk
∆xIk

∥∥∥∥∥

2

.

Since
PPP I0

GGGI0
∆xI0

∈ V⊥
I0

and

QQQI0
GGGI0

∆xI0
+

N−1∑

i=1

GGGIk
∆xIk

∈ VI0
,

we have

‖GGG(h)∆x‖2

= ‖PPP I0
GGGI0

∆xI0
‖2

+

∥∥∥∥∥QQQI0
GGGI0

∆xI0
+

N−1∑

i=1

GGGIk
∆xIk

∥∥∥∥∥

2

≥ ‖PPP I0
GGGI0

∆xI0
‖2

≥ c ·
(

nr ·nt−1∑

i=0

|hi|2
)
‖∆xI0

‖2
> 0, h 6= 0.

Using Theorem 2, the first condition in the theorem is proved.
In the case that the received signals are decoded

with the PIC-SIC group decoding, we assume the de-
coding order isIi0 , Ii1 , . . . , IiN−1

. Similar to the above
argument, we must have thatGGGIi0

is linearly indepen-
dent of GGGIi1

,GGGIi2
, . . . ,GGGIiN−1

; GGGIi1
is linearly indepen-

dent of GGGIi2
,GGGIi3

, . . . ,GGGIiN−1
; GGGIi2

is linearly inde-
pendent ofGGGIi3

,GGGIi4
, . . . ,GGGIiN−1

etc. So we have that
GGGIi0

,GGGIi1
, . . . ,GGGIiN−1

are linearly independent. The proof
of the first condition to be necessary is the same as the PIC
case. This completes our proof of the main theorem.

D. Connection with the Full Rank Criterion and the Shang-
Xia Criterion

In the case when there is only one group, then the PIC
group decoding algorithm becomes the ML decoding. In this
case the second condition can always be satisfied. Thus, our
proposed design criterion in Theorem 1 is equivalent to that
of [13], [40].

We now consider the symbol-by-symbol grouping case of
the PIC group decoding algorithm, which is equivalent to the
ZF decoding algorithm. In this case when each group contains

only one symbol, the second condition can be rephrased as:
GGG(h) is a column full rank matrix forh 6= 0.

Corollary 3. In the case of symbol-by-symbol PIC group
decoding, i.e., each group only contains one symbol, the design
criterion in the main theorem is equivalent to the Shang-Xia
criterion proposed in [36], i.e.,

det
(
GGG(h)HGGG(h)

)
≥ c ‖h‖2n

, h ∈ Cl,

wherec is a constant independent of the channelh.

Proof: Since we have thatGGG(h) is full column rank for
h 6= 0, the following inequality must hold,

det
(
GGG(h)HGGG(h)

)
> 0, h 6= 0,

Let us restrict the parameterh to the unit sphere, i.e.,‖h‖ = 1.
Note that the unit sphere is a compact set,det

(
GGG(h)HGGG(h)

)

is a continuous function ofh. There must exist a positive
constantc > 0 such at

det
(
GGG(h)HGGG(h)

)
> c, h 6= 0,

as what is used in [51]. Generally, forh ∈ Cl \ {0}, we have
that

det

(
GGG

(
h

‖h‖

)H

GGG

(
h

‖h‖

))
> c, h 6= 0. (32)

Since the entries ofGGG(h) are linear combinations of
h0, h1, . . . , hl−1 andh∗

0, h
∗
1, . . . , h

∗
l−1, inequality (32) can be

rewritten as

det

(
GGG(h)HGGG(h)

‖h‖2

)
> c, h 6= 0. (33)

Thus,
det
(
GGG(h)HGGG(h)

)
≥ c ‖h‖2n

, h ∈ Cl, (34)

which is the Shang-Xia condition given in [36]. This proves
that the criterion in Theorem 1 implies the Shang-Xia criterion
in the case when all symbols are in separate groups, i.e., the
ZF receiver.

Since the criterion in Theorem 1 is necessary and sufficient,
it can be derived from the Shang-Xia criterion too. In other
words, the criterion in Theorem 1 is equivalent to the Shang-
Xia criterion in the case when the ZF receiver is used.

E. Some Discussions

From Theorem 1 and Theorem 2, it is interesting to see
that for a linear dispersion STBC (complex conjugates of
symbols may be embedded) to achieve full diversity: (i) the
weakest criterion is that the column vectors of the equivalent
channel matrix are linearly independent over a difference set
of a signal constellation,∆A, when the ML receiver is used,
which is equivalent to the code full rank criterion known in
the literature; (ii) the strongest criterion (in the sense of the
simplest complex-symbol-wise decoding) is that the column
vectors of the equivalent channel matrix are linearly indepen-
dent over the whole complex field when the ZF receiver is
used, which is, in fact, weaker than the orthogonality in the
OSTBC case that is not necessary for achieving full diversity
with a linear receiver. In the case of the weakest criterion
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but the optimal and the most complicated receiver, i.e., ML
receiver, the symbol rate can bent for nt transmit antennas.
In the case of the strongest criterion but the simplest receiver,
i.e., linear receiver, the symbol rate can not be above1 [36].
Similarly, we have the following corollary, which includes
Shang-Xia’s rate upper bound result as a special case.

Corollary 4. Let X be a linear dispersion STBC. At the
receiver the PIC group decoding is used with a grouping
scheme{I0, I1, . . . , IN−1}. Let each group haveK symbols.
If X satisfies the full diversity conditions for the PIC group
decoding in Theorem 1, then the maximum symbol rate ofX
is upper bounded byK.

The proof is straightforward. From Corollary 1, we only
need to consider the one receiver antenna case, i.e.,nr = 1.
Symbol rateRs = n

t
= KN

t
. We also havem = tnr = t,

wherem andt are the vector space dimension of the equivalent
channel column vectors and the time slots used, respectively,
as defined in Section II. In vector spaceCm, there are at most
m vector groups that can be independent from each other.
Thus,N ≤ m. HenceRs = KN

m
≤ KN

m
≤ K. As one can

see that whenK = 1, i.e., each group has only one element,
the symbol rate is upper bounded by1, which coincides with
the result obtained for linear receivers in [36]. A more tedious
rate upper bound can be similarly obtained when the groupsIi,
i = 0, 1, ..., N − 1, do not have the same number of elements
in the grouping scheme, which is omitted here.

Note that the rates of OSTBC approaches1/2 as the number
of transmit antennas goes to infinity and are upper bounded by
3/4 for more than2 transmit antennas [47]. By increasing the
decoding complexity and improving a receiver as increasing
the group sizes in our proposed PIC group decoding, the cri-
terion to achieve full diversity becomes weaker. The criterion
for the PIC group decoding serves as a bridge between the
strongest and the weakest criteria for the ZF and the ML
receivers, respectively, and the corresponding symbol rates are
expected between1 and nt. The examples to be presented
later in Section VI are some simple examples to show this
rate-complexity tradeoff.

V. A SYMPTOTIC OPTIMAL GROUP DECODING

From the above discussions, it is clear that the PIC group
decoding is an intermediate decoding algorithm between the
ML and the ZF decoding algorithms. In practice, the MMSE
decoding algorithm has better performance than the ZF decod-
ing algorithm. One natural question is: is there an intermediate
decoding algorithm between the ML decoding and the MMSE
decoding algorithms? The answer is YES. In this section,
we propose such an intermediate algorithm calledasymptotic
optimal (AO) group decoding algorithm.

A. Asymptotic Optimal Group Decoding Algorithm

Consider the channel model in (9). Suppose the signals are
decoded using a group decoding algorithm, and the grouping
scheme isI = {I0, I1, I2, . . . , IN−1}. Assume the symbols
are taken from a signal constellationA according to the

uniform distribution. The optimal way to decodexIk
from

the received signals is to find̂xIk
∈ Ank such that

x̂Ik
= arg max

x̄Ik
∈Ank

P (y | x̄Ik
) .

To derive the decoding rule, let us first write (11) in the
following form,

y =
√

SNRGGGIk
xIk

+
√

SNR

∑

0≤i≤N−1

i6=k

GGGIi
xIi

+ w. (35)

Note that except for the symbol groupxIk
, all the other

symbols can be viewed as noises that interfere withxIk
.

Define the noise termwIk
as

wIk
=

√
SNR

∑

0≤i≤N−1

i6=k

GGGIi
xIi

+ w

=
√

SNR

∑

i6∈Ik

gggixi + w.

(36)

Then, we can write (35) as

y =
√

SNRGGGIk
xIk

+ wIk
. (37)

The optimal decoding ofxIk
from the received signal vector

y depends on the distribution of the noisewIk
, which is

difficult to analyze in general. According to Lyapunov’s central
limit theorem,wIk

converges to a Gaussian distribution as
the number of the terms in the summation goes to infinity.
To simplify the discussion, we assume that the noisewIk

is Gaussian distributed. Similar assumption has been used in
[26]. We call the optimal result derived under this assumption
asymptotically optimal.

Under the above assumption, the probability density func-
tion P (y | x̄Ik

) can be explicitly expressed and the optimal
decoding rule can be easily derived. First let us compute the
covariance matrix of the noise vectorwIk

:

KKKIk
= E

{
wIk

wH

Ik

}

= IIIm + SNR

∑

i6∈Ik

gggiggg
H

i .

Hence the probability density functionP (y | x̄Ik
) is as fol-

lows,

P (y | x̄Ik
)

=
1

πm |KKKIk
| exp

[
−
(
y −

√
SNRGGGIk

xIk

)H

KKK−1
Ik

(
y −

√
SNRGGGIk

xIk

) ]
.

For the above equation, we can see that maximizing
P (y | x̄Ik

) is equivalent to minimizing
(
y −

√
SNRGGGIk

xIk

)H

KKK−1
Ik

(
y −

√
SNRGGGIk

xIk

)

=
∥∥∥KKK− 1

2

Ik

(
y −

√
SNRGGGIk

xIk

)∥∥∥
2

,

whereKKK
− 1

2

Ik
is the square root of the matrixKKK−1

Ik
. So the

asymptotic optimal decoding rule is

x̂Ik
= arg max

x̄Ik
∈Ank

∥∥∥KKK− 1
2

Ik

(
y −

√
SNRGGGIk

x̄Ik

)∥∥∥ . (38)
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When I = {I0} = {{0, 1, 2, . . . , n − 1}}, we only have
one symbol groupxI0

, which contains all the symbols. The
variance of the noise isKKKI0

= Im. In this case, the above
decoding rule can be simplified as

x̂ = x̂I0
= arg max

x̄∈An

∥∥∥y −
√

SNRGGG(h)x̄
∥∥∥ ,

which is the ML decoding.
Similar to the PIC case, we can use the SIC technique to

aid the AO group decoding process, the resulting decoding
algorithm is called AO-SIC group decoding. The decoding
order can be simply determined according to the maximum
SINR criterion, which is similar to the PIC-SIC case.

B. Connection with the MMSE Decoding

Now let us consider the symbol-by-symbol case of the AO
group decoding algorithm. In this case,

I = I0, I1, . . . , In−1 = {{0}, {1}, . . . , {n − 1}}.

In the following discussion, we use the simplified notation
convention introduced in III-B. Thus, we useKKKk instead of
KKKIk

to denote

KKKk = IIIm + SNR

∑

i6=k

gggiggg
H

i .

So the decoding rule is

x̂Ik
= arg max

x̄k∈A

∥∥∥KKK− 1
2

k

(
y −

√
SNRgggkx̄k

)∥∥∥

= arg max
x̄k∈A

∥∥∥∥∥
gggH

kKKK−1
k y√

SNRgggH
kKKKkgggk

− x̄k

∥∥∥∥∥ .

The term gggH

kKKK
−1

k
y√

SNRgggH

k
KKKkgggk

is the unbiased estimator ofxk. In this

case, the AO group decoding algorithm is equivalent to the
unbiased MMSE decoding [44]. By a proper scaling, we can

get the MMSE estimator from gggH

kKKK
−1

k
y√

SNRgggH

k
KKKkgggk

[44]. Although

the MMSE estimator is optimal with respect to the mean
squared error, it may not be optimal with respect to the symbol
error probability and the unbiased MMSE may have a better
performance [3].

C. Full Diversity Design Criterion for AO Group Decoding

Since the AO group decoding is asymptotically optimal, the
performance of the AO group decoding outperforms the PIC
group decoding. So the full diversity criterion for codes with
the PIC group decoding can also be applied to the AO group
decoding.

VI. D ESIGN EXAMPLES

In this section, we present two design examples that achieve
the full diversity conditions with pair-by-pair PIC group de-
coding.

A. Example 1

Consider a code for 2 transmit antennas with 3 time slots
of the following form,

XXX =

[
cx0 + sx1 cx2 + sx3 0

0 −sx0 + cx1 −sx2 + cx3

]
, (39)

where c = cos θ, s = sin θ, θ ∈ [0, 2π). The symbol rate of
this code is4

3 .
In the following, we show that this code can be decoded

with pair-by-pair PIC group decoding.

Theorem 3. Let A ⊂ Z[i] be a QAM signal constellation.
Let I = {{0, 1} , {2, 3}} be a grouping scheme for the PIC
group decoding algorithm. Iftan θ 6∈ Q, then codeXXX in (39)
achieves full diversity using the PIC group decoding algorithm
with the grouping schemeI.

Proof: Firstly, we prove that the code given in (39) has
full rank property for anyA ⊂ Z[i]. In order to prove this, we
only need to prove that for anyxi ∈ Z[i], i = 0, 1, 2, 3, which
satisfies thatxi not all equal to zero,XXX is full rank. Since
tan θ 6∈ Q, equationcx0 + sx1 = 0 holds forx0, x1 ∈ ∆A if
and only ifx0 = x1 = 0. Similarly, equation−sx2 + cx3 = 0
holds forx2, x3 ∈ ∆A if and only if x2 = x3 = 0. Next, we
discuss two different cases.

i). When x0 and x1 are not all equal to zero andx2

and x3 not all equal to zero, thencx0 + sx1 6= 0,
−sx2 + cx3 6= 0. In this case,XXX is full rank;

ii). When x0 andx1 are not all equal to zero butx2 =
x3 = 0, then

XXX =

[
cx0 + sx1 0 0

0 −sx0 + cx1 0

]

is full rank; similarly, in the case whenx2 and x3

are not all equal to zero butx0 = x1 = 0, XXX is full
rank too.

So the code in (39) has full rank property.
Next, we prove that the codeXXX satisfies the second condi-

tion in the main theorem. Suppose there is only one receive
antenna, the equivalent channel can be written as

[g0, g1, g2, g3] =




ch0 sh0 0 0
−sh1 ch1 ch0 sh0

0 0 −sh1 ch1


 ,

obviouslyg0 andg1 can not be expressed as a linear combi-
nation ofg2, g3, and vice versa, whenh 6= 0. Thus, [g0, g1]
and[g2, g3] are linearly independent, whenh 6= 0. According
to the main theorem, the code achieves full diversity with the
PIC decoding algorithm provided that the grouping scheme is
I = {{0, 1} , {2, 3}}.

B. Example 2

The code shown in (40) in next page is designed for4
transmit antennas with 6 time slots. The parametersc and s
are defined asc = cos θ, s = sin θ, θ ∈ [0, 2π). Clearly, its
rate is also4/3. It can be proved that this code satisfies the two
conditions given in the main theorem if the grouping scheme
is I = {{0, 1} , {2, 3} , {4, 5} , {6, 7}}.
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XXX =




cx0 + sx1 −cx∗
2 − sx∗

3 cx4 + sx5 −cx∗
6 − sx∗

7 0 0
0 0 −sx0 + cx1 sx∗

2 − cx∗
3 −sx4 + cx5 sx∗

6 − cx∗
7

cx2 + sx3 cx∗
0 + sx∗

1 cx6 + sx7 cx∗
4 + sx∗

5 0 0
0 0 −sx2 + cx3 −sx∗

0 + cx∗
1 −sx6 + cx7 −sx∗

4 + cx∗
5


 (40)

Theorem 4. LetA ⊂ Z[i] be a QAM signal constellation. Let
I = {{0, 1} , {2, 3} , {4, 5} , {6, 7}} be a grouping scheme for
the PIC group algorithm. Iftan θ 6∈ Q, then the codeXXX in (40)
achieves full diversity using the PIC group decoding algorithm
with the grouping schemeI.

Proof: The proof is similar to the2-transmit-antenna case.
First we prove that this code satisfies the full rank criterion.
This is easy to verify just by looking into the code case by
case as the previous proof.

Next we prove that the second condition in the main
theorem also holds. In the case when there is only one receive
antenna, the equivalent channel matrix is shown in (41) in
next page. Leth 6= 0. We can see that[g0, g1] is orthogonal
to [g2, g3]. Vector group[g0, g1] is also linearly independent
of g4, g5, g6, g7. Thus, [g0, g1] can not be expressed by
any linear combination of the rest column vectors inGGG. A
similar discussion can be applied to the other vector groups.
Therefore, the second condition in the main theorem also
holds. This completes the proof.

VII. S IMULATION

In this section, we present some simulation results. In all
the simulations, the channel is assumed quasi-static Rayleigh
flat fading. First we choose the rotation angleθ for the codes
in (39) and (40) by numerically estimating the coding gains
of the codes for a series of values ofθ. Here the coding gain
Cg is defined as

Cg = arg max
C̄g

{
C̄g

∣∣ PPP blockerr(SNR) ≤ 1

C̄g

SNR
−Dg

}
, (42)

where Dg is the diversity order. We use Monte Carlo sim-
ulations to estimate the coding gains for differentθ’s. As
we can see from Fig. 1, the peak value ofCg is reached at
two points: θ = 0.55 and θ = 1.02. Interestingly enough,
these two values ofθ are very close to1

2 arctan(2) and
π
2 − 1

2 arctan(2), which maximize the coding gain of the2×2
diagonal code [44]. An intuitive explanation is that the code
in (39) can be viewed as two diagonal codes stacked together
and even after the interference cancellation,θ = 1

2 arctan(2)
andθ = π

2 − 1
2 arctan(2) still maximize the coding gain.

In Fig. 2 and Fig. 3, we compare our new code in (39)
with Alamouti code and Golden code [2] at the bandwidth
efficiencies of4 bits/sec/Hz and8 bits/sec/Hz, respectively,
with two transmit and three receive antennas. For both new
code and Golden code, the group size of the group decoders
are all set to2. Both Fig. 2 and Fig. 3 show that Golden
code with the ML decoder performs the best. Also we can see
that Golden code does not achieve full diversity with the PIC
group decoding or ZF decoding. At the bandwidth efficiency
of 4 bits/sec/Hz, Alamouti code outperforms our new code,

while at the high bandwidth efficiency of8 bits/sec/Hz, its
performance degrades significantly.

For the 4 by 6 code in (40) for4 transmit antennas, we
compare it with the QOSTBC with the optimal rotation [38]
and Nguyen-Choi code [30]. The number of receive antennas
is also3 for all these codes. Our new coding scheme uses a
64-QAM constellation and the QOSTBC uses a256-QAM
constellation so that the bit rates for both schemes are8
bits/sec/Hz. For Nguyen-Choi code, the constellation is 32-
QAM (it is obtained by deleting the four corner points from
the 6 by 6 square QAM as what is commonly used) so that
the bit rate is7.5 bits/sec/Hz. We use the PIC and PIC-SIC
group decodings for the new code, respectively, and the ML
decoding for the QOSTBC, and the PIC-SIC group decoding
for Nguyen-Choi code. In this case, all these decodings are
symbol-pair-wise based. The simulation results show that our
new code with the PIC group decoding and the PIC-SIC group
decoding is2.3 dB and 2.8 dB better than the QOSTBC,
respectively. From Fig. 4, one can see that our new code
does achieve full diversity as compared with the full diversity
QOSTBC and the diversity gain of Nguyen-Choi code is
smaller than that of our new code.

VIII. C ONCLUSION

In this paper, we first proposed a PIC group decoding
algorithm and an AO group decoding algorithm that fill the
gaps between the ML decoding algorithm and the symbol-
by-symbol linear decoding algorithms namely the ZF and the
MMSE decoding algorithms, respectively. We then derived
a design criterion for codes to achieve full diversity when
they are decoded with the PIC and AO group decoding
algorithms. The new derived criterion is a group independence
criterion for an equivalent channel matrix and fills the gap
between the loosest full rank criterion for the ML receiver and
the strongest linear independence criterion of the equivalent
channel matrix for linear receivers. Note that the full rank
criterion is equivalent to the loosest linear independencefor
the column vectors of the equivalent channel matrix over a
difference set of a finite signal constellation while the strongest
linear independence criterion is the linear independence for
the column vectors of the equivalent channel matrix over the
whole complex field. The relaxed condition in the new design
criterion for STBC to achieve full diversity with the PIC group
decoding provides an STBC rate bridge betweennt and 1,
where ratent is the full symbol rate for the ML receiver and
rate 1 is the symbol rate upper bound for linear receivers.
Thus, it provides a trade-off between decoding complexity
and symbol rate when full diversity is required. We finally
presented two design examples for 2 and 4 transmit antennas
of rate4/3 that satisfy the new design criterion and thus they
achieve full diversity with the PIC group decoding of group
size2, i.e., complex-pair-wise decoding.



15

GGG = [g0, g1, g2, g3, g4, g5, g6, g7]

=




ch0 sh0 ch2 sh2 0 0 0 0
ch∗

2 sh∗
2 −ch∗

0 −sh∗
0 0 0 0 0

−sh1 ch1 −sh3 ch3 ch0 sh0 ch2 sh2

−sh∗
3 ch∗

3 sh∗
1 −ch∗

1 ch∗
2 sh∗

2 −ch∗
0 −sh∗

0

0 0 0 0 −sh1 ch1 −sh3 ch3

0 0 0 0 −sh∗
3 ch∗

3 sh∗
1 −ch∗

1




(41)
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APPENDIX A
PROOF OFLEMMA 1

Proof: Writing PPPIk
defined in (15) and an arbitrary

matrix P̃PP Ik
∈ PIk

in the following forms,

PPP Ik
=
[
pT

0 , pT

1 , . . . , pT

m−1

]T
,

P̃PP Ik
=
[
p̃T

0 , p̃T

1 , . . . , p̃T

m−1

]T
,

according to the definition ofPIk
in (18), we must have that

p∗
i , p̃

∗
i ∈ V⊥

Ik
, i = 0, 1, . . . , m − 1. Note thatrank

(
PPP ∗

Ik

)
=

rank (PPP Ik
) = dim

(
V⊥

Ik

)
, which implies that all the vectors

in V⊥
Ik

can be expressed as linear combinations ofp∗
i , i =

0, 1, . . . , m − 1. So there must existf∗
i,j , 0 ≤ i, j < m, such

that

p̃∗
i =

m−1∑

i=0

f∗
i,jp

∗
j ,

or in the matrix form we havẽPPPIk
= FFFPPP Ik

, where the(i, j)-
th entry ofFFF is fi,j. SoP̃PP Ik

can be viewed as a concatenation
of the linear filtersPPP Ik

andFFF . Substituting the above equation
into (19), we get

z̃Ik
= FFF (PPP Ik

GGGIk
xIk

+ PPPIk
w) = FFFzIk

, (43)

wherezIk
= PPP Ik

GGGIk
xIk

+ PPP Ik
w. For anSNR, the optimal

decoding ofxIk
from zIk

is as follows,

x̂Ik
= arg min

x̄Ik
∈Ank

P (zIk
| x̄Ik

) ,

and the optimal decoding ofxIk
from z̃Ik

is as follows,

x̂Ik
= arg min

x̄Ik
∈Ank

P (FFFzIk
| x̄Ik

) . (44)

Notice that any filtering may not help an ML decision.
Therefore, for anSNR, we have

Perr(PPP Ik
, SNR) ≤ Perr(P̃PP Ik

, SNR),

which completes the proof.

APPENDIX B
PROOF OFLEMMA 2

Proof: SincePPP is a projection matrix,PPP can be decom-
posed as

PPP = UUUHDDDUUU, (45)

whereUUU ∈ Cm×m is an unitary matrix and

DDD =

[
IIIr×r 0r×m−r

0m−r×r 0m−r×m−r

]
, r = rank(PPP ). (46)

By multiplying both sides of (20) byUUU to the left, we have

UUUy =
√

SNRUUUGGGx + DDDUUUw. (47)

Since the column vectors ofGGG belong toV, GGG = PPPGGG, (47)
can be written as

UUUy =
√

SNRUUUPPPGGGx+DDDUUUw =
√

SNRDDDUUUGGGx+DDDUUUw (48)

Note that the effect of multiplyingDDD to the left of a vector is
picking up the firstr entries and setting the restn−r entries to
zero. Hence from (48), we can see that only the firstr entries
of UUUy matter and all other entries are zeros. We also have that
the firstr entries ofDDDUUUw are i.i.d. Gaussian noise sinceUUU is
unitary, the restn− r entries are all zeros. Use[v]r to denote
the vector that contains the firstr entries ofv ∈ Cm. Then,
(48) is equivalent to

[UUUy]r =
√

SNR[DDDUUUGGGx]r + [DDDUUUw]r. (49)

Since[DDDUUUw]r is a white Gaussian noise, the ML decision is
the same as the minimum distance decision for (49), i.e.,

x̂ = arg min
x̄∈An

∥∥∥[UUUy]r −
√

SNR[DDDUUUGGGx̄]r

∥∥∥

= arg min
x̄∈An

∥∥∥UUUy −
√

SNRDDDUUUGGGx̄

∥∥∥ ,
(50)

where the second equality holds because the lastn− r entries
have no effect on the distance. Noting thatUUU is an unitary
matrix andGGG = PPPGGG, the above detection is equivalent to

x̂ = arg min
x̄∈An

∥∥∥UUUHUUUy −
√

SNRUUUHDDDUUUGGGx̄

∥∥∥

= arg min
x̄∈An

∥∥∥y −
√

SNRGGGx̄

∥∥∥ .
(51)

Thus, we conclude that the minimum distance decision in this
case is equivalent to the maximum likelihood decision.
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APPENDIX C
PROOF OFLEMMA 3

Proof: For a givenh = [h0, h1, . . . , hl−1]
T, and two

symbol vectorsx, x̃ ∈ An with x 6= x̃, the pairwise error
probabilityPh(x → x̃) with ML receiver is as follows,

Ph(x → x̃) =Q
(√

SNR ‖GGG(h)∆x‖
)

≤Q


c ·

√
SNR

(
r−1∑

k=0

|hik
|2
) 1

2

‖∆x‖




≤1

2
exp

(
−c2 · SNR

2

r−1∑

k=0

|hik
|2 ‖∆x‖2

)
,

(52)

where the last inequality is obtained by applying the well-
known upper-bound for theQ-function,

Q(x) ≤ 1

2
exp

(
−x2

2

)
.

By taking expectation overh at both sides of (52), we get

P (x → x̃) = Eh {Ph(x → x̃)}

≤ Eh

{
exp

(
−c2 · SNR

2

r−1∑

k=0

|hik
|2 ‖∆x‖2

)}
.

To evaluate the above expectation, we use

Eh

(
exp(−a |h|2

)
=

1

1 + a
, h ∼ CN (0, 1) , a > 0,

and note that the expectation can be taken separately to each
hik

, which leads to the following result,

P (x → x̃) ≤ 1

2

(
2

2 + c2SNR ‖∆x‖2

)r

<
2r−1

c2r ‖∆x‖2r
SNR

−r.

Since∆x ∈ ∆An and∆An is a finite set, there exists a∆x0

such that

dmin = ‖∆x0‖ = min {‖∆x‖ ,0 6= ∆x ∈ ∆An} .

Hence for anyx, x̃ ∈ An with x 6= x̃, we always have

P (x → x̃) <
2r−1

(c · dmin)
2r

SNR
−r.

The symbol error probabilityPSER(SNR) is upper-bounded by

PSER(SNR) <
2r−1 (|A|n − 1)

(c · dmin)
2r

SNR
−r,

i.e., the system achieves the diversity orderr.

APPENDIX D
PROOF OFLEMMA 4

Proof: For a given0 6= h ∈ Cl and 0 6= ∆x ∈ ∆An,
since the column vectors ofGGG(h) are linearly independent
over ∆A, GGG(h)∆x 6= 0, or

‖GGG(h)∆x‖ > 0. (53)

Now let us consider a fixed∆x ∈ ∆An and restrict the
parameterh to the unit sphere, i.e.,‖h‖ = 1. Since the unit
sphere is a compact set, from (53), for this∆x there must
exist a constantc∆x > 0 such that

‖GGG(h)∆x‖ ≥ c∆x. (54)

For 0 6= h ∈ Cl, we always have
∥∥∥∥

1

‖h‖GGG(h)∆x

∥∥∥∥ =

∥∥∥∥GGG
(

h

‖h‖

)
∆x

∥∥∥∥ ≥ c∆x, (55)

or

‖GGG(h)∆x‖ ≥ c∆x ‖h‖ = c∆x

(
l−1∑

i=0

|hi|2
) 1

2

. (56)

Since∆An is a finite set, we can definecmin and dmax so
that

0 < cmin = min {c∆x,0 6= ∆x ∈ ∆An} , (57)

0 < dmax = max {‖∆x‖ , ∆x ∈ ∆An} . (58)

Then

‖GGG(h)∆x‖

≥ cmin

dmax

(
l−1∑

i=0

|hi|2
) 1

2

‖∆x‖

= c

(
l−1∑

i=0

|hi|2
) 1

2

‖∆x‖ , ∀∆x ∈ ∆An, h ∈ Cl,

(59)

wherec , cmin

dmax
. This completes the proof.

APPENDIX E
PROOF OFTHEOREM 2

Proof: LetHHH = (hi,j) ∈ Cnt×nr be the channel matrix as
in (1) andh = vec(HHH). SupposeX is an STBC that satisfies
the full rank criterion, i.e., any matrix0 6= ∆XXX ∈ ∆X is a full
rank matrix. Write∆XXX∆XXXH into the following decomposition

∆XXX∆XXXH = UUUDDDUUUH, (60)

where UUU ∈ Cnt×nt is an unitary matrix andDDD =
diag(λ0, λ1, . . . , λnt−1). Since ∆XXX is a full rank matrix,
λmin(∆XXX) , min {λ0, λ1, . . . , λnt−1} > 0. Note that∆XXX
is a finite set, we can defineλmin such that

λmin = min {λmin(∆XXX),0 6= ∆XXX ∈ ∆X} > 0. (61)

Hence we have

‖HHH∆XXX‖2 = tr
(
HHH∆XXX∆XXXHHHHH

)

= tr
(
HHHUUUDDD (HHHUUU)

H
)

≥ tr
(
λminHHHUUU (HHHUUU)

H
)

= λmin

nr−1∑

i=0

nt−1∑

j=0

|hij |2 , ∀HHH ∈ Cnr×nt .

(62)

As (7) mentioned in Section II,‖HHH∆XXX‖2 can also be written
as

‖HHH∆XXX‖2
= ‖GGG(h)∆x‖2

. (63)
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where ∆x ∈ ∆An. By (62) and (63), we can see that for
h 6= 0, GGG(h)∆x = 0 if and only if ∆x = 0, i.e., the column
vectors ofGGG(h) are linearly independent over∆A.

We now prove the necessity. SinceX is a linear dispersion
code, the scaling invariance (30) is satisfied. If the column
vectors of GGG(h) are linearly independent over∆A, then
according to Lemma 4, there exists a constantc > 0 such
that

‖HHH∆XXX‖2 = tr
(
HHH∆XXX∆XXXHHHHH

)

≥ c ‖∆x‖2
nr−1∑

i=0

nt−1∑

j=0

|hij |2 , ∀HHH ∈ Cnr×nt .
(64)

Next we prove that the above inequality implies that the
eigenvalues of∆XXX∆XXXH are all greater than zero for∆XXX 6= 0.
The uniqueness from the decodablity of the STBCX tells us
that ∆XXX 6= 0 implies ∆x 6= 0. Consider the decomposition
(60) for ∆XXX . If there is an eigenvalueλk = 0, then we can
find anHHH ∈ Cnr×nt such that

HHHUUU = [0,0, . . . , v, . . . ,0] , (65)

where thek-th column vectorv ∈ Cnr can be arbitrary non-
zero vector. The existence of suchHHH 6= 0 is ensured sinceUUU
is invertible. For theHHH that satisfies (65),

tr
(
HHH∆XXX∆XXXHHHHH

)
= tr

(
HHHUUUDDD (HHHUUU)

H
)

= 0, (66)

which contradicts with the inequality in (64). So we have
proved that all the eigenvalues of∆XXX∆XXXH must satisfy
λi > 0, i.e., ∆XXX is a full rank matrix.
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Fig. 3. Performance comparison of several coding schemes, bandwidth
efficiency is8 bits/sec/Hz, two transmit and three receive antennas
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Fig. 4. Performance comparison of several coding schemes for 4 transmit
and 3 receive antennas
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