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Abstract—In this paper, we propose a partial interference
cancellation (PIC) group decoding strategy/scheme for liear dis-
persive space-time block codes (STBC) and a design criteridor
the codes to achieve full diversity when the PIC group decodq is
used at the receiver. A PIC group decoding decodes the symilsol
embedded in an STBC by dividing them into several groups
and decoding each group separately after a linear PIC operabn

channel. However, the derivation of the full rank criterion
is based on the assumption of the optimal decoding at the
receiver. In order to achieve the maximum diversity order, r
ceived signals must be decoded using the maximum likelihood
(ML) decoding. Unfortunately, the computational comptexi

of the ML decoding grows exponentially with the number

is implemented. It can be viewed as an intermediate decoding of the embedded information symbols in the codeword in

between the maximum likelihood (ML) receiver that decodes k
the embedded symbols together, i.e., all the embedded synibo
are in a single group, and the zero-forcing (ZF) receiver tha
decodes all the embedded symbols separately and independgn

general. This often makes the ML decoding infeasible for
codes with many information symbols embedded in. Although
near-optimal decoding algorithms, such as sphere decadting

i.e., each group has and only has one embedded symbol, afterlattice-reduction-aided sphere decoding, exist in thezdiure,

the ZF operation is implemented. The PIC group decoding
provides a framework to adjust the complexity-performance
tradeoff by choosing the sizes of the information symbol graps.
Our proposed design criterion (group independence) for the
PIC group decoding to achieve full diversity is an intermedate
condition between the loosest ML full rank criterion of codevords
and the strongest ZF linear independence condition of the
column vectors in the equivalent channel matrix. We also prpose
asymptotic optimal (AO) group decoding algorithm which is an
intermediate decoding between the MMSE decoding algorithm
and the ML decoding algorithm. The design criterion for the
PIC group decoding can be applied to the AO group decoding
algorithm because of its asymptotic optimality. It is wellknown
that the symbol rate for a full rank linear STBC can be full, i.e.,
ne, for n; transmit antennas. It has been recently shown that
its rate is upper bounded by 1 if a code achieves full diversity
with a linear receiver. The intermediate criterion proposed in
this paper provides the possibility for codes of rates betwen n.
and 1 that achieve full diversity with the PIC group decoding.
This therefore provides a complexity-performance-rate tadeoff.
Some design examples are given.

Index Terms—full diversity, group decoding, linear dispersion
codes, partial interference cancellation, space-time btk codes,
zero-forcing,

I. INTRODUCTION

[4], [5], [28], [29], [45], their complexities may depend @n
channel condition.

In order to significantly reduce the decoding complexity,
one may decode one symbol at a time and make the decoding
complexity grow linearly with the number of the embedded
information symbols. This can be achieved by passing the
received signals through a linear filter, which strengthans
main symbol and suppresses all the other interference 9dgmbo
and then one decodes the main symbol from the output of the
filter. By passing the received signal through a filter bame o
can decode each symbol separately. There are differeatiarit
to strengthen the main symbol and suppress the interference
symbols. If the filter is designed to completely eliminate th
interferences from the other symbols, we call such decoding
methodzero-forcing(ZF) or interference nullingdecoding. If
the filter is designed according to the minimum mean square
error (MMSE) criterion, we call the decoding methbtiMSE
decoding. The well known algorithms with the above idea are
BLAST-SIC algorithms [48]. Since these symbol-by-symbol
decoding methods may not be ML but only suboptimal, the
full rank criterion can not guarantee the codes to achieve the
maximum diversity order. In some special cases, the symbol-
by-symbol decoding is equivalent to the ML decoding and

IMO technology is an important advancement in wirethus the full rank property ensures the codes achieve full
less communications since it offers significant increashversity in these cases. The first such code is the Alamouti

in channel capacity and communication reliability withouf@de for two transmit antennas [1]. The orthogonality stitee
requiring additional bandwidth or transmission power. @pa ©f the Alamouti code ensures that symbol-by-symbol deapdin
time coding is an effective way to explore the promisint equwalent to the_ ML decoding. The Alamouti code has
potential of an MIMO system. In the coherent scenario, whef@sPired many studies on orthogonal STBC (OSTBC) [23],
the channel state information (CSI) is available at theivece [24], [27], [39], [41], [47]. However, OSTBC suffers from a
the full rank design criterion is derived in [13], [40] to achieve®W Symbol rate. In [47], it has been proved that the symbol

the maximum diversity order in a quasi-static Rayleighigdi &€ of an OSTBC is upper bounded By4 with or without
linear processing among the embedded information symbols
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or their complex conjugates for more tharansmit antennas
and conjectured that it is upper boundedﬁ-\gl for 2k — 1

and 2k transmit antennas, whereis a positive integer (this
upper bound was shown in [23] when no linear processing



is used among information symbols). Explicit designs ohatrix are separated into several groups and each group is
OSTBCs with rates achieving the conjectured upper bouddcoded separately. With the help of graph theory, a gate
have been given in [23], [27], [39]. Note that the rate onlgode was obtained in [50] that can be decoded in two groups,
approached /2 when the number of transmit antennas goe=ach group contains real symbols. In [18], [19], a Clifford
large. For a general linear dispersion STBC [15], [16] thalgebra approach is applied for multi-group decodable SS.BC
has no orthogonality structure, the full diversity critarifor In this paper, we propose a general decoding scheme
STBC decoded with a symbol-by-symbol decoding metharalled partial interference cancellation (PIC) group dicg
has not been discovered until recently. In [51], Zhang-Liwalgorithm for linear dispersion (complex conjugated syfabo
Wong proposed a family of STBC calletbeplitz codesand may be embedded) space-time block codes (STBC) [15], [16].
proved that a Toeplitz code achieves full diversity with th& PIC group decoding decodes the symbols embedded in an
ZF receiver. The symbol rate of a Toeplitz code approach83BC by dividing them into several groups and decoding each
1 as the block length goes to infinity. Later in [34]-[36]group separately after a linear PIC operation is implentente
Shang-Xia extended the results in [51] and proposed a deslgrcan be viewed as an intermediate decoding between the
criterion for the codes achieving full diversity with ZF andML receiver that decodes all the embedded symbols together,
MMSE receivers. They also proposed a new family of STBCe., all embedded symbols are in a single group, and the ZF
called overlapped Alamouti codes (OACWhich has better receiver that decodes all the embedded symbols separately
performance than Toeplitz codes for any nhumber of transnaibd independently, i.e., each group has and only has one
antennas. The symbol rate of an OAC also approathas embedded symbol, after the ZF operation is implemented.
the block length goes to infinity. It has been proved in [36The PIC group decoding provides a framework to adjust
that the symbol rate of an STBC achieving full diversity withthe complexity-performance tradeoff by choosing the sizes
a linear receiver is upper bounded bySimulation results in of the information symbol groups. It contains the previgusl
[36] show that OAC outperform OSTBC for ovdrtransmit studied decoding algorithms for codes such as OSTBC [1],
antennas. Note that it is shown in [36] that for any OSTBQ41], QOSTBC [17], [20], [37], [38], [43], [46], [49], and
its ZF receiver is the same as the ML receiver. STBC achieving full diversity with linear receivers [36h1]
Although OSTBCs can be optimally decoded in a symbohs special cases. Note that a similar algorithm as the PIC
by-symbol way, the orthogonality condition is too resfriet group decoding has been proposed by Dai, Sfar, and Letaief
as we mentioned above. From an information theoreticaltpoin [25] for layered space-time block codes. We propose a
of view, this can cause a significant loss of channel capacigsign criterion for STBC achieving full diversity with the
[32]. By relaxing the orthogonality condition on the codd’IC decoding algorithm. Our proposed design criterion is
matrix, quasi-orthogonal STBC (QOSTBC) was introduceah intermediate criterion between the loosest ML full rank
by Jafarkhani in [17], Tirkkonen-Boariu-Hottinen in [43h& criterion [13], [40] of codewords and the strongest ZF linea
Papadias-Foschini in [32] to improve the symbol rate at thiedependence criterion of the column vectors in the eqeival
tradeoff of a higher decoding complexity. The basic idea @hannel matrix [36]. We then propose asymptotic optimalYAO
QOSTBC is to group the column vectors in the code matriroup decoding algorithm which is an intermediate decoding
into pairs and keep the orthogonality among the groups bétween the MMSE decoding algorithm and the ML decoding
the column vectors while relax the orthogonality requiretnealgorithm. The design criterion for the PIC group decoding
within each group. Because of this partial orthogonalityst can be applied to the AO group decoding algorithm because
ture, QOSTBC can be (ML) decoded pair-by-pair compleaf its asymptotic optimality. It is well-known that the sywib
symbols, which has a higher decoding complexity compareate for a full rank linear STBC can be full, i.es,, for n,
to the OSTBC. The original QOSTBCs do not possess the filansmit antennas. It has been recently shown in [36] tkat it
diversity property. The idea of rotating information synsim rate is upper bounded hiyif a code achieves full diversity with
a QOSTBC to achieve full diversity and maintain the complex linear receiver. It will be shown in this paper that symbol
symbol pair-wise ML decoding has appeared independentlyrates for STBC achieving full diversity with the PIC group
[37], [38], [42], and the optimal rotation angleg4 andr«/6 decoding of group size< is upper bounded byk. Thus,
of the above mentioned information symbols for any sign#he intermediate criterion proposed in this paper provities
constellations on square lattices and equal-literal ¢nider possibility for codes of rates betweepand1 that achieve full
lattices, respectively, have been obtained in Su-Xia [88he diversity with the PIC group decoding. This therefore pdas
sense that the diversity products (coding gains) are magithi a complexity-performance-rate tradeoff. Design examplies
In [20], [46], [49], the authors further studied QOSTBC witltSTBC achieving full diversity with the PIC group decoding ar
minimum decoding complexity. The underlying constellatiofinally presented. Our simulations show that these codes can
is assumed to be rectangular QAM, which can be viewed as therform better than the Alamouti code for 2 transmit antenna
cartesian product of two PAM constellations. The minimurand the QOSTBC with the optimal rotation for 4 transmit
decoding complexity means the code can be optimally decodmttennas. Note that a similar algorithm and an STBC design
in a real-pair-wise way. Compared to the complex-pair-wiseve been proposed lately in [30] but they do not achieve full
decodable QOSTBC, the decoding complexity of real-paidiversity.
wise decodable QOSTBC is lower. In [7], [18], [19], [22], This paper is organized as follows. In Section Il, we degcrib
[46], [50], the pair-by-pair decoding was generalized to the system model; in Section Ill, we propose the PIC group de-
general group-by-group decoding. The symbols in a codeding algorithm, its connection with ZF decoding algarith



and the corresponding successive interference canoellati In order to apply a linear operation, the system model in
(SIC) aided decoding algorithm or PIC-SIC; In Section V(1) needs to be rewritten as

we systematically study the diversity property of the codes B

decoded with the PIC group decoding and the PIC-SIC group y = VSNRGz +w, )
decoding, and derive the design criterion. In Section V, Wgherey € C!" is the received signal vecto§§ e Ctmrxn

propose AO group decoding. In Section VI, we present tWg an equivalent channel matri{15], [16], [36]; z =

design examples. In Section VII, we present some simulati%’xh ...,xn_1]" € A" is the information symbol vector;
results. w = [wy,wr,...,w,,]T € C™ is the additive white
Some notations in this paper are defined as follows. Gaussian noisey; ~ CN(0,1). For many (if not all) existing
« C: complex number field; linear dispersion (or linear lattice) STBCs, such as those i
« R: real number field; (1], [2], [9]-{11], [16], [17], [21], [31], [33], [36], [38] the
. A: a signal constellation; channel model can be rewritten in the form of (4). One simple
« tr: trace of a matrix; observation is that for a linear dispersion STBC that is @efin
« Bold faced upper-case letters, suchAsrepresent ma- as 1
trices; X = Z xiAia (5)
« Bold faced lower-case letters, suchugsepresent column =
vectors;

« Superscriptd, 1, *: transpose, complex conjugate transWh'Ch is a special case of the linear dispersion STBC in (2),

; Al the channel model can always be written in the form of (4).
pose, complex conjugate, respectively; Al the codes in [2], [9-[11], [16], [21], [31], [33] fall ito

: HH Z:QFr:gl;rgn?Jsan\gf;ngO; ?ngtﬁ;r;x, this category. Another case in which the channel model can be
. i \}/7_—1 rewritten in the form of (4) is that each column Xf contains
linear combinations of either only;,i = 0,1,...,n — 1 or
only z¥,i=0,1,...,n — 1. Examples of such codes include
Il. SYSTEM MODEL the Alamouti code [1] and QOSTBCs [17], [38] and OAC

We consider a quasi-static Rayleigh block-fading chann@fr]]' For instance, tthe chgnnel model of the Alamouti code
with coherence timé. Assume there are; transmit andn,. with one receive antenna IS
receive antennas. The channel model is written as follows, [yo.,o yo.ﬂ

SNR xo —T
Y = S'\I_R]-[X_i_[/[/'7 1) =\ 3 [hoo  ho1] [561 = + [wo,0  woa].
Tt

By taking unitary linear operations and conjugations, \hic
do not change the probabilistic property of the white Gaarssi
noise, we can extract the embedded information symbol vecto
and rewrite the above channel model as follows,

whereY = (y;;) € C"*! is the received signal matrix
that is received int time slots,H = (h;;) € C" ™ is
the channel matrix, the entries & are assumed i.i.d. with
distributionCN(0,1), X € C™*! is the codeword matrix that
. . . . . 1
is normalized so that its average energyyis, i.e., [yg,o} — VSNR <_ {Zg,o h}(z;l D {xo} i [wg,o] . (6)
(& (M) — Yo,1 V2 0,1 "o, L1 Wo,1
r( { }) - It is shown in [36] that for any OSTBC (a column may include

W e C™*! is the additive white Gaussian noise matrix withoth z; and 27 simultaneously), its equivalent channel (4)
i.i.d. entriesw; ; ~ CN(0,1), SNR is the average signal-to- exists. In the case when there are multiple receive antennas

noise-ratio (SNR) at the receiver. an equivalent channel matrix can be derived by noting that at
In this paper, we only consider linear dispersion STBcgach receiver antenna, the received signal model is of the sa
which covers most existing STBCs, [15]: form as in (6). For example, if there are two receive antennas
for the Alamouti code, then an equivalent channel model is
n—1
X = Z z;A; + x By, (2) 0,0 hoo  hoa wo,0
i=0 93,1 — V/SNR L hal —hao [500} + wS,l
h h
where z; € A,i = 0,1,...,n — 1, are the embedded yi’o V2 hi’o _ﬁ;} o zi’o
information symbols,4 is a signal constellationd;, B; < Y11 1,1 1,0 L1
Cm*t i = 0,1,...,n — 1, are constant matrices calledlt is not hard to see that the original channél and an
dispersion matrices. We usk to denote the codebook, i.e., equivalent channel satisfy the following property,
n-1 [H (X1 = Xo)|p =G (x1 — 2], ™
X = X:Z.”L'iAi—l—fL':Bi,xiEA,iZO,l,...,n—l . .
= where X{,X, € X, x; and xz, are vectors of information

(3) symbols embedded iX; and X5, respectively.
For convenience, we also ugéto denote the coding scheme For a linear dispersion code with a rectangular signal con-
that is associated with the codebook. stellation.4, which can be viewed as two PAM constellations,



if it does not have its equivalent channel model in (4), theheren is the number of information symbols . First

channel model can always be written in the following formwve partitionZ into N groups:Zy,Z1,...,Zy—1. Each index
[6], [15], subsetZ;, can be written as follows,
_ Re(x)
y = VSNRG [jm(m)] +w, (8) T = {ik0,ik1s - sikmg 1}, k=0,1,...,N—1,

is theequivalent channel matrixw = [wo, wi, . .., wam, |7 € €Al Z = {Zo,Z,...,In-1} a grouping scheme, where, for
R?*"r s the real white Gaussian noise vectof,~ N (0, %), simplicity, we still useZ to denote a grouping scheme. For
The entries of such a grouping scheme, the following two equations must

[%e(m)} hold,

Jm(x) N-1 N-1

i . T = Iz and i = N.

can be viewed as drawn from a PAM constellation. Hence iL:JO ; =

there is no essential difference between the models in @) an G he inf ) bol h ins th
(8) except that the naise in (8) is real. Definexz, as the information symbol vector that contains the

Note that for both channel models in (4) and (8), the entri§¥MPols with indices iy, i.e.,

of the equivalent channel matr& are linear combinations of B { ‘ ‘ . }T

hij andhi;,0<i<n,—1,0<j<n — 1. If we use the L = [Tiror Tikao oo Tigm-1 |

notationh = [ho, ha, ..., hi—1] = vec(H), then both (4) and | et the column vectors of an equivalent channel mah)

(8) are special cases of the following model, be go,g1,..-,9.—1 that have sizem x 1. Then, we can
y = \/WG(h)w +w, 9) similarly defineGz, as

whereG(h) € C™*™ is an equivalent channel matrix, which Gz, = |:gik,oagik,17 e ,gimk,l} . (10)

is a function of h = [ho,h1,..., 1], hi ~ CN(0,1), i i ) )

x = [zo,71,...,2n_1] € A" is the information symbol With these notations, equation (9) can be written as

vector,w = [wy,...,wn_1] IS the additive white Gaussian N-1

noise vector] 2 n,n,, andm 2 tn,. For convenience, we y = VSNR Z Gr,x7, +w. (11)

always assume that noise is complex Gaussian, while for =0

real Gaussianw, the derivation is exactly the same. From Suppose we want to decode tketh symbol groupzz, .
the following discussions, we shall see later that not ohéy t Note that in the ZF decoding algorithm, to decode fhe
channel model in (9) contains the equivalent channel modbl symbol, the interferences from the other symbols are
derived from transforming the original channel model oélin completely eliminated by a linear filter (theth row of the
dispersion STBC in (1), but also it is a resulted form aftethea pseudo-inverse matrix of the equivalent channel). The same

PIC operation. idea can be applied here. We want to find a matrix (linear
filter) Pz, such that by multiplyingy by Pz, to the left (linear
[1l. PIC GROUPDECODING ALGORITHM filtering), all the interferences from the other symbol grsu

In this section, we present a PIC group decoding algorithf@" Pe eliminatidx.rfuch a mati¥, can be found as follows.
that is, as we mentioned before, an intermediate decodill_'?ﬁf'”e_kam6 C as the projection matrix that projects a
algorithm between the ML decoding algorithm and the zE€Ctor inC™ to the subspac¥z, that is defined as
decod?ng algorithm, an_d has the ML dec_oding and t.he ZF Vz, = span{g:,0 <i<n,i ¢ Ty} (12)
decoding as two special cases. In the first subsection, we _ _ _
describe the PIC group decoding algorithm; in the secok@t G7, € C™*("~") denote the matrix that is obtained by
subsection, we discuss its connection with the ZF decodifgmoving the column vectors i@ with indices inZy, i.e.,
algorithm; in the third subsection, we discuss the suceessi c
interference cancellation aided PIC group decoding algori Gy, = [61,,Gzy, .G,y G-, Gy ] (13)
(PIC-SIC); some examples are given in the last part of thihen, the projection matri@Qz, can be expressed in terms of

section to illustrate the PIC group decoding algorithm. G7, as follows,

_ ) . c ¢ YHpe N\ e \H
A. Partial Interference Cancellation Group Decoding Algo- Qz, =G7, ((sz) sz) (sz) 5 (14)
rithm

_ - when matrixG7, is full column rank. IfGZ, is not full column
We now present a detailed description of the PIC groypny then we need to pick a maximal linear independent vecto

decoding algorithm. As mentioned in Introduction, a sirrnilagroup fromG< and in this case a projection matrix can be
algorithm has been proposed by Dai, Sfar, and Letaief §§,,4 too Def?nePI as
* k

[25] for layered space-time block codes. All the following
discussions are based on the equivalent channel model.in (9) P =1, —-Qz,, (15)

First let us introduce some notations. Define indexZsets : _— : .
then Pz, is the projection matrix that projects a vectorGi*

7={0,1,2,...,n— 1}, onto the orthogonal complementary subsp%@tke. Since the



projection of any vector iV, OHIOV%k is a zero vector, we whereG € C™*" is the channel matrix that is known at the
have receiver,e € A™ is the information symbol vectaf) = Pw €
. C™, w is the white Gaussian noise vector aRde C™*™ is
PGz, =0,i=0,1,....k-Lk+1,...,N—1, (16) a projection matrix that projects a vector ii"* to a subspace
which is due toP7,G5, = 0. Define zz, 2 Pz,y. By VcC (C’”_. Assume the column vectors@fbelong toV. Then,
& = arg min Hy — \/SNRG:EH
ZEAn

N-1
z7, = VSNRP GII.CEL—FPIA'U)
' ’ ; * (17) is the ML decision.

= VSNRPz, Gz, xz, + P, w. An intuitive explanation for the above lemma is thatis

From (17), we can see that by passing the received Sigﬁapeg(_aneratgd white Gau_ssian noise, whic_h can be a white
vectory through the linear filtePz, , the interferences from Gaussian noise by removing some extra dimensions. Its de-
the other symbol groups are completely canceled and fféed proof is given in Appendix B. According to Lemma 2,
outputzz, only contains the components of the symbol grouf® OPtimal detection ok, from zz, is made by

xz,. There may exist other matrices that can remove the 4 — are min Hz — VSNRP+ G @

components of the interference symbol groupswyin The L & sedn ||ZTe I T

following lemma shows that the linear filter matriRz,  \hich is thePIC group decoding algorithme propose in this
defined above is the best choice among all the ZF filters. paper. The complexity of the ML decoding of the dimension-

Lemma 1. Consider the channel model {i1)and letSNR be  'éduced system in (17) is obviously lower than that of the
the SNR of the system. Suppose we want to detect the syrAHginal system in (11). The PIC group decoding algorithm
group zz,. Let Pz, be the matrix set that contains all the(21) can be viewed as a decomposition of the original high-

matrices that can cancel the interferences fram, 0 < i < dimensional decoding problem with high complexity into fow
N,i#k ie. dimensional decoding problem with relatively low decoding

complexity. In the extreme case when all the symbols are

P7,Gz, =0,0<i<N,i# k} (18) grouped together, i.e., the problem is not decomposed ,at all

the PIC group decoding is the same as the ML decoding.

The block error probability of the system In another extreme case when each symbol forms a group,

s A F _ JSNBE 7 i.e., the problem is completely decomposed, the PIC group

1. = Pry = VSNRP7,Gr@z, + Prow — (19) decoding is equivalent to the ZF decoding. The detailed

from ML decoding is denoted @&, (Pz, , SNR). Then for any description of the connection between these two is given in
givenSNR, we always have the following subsection.

;o (21)

Pr, = {sz

Pz, = argpzméiiz Perr(Pz,, SNR), B. Connection Between PIC Group Decoding and ZF Decod-
k k .

ing
In this subsection we discuss the connection between the
A proof of this lemma is given in Appendix A. Note thatPIC group decoding algorithm and the ZF decoding algorithm.
the above optimality is among all the filters in (18) and thin the case when the decoding problem is completely decom-
MMSE based filter discussed later does not belong to (1Bpsed, i.e., each symbol group contains only one symbol, the
although it may perform better as we shall discuss it lattsoA PIC group decoding algorithm becomes a symbol-by-symbol
note that since in our PIC group decoding, all the symbotecoding algorithm. It is not hard to check that, in this ¢ase
in a group are decoded together, using highest SNR as the PIC group decoding is equivalent to ZF decoding [14].
optimality may not be proper. This is the reason why in the One negative effect of the interference cancellation proce
above lemma, block error probability is used as the criterialure is that it may reduce the power gain of the symbal
for the optimality of a filter. Equation (17) can be viewedefore the interference cancellation, the power gainpfis
as a channel model in whickz, is the transmitted signal ||g; |, while after the interference cancellation, the power gain
vector andzz, is the received signal vector. As we mentionedf x, becomes|Pz, gx||*>, whereZ, = {k}. SincePz, is a
before in Section Il, this channel model is derived from thprojection matrix, we always have
interference cancellation procedure, and fits into the ggne
channel model in (9). Note that in (17), the noise tdPm w is 1Pz.grll < llgnll-
no longer a white Gaussian noise. Despite the presencesof thhe equality holds if and only iy, is orthogonal to the space
non-white Gaussian noise term, the following lemma showganned byy;,i = 0,1,...,k—1,k+1,...,n — 1. In the
that the minimum distance decision is still the ML decision icase of OSTBC, the columns of the equivalent channel are
this case. orthogonal to each other, and therefore, there is no power
gain loss during the interference cancellation. Hence the
performance of the ZF receiver is the same as the ML receiver
y = VSNRGzx + w, (20) for OSTBC. For all non-orthogonal STBC, an interference

where Pz, is defined as in(15).

Lemma 2. Consider the channel model



cancellation algorithm usually causes a power gain loss ande ordered PIC-SIC group decoding algorithm is then:

therefore performance loss compared to the ML decoding. 1)

C. PIC-SIC Group Decoding Algorithm 2)

Notice that in the ZF decoding algorithm, we may use 3)
successive interference cancellation (SKDategy to aid the
decoding process. We call the SIC-aided ZF decoding algo-
rithm ZF-SIC decoding algorithri#4], [48]. The basic idea of
SIC is simple: remove the already-decoded symbols from the
received signals to reduce the interferences. When the SNR i
relatively high, the symbol error rate (SER) of the already-
decoded symbols is low and there is a considerable SER4)
performance gain by using the SIC strategy. The same syrateg
can also be used to aid the PIC group decoding process t%)
improve the SER performance. We call the SIC-aided PIC
group decoding algorithrRIC-SIC group decoding algorithm

Decode the first set of symbalsy, using the PIC
group decoding algorithm (21);

Letk =0, yo = y, wherey is defined as in (11);
Remove the components of the already-detected
symbol setrz, from (11),

Yrt1 = yx — VSNRGz, @1,

N-—-1
= vSNR Z GL_:BL_ + w;
J J

j=k+1

(23)

Decoder;zml in (23) using the PIC group decoding
algorithm;

If K < N —1, then setk := k + 1, go to Step 3;
otherwise stop the algorithm.

In the PIC group decoding algorithm, the decoding order h&emark 1. For the PIC group decoding algorithm, the equiv-
no effect on the SER performance. For the PIC-SIC gro@ent channel matrig'(h) € C™*™ must satisfy the condition
decoding algorithm, different decoding orders will resint Vz, € C™, otherwisezz, = 0, i.e., there is no information
different SER performances. We can obtain a better perfdeft in 2z, aboutzz,. This requirement is generally weaker
mance by choosing a proper decoding order. The decodifign that of the ZF decoding, which requires that> n. For
order can be chosen so that the dimension-reduced systergx&mple, consider an uncoded MIMO system wittransmit

the current decoding stage has the best upper-bound of pamtennas and receive antennas. In this case, the ZF receiver
wise error probability performance. At the beginning, weena can not decode the received signals, while the PIC group

N symbol groups to decode, and we have compiRedG7, ,
k=0,1,..
vectors andAxz, = xz, — xz,. For the k-th dimension-
reduced system, the pair-wise error probability is

Ph(wzk — izk) = Q (\/ SNR HPIkGZkAkaH) .

Let PIkGIk = U, diag(ao, 01, .
decomposition oPz, Gz, , then we have

Pp(xz, — ®1,)
~Q (VBNR |[diag(00,01, .., 0, 1)U

<Q (\/SNR ( nki 0?) [UQAka]min)

=0

=Q (VSNR|IP2,Gx, | U282z, i )

decoding with the grouping scherfle= {Z, = {0,1,2},7; =
., N—1. Letzz, andZz, be two different symbol {3,4}} can do the decoding.

Remark 2. For the PIC-SIC group decoding algorithm, we
require that at each decoding stalye, ¢ C™. This require-

=

ment is even weaker than that of the PIC group decoding.
Since we remove the interferences from the already-decoded
.,0n,—1)U2 be the SVD symbols, the subspadé;, shrinks each time when we finish
decoding one symbol group. Consider the uncoded MIMO
system in Remark 1. Lef = {Z, = {0,1,2,3},7; = {4}}

be the grouping scheme. Then it is not possible to decode
the second group symbal, with the PIC group decoding
algorithm, because after we remove the interferences from
Zo, T1, T2, T3, there is nothing left4z, = 0) due to the lack of
dimensionality. However, we can decogdewith the PIC-SIC
group decoding.

where [U; Az, denotes the minimum among the absolut®. Examples

values of the entries of the vectir Ax. The above inequality

Next we give some examples to illustrate the PIC group

shows that among all the dimension-reduced systems, the ﬁg%oding algorithm

with the largest| Pz, Gz, || » has the smallest upper-bound of
pair-wise error probability. Although this upper-boundymat
be tight, it provides an intuitive explanation: the dimemsi
reduced system with the largel§P7, Gz, || has the largest
signal-to-noise ratio (we considét;, Gz, zz, as the signal,

and disregard the interference within the symbol group)iand,ynere

the case when there is one symbol in each group, it is the same
as the BLAST ordered SIC algorithm. Note that, due to the
reason that the above pair-wise error probability uppemioo

1) Example 1:Consider the Alamouti code with one re-
ceive antenna. The equivalent channel matrix can be written

G - [gOagl]a

0=zl o=l
Covalnl T Ve kel

may not be tight for a general grouping scheme, the orderif§e grouping scheme i = {7,,7,} = {{0},{1}}. By a
using the signal-to-noise ratio criterion may not be optima direct computation, we get the projection matfx as follows,

Suppose the ordered symbol sets are as follows,

wzio y wzi] yee ey mzw\hl . (22)

) 1 [|h0|2 hohl}

kol + [haf? LRkt |l



Then, the optimal detection af; is is easy: just to pick up the column vectors corresponding to a
. ) - group inG(h) and get a new equivalent channel matrix, then
To =arg i, HPOy -V SNRPOQO:COH use this new channel matrix and the received sign& do

SNR the ML decoding. In this case, no linear filtering is needed

hiyo + hiyr — | —— (|h0|2 + |h1|2) Zo in the PIC group decoding and the ML decoding and the PIC
2 group decoding are the same.

which is the same as the optimal detection formula derived in3) Example 3:Consider the3 by 8 overlapped Alamouti

[1]. Eq. (24) in next page shows the detailed derivation @ thcode in [36],

detection formula. Similarly, the optimal detection for is . 0 ay w a ws 0w

. SNR _
hiyo — hoyr — 1/ 5 (|ho|2 + |h1|2) 7
An equivalent channel matrix can be written as

2) Example 2:Consider the quasi-orthogonal STBC pro-
posed in [43]. The code has the following form, G=1[g90 91 92 93 91 9s)
(hg 0 0 0

)

=arg min
ToEA

X=|0 29 —2f 22 —x5 x4 -z O
. 0 27 =z 25 x2 xf a4 0

1 = arg min
T1€EA

0 —x] T2 —Tj 0 0
x_ |m s ws s hi hy O 0 0 O
|z —axf me —xf h3 —hi hs 0O 0 0
x3 x5 x1 X — i 0 ho  hi o ho 0 0
_ ) V310 0 hs —h7y h§i O
Suppose we use one receive antenna. The equivalent channel
X ) 0 0 0 ho hi  he
matrix G(h) can be written as 0 0 0 0 h —ht
G:[907915927.q3]7 —O 0 0 0 0 ho -
where Let the grouping scheme be
[ho ] [ hy ] T={Ty=1{0,2,4},7, = {1,3,5}}.
1 |hy 1 |—hf ) )
90=5 | 973 | hy | It is easy to verify that
L5 L5, gilg;. i=0,2,4,j = 1,3,5.
ha hs
1 |hs 1| —hs Similar to Example 2, the system can be decomposed into
92=735 hol’ 93=35 hy | two systems without performance degrading. For generat ove
x —h lapped Alamouti codes, if we choose the grouping scheme as

Let 7y = {0,2} andZ; = {1,3}. Then, the optimal detection Z = {Zp = {0,2,4,...,n —2},7; = {1,3,5,...,n — 1}},

of xz, is
for evenn or

o i Pz, y — VSNRP7,Gz,T 25
TIo argé?é%“ oY To 0P @) T 024 1} T = {1,3,5,. . ..n—2}},
It is easy to verify that for oddn, then the system can always be decomposed into two
90191, 90.1gs, 92191, go1gs, systems without performance de_gradmg. This property és th
reason why overlapped Alamouti codes perform better than
so Vg, 1Vz,. This fact implies thatPr,Gz, = 0. The Toeplitz codes, since the interference comes from only dfalf
decoding rule in (25) can be simplified as the symbols.
T7, =arg min HP y — VSNRP7,Gz,Z7,|| + | P y)
To izoeAz( o 7.G5,25|| + 1Pyl IV. FULL DIVERSITY CRITERION FOR PIC AND PIC-SIC
—arg mir}42 (szoy_ /—SNRPIOGIO-@IU GROUPDECODINGS
Tz,€

In this section, we propose a design criterion for linear
+ HPLy — VSNRPz, Gz, 21, ) dispersion STBC to achieve full diversity with the PIC and
the PIC-SIC group decodings.

=arg 7miIJ142 Hy — VSNRGz,z 1,

Tz,E

The decoding rule ofz, can be similarly derived, A. Notations and Definitions
For convenience, let us first introduce some notations and
definitions. LetS be a subset of the complex number fiéld

) ) we define the difference s&tS as follows,
From the above equations, we can see that if the groups are

orthogonal to each other, then the decomposition of thessyst AS = {a —a, ] a,a € S}.

.’f}II = arg 7miIJ142 Hy -V SNRC;'Il.’f}j:1

xz, €




jo =arg IIllIJl4 HPOy - VSNRPOgOZEOH
To€

; 1 [ho)? hOhl] [?JO} SNR [ho] _
=arg min —s—— -\ — |, T
B ae A hoP+ [ || hshs I 2 |ng) ™
= _— h* h © — -
argg)légl |h0|2+ |h1|2 _hik} [ 0 1} [yl 5 |n Zo (24)
, 1 ho SNR [ho]
- 1M (REyo 4 hayr) — ) o | O
e |hol? + || _hl}( a0 + M) 2 [hl 0

e [SNR )
=arg min |hoyo + hiyr —\/ —— (|h0|2 + |h1|2) Zo
ToEA 2

We also introduce the following definition, which can bé® < k < n, V is orthogonal to the remaining vector groups
viewed as an extension of the conventional linear indepeVs, V1, ..., Vi—1, Vkt1,-- -, Vn.

dence concept. - . . .
In the remaining of this paper, for convenience, a matrix

Definition 1. Let S be a subset ofC and w; € notation such a€7 is also used to denote the vector group

Ccm™4¢ = 0,1,...,n — 1, be n complex vectors. Vectorsthat is composed of all the column vectors@®f
vg, v1,...,v,_1 are calledlinearly dependent ove$ if there
existag, a,...,an_1 € S so that B. Design Criterion of STBC with the PIC Group Decoding
In this subsection, we derive a design criterion of codes
Go¥o + 101+ -+ Gn-1¥n-1 =0, (26) decoded with the PIC group decoding. girst we introduce the
where ag,a1,...,a,—1 are not all zero; otherwise, vectorsfollowing lemma, which gives a sufficient condition to achge
vg, v1,...,v,_1 are calledlinear independent oves. full diversity for the general channel model in (9) with the-M

For diversity order, the following definition is known. receiver.

_— . L . Lemma 3. Consider a communication system modeled as in
Definition 2. Consider a communication system as descrlb?SG A is a signal constellation used in the system. If the

in (9). The system is said to achieve diversity ordeif the . - L .
symbol error ratePser(SNR) decays as the inverse of thechannel matrixG(h) satisfies the following inequality,

m-th power ofSNR, i.e., r=!
P [GhAz|® > ¢ 3 by, [*[Az]*. Az € AA™,
Pser(SNR) < c- SNR™™, k=0
wherec > 0 is a constant independent 6R. for some positive constamt where {ig,i1,...,i.—1} IS @any
subset 0f0,1,2,...,l—1} and! = n,n, is the total number

The conventional concepts of linear independence and gf-the channel coefficients, then the system achieves ijvers
thogonality are defined among vectors. Next, we define thefpyer » with the ML receiver.

among vector groups. i L .
o o The proof of this lemma is simply a matter of computation

Definition 3. LetV = {v; € C",i =0,1,2,....,k — 1} be @ of some integrals, which is quite similar to those derivasio

set of vectors. Vectaw,, is said to beindependent ob if for [13], [40]. A detailed proof is given in Appendix C. To

anya; € C,i=0,1,...,k -1, understand the meaning of Lemma 3, let us first define the
k—1 power gain for the channel model in (9).
Uk — Z; aiv; # 0. Definition 5. Consider the communication system modeled as

in (9). A is a signal constellation used in the system. The

E)/eftor v};z islsaid to beorthogonal toV if vylw;, i = power gain of the system is defined as

- _ |IG(h)Az||”
Definition 4. Let Vy,V1,...,Vn_1,V, be n + 1 groups = N 3 -

) . _ AzeAA | Ax||

of vectors. Vector group/, is said to beindependent of ) o o )
Vo, Vi,..., Va1 if every vector inV, is independent of If the power gainP satisfies the following inequality,
U?:_()l V;. Vector groupV, is said to be orthogonal to r—1 )
Vo, V1,...,V,_1 if every vector inV, is orthogonal to PZC-ZVLM ;
U;:Ol V;. Vector groups/, V1, ..., V, are said to be linearly k=0
independent if for0 < k < n, Vi is independent of for some positive constamt where {ig,i1,...,%.-1} iS any
the remaining vector group¥y, V1, ..., Vk—1, Vkt1,..., Vn. Subset of{0,1,2,...,1 — 1} and! is as before, then we say

Vector groupsy, Vi1, ..., V, are said to be orthogonal if for that the system achieves power gain order



From Lemma 3, one can see that the diversity order fisr a linear dispersion code to achieve full diversity wittet
ensured by the above power gain order and it can be furthidiC group decoding.
interpreted as follows. Suppose that there are two difteren Let us see an example to use the above main theorem.
symbol vectorseg, x; € A". The distance between the twoConsider the rotated quasi-orthogonal scheme proposé&ajn [
symbol vectors ig§|Az| £ |zo — x1|. Assume there is no for a QAM signal constellation, where the code has the
noise in the channel, i.ewy = 0, then after the symbol vectorsfollowing structure,
pass through the channel, we @eth)xz, andG(h)x;. Now
the distance between received sigr@s)x, andG(h)x; is N o o ozt ir
|G(h)Az||, which is greater thay/P | Az|, i.e., the channel X = | ' 9. 3 21, a=exp (—) .
“expanded” the distance betweey andz; by a factor of at a2 —ady do T 4
leastv/P. The expansion factoy/P determines the diversity ars Atz n %o 28)

order that can be achieved. Lemma 3 tells us that if thg,hn0se we use one receive antenna, the column vectors of
expansion factor\]/ﬁ of the symbol vector is greater thany,q equivalent channé are as follows,

* * Lk
To -] oars  —Qf T

(c . 22;5 |hi, |2 * for somec > 0, then diversity order can Tho hy
be achieved. Note that the power gain order can be viewed as 1 |hs 1| —hg
a count of the numbe_r of path g_ains summed u!Pir_We can 90=735 ol 91=75 hs |
rephrase Lemma 3 simply as: if the power gain is a sum of b —hE
. . . . . 3 2
r path gains, then the diversity order of the communication :ah oh (29)
system in (9) isr. 1 ahi ) _a]j*
Next, we present the main result of this paper, which 92=5 ah3 ' 935=5 | o 2
characterizes the power gain order of a linear dispersion ahff aﬁ*
| ¥y —ahy

STBC decoded with the PIC and the PIC-SIC group decoding
algorithms. It has also been proved in [38] that this code achieves full
) ) ) . diversity with the ML receiver, hence the first condition is
Theorem 1 (Main Theorem.) Let X be a linear dispersion satisfied. Let the grouping scheme k&, = {0,2}, 7, =
STBC. There_are_nt transmit andn, receive _antenn_as. The{l’g}}, then Gz, and Gz, are linearly independent. Thus,
channel matrix isH e C" ™. The received signal is i conditions are satisfied. Note that the two groups are
decoded using the PIC group decoding with a grouping schetg&ua”y orthogonal, which means that every vectoGin, is
{Zo,Zh,...,In-1}. The equivalent channel i§(h), where 04003 toG7, and vice versa. Hence after the interference
h = vec(H) = {ho,h1,.. s hn.m,—1} € C'7. Then, each canceliation, there is no power gain loss. In this case, tfe P
of_ the following dlmenS|o_n—reduced systems (i.e., the ST%{%up decoding is exactly the same as the ML receiver.
with the PIC group decoding), In the above example, we showed that when there is only
27, = VSNRPz, Gz, x7, + Pr,w, k=0,1,...,N —1, one receivg antenna, the group independence c_:ondition_ is
27) satisfied. It is easy to see that when there are multiple vecei
antennas, the group independence condition is also sdtisfie
This is because the equivalent channel matrix for multiple
receive antennas is a stacked version of the equivalenhehan
matrices of all individual receive antennas amd theref@® h
the same structure as the equivalent channel matrix forgesin
receive antenna. In general, we have the following corgllar

has power gain orden,. - n; if and only if the following two
conditions are satisfied:

« for any two different codeword¥, X € X, AX £ X —
X has the full rank property, i.e., the codg achieves
full diversity with the ML receiver;

e G1,,G1,,...,G1,_, definedin(10)fromG = G(h) are
linearly independent vector groups as long /asz 0. Corollary 1. Consider the channel described in Theo-

When the received signals are decoded using the PIE€M 1 withn, receive antennas and a linear dispersion

SIC group decoding with the ordering (22), each dimensior.] BC X+ Then, for the equivalent channel matrices f
reduced system derived during the decoding process fie., £70; G- --,Gzy_, are linearly independent vector groups

STBC with the PIC-SIC group decoding) has power gain ordfq" 7 # 0 whenn,. > 1 if and only ifGz,,Gz,,...,Gzy
n, - n; if and only if are linearly independent vector groups fér # 0 when

« for any two different codeword¥, X € X, AX £ X — =1

X has the full rank property, i.e., the cod® achieves  The proof is straightforward and omitted here. According to
full diversity with the ML receiver; this corollary, the full diversity conditions given in theam

« at each decoding stagez, , which corresponds to theorem only need to be verified for one receive antenna case
the current to-be decoded symbol group,, and n, = 1, whichis similar to what is obtained for linear receivers
[GLk+1 ,---,Grz, | are linearly independent vectorin [36].
groups as long a% # 0.

With the above theorem and the preceding discussions gn Proof of the Main Theorem
the relationship between diversity order and power gairigrd In order to prove the main theorem, let us first introduce
the two conditions in the above theorem provide a criterighe following lemma.
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Lemma 4. Consider a communication system modeled as fact thatg;, ; ¢ Vz,, we have
(9). A is a signal constellation used in the system. If the
equivalent channel matriG(h) satisfies the following two

conditions: Q1, Z a;giy ; | # Z @Gy, ;-
§=0 §=0

« scaling invariance:

nk—l nk—l

By applying the above inequality, we get the following in-

1 h equality.
wi€m =6 () (30) ’
IRl IRl 1 -1
« the column vectors @¥ (k) are linearly independent over Z a;P1,9:., = Pz, Z a5y, ;
AA for any0 # h € C!, =0 =0
ne—1
then the system has power gain ordeand thus achieves _ _ e o
diversity order! with the ML receiver. = (In =@z, ZO @%8ir; 7 0
=
A proof is given in Appendix D. Note that if each entryj e the column vectors dPz, Gz, are also linearly indepen-
of G(h) is a linear combination ofhg,h1,..., k-1 and dent overAA.
hg, b1, ... hi_y, then the scaling invariance (30) always Now we prove thatP;, Gz, satisfies the scaling invariance
holds. So we have the following corollary. (30) in Lemma 4. Since botR7, andG7, are determined by

Corollary 2. Consider a communication system modeldd]® Parameter vectd, for a clear exposition, we temporarily

as in (9). Each entry ofG(h) is a linear combination of YS€Pz.(h) to denotePz, and useGz, (h) to denoteGyz,.
Then we have

ho,h1,...,hy—1 and hi, hi,... A ;. Ais a signal constel-
lation used in the system. If the column vectors@ifh) 1 _ RS
are linearly independent oveAA for any 0 # h = ||h|\PI’“(h)GZ’“(h)_PI’“(h) |\h||GZ"(h)
[ho, h1,...,hi—1]T € C!, then the system has power gain h
order [ thus achieves diversity ordérwith the ML receiver. = Pz, (h)G1, <W>

One may wonder for linear dispersion STBC, whether the _ P, <L) 2 <L>
above condition is an equivalent condition of thél rank "\ k|l *\ Rl /)’

cr@terion. The following theorem gives a positive answer tQhere the second equality holds since the entries in
this question. Gz, are all linear combinations ofg, h,...,h,,.,, and

Theorem 2. Let X be a linear dispersion STBC. Let be a 70,71, hy,, ., @nd the last equality holds since

signal constellation for the coding scherte LetG(h) be the h
equivalent channel ok and h and h # 0. ThenX has the Pz, (h) = Pz, (W) )
full rank property if and only if the column vectors 6f(h) o . o .
are linearly independent oveh A. which is a direct result from the definition ¢Jz, in (14) and
the fact thatPz, = I,,, — Qz, -
Its proof is in Appendix E. Thus, the two conditions in Lemma 4 are all satisfied and

Now we are ready to prove the main theorem. The maiherefore for anyk, the dimension-reduced system
idea is to prove that the dimension-reduced systems in (27)
satisfy the two conditions in Lemma 4. 27, = VSNR (Pz,Gz, ) 27, + Pr,w,

1) Sufficiency part:First we prove that the two conditionshas power gain orde,. - .
in the main theorem are sufficient conditions for codes to Now let us consider the case when the received signals
achieve the full power gain with the PIC group decodingre decoded with the PIC-SIC group decoding. We use the
algorithm. According to Theorem 2, the first condition igonventional assumption that the previous decoded symbols
equivalent to that the column vectors Gf(h) are linearly are correct. Thus, there is no error introduced when we
independent ove\A. This further implies that the columnuse these decoded symbols to reduce the interferences from
vectors ofGz, are linearly independent ovéx.A4, i.e., for any the received signals. Under this assumption, the PIC-SIC

a0, a1, -, an,—1 € AA aj,j7=0,1,...,n,—1, notall zero, group decoding algorithm is always better than the PIC group
we have decoding algorithm. Thus, the two conditions are sufficfent
el the PIC-SIC case.
Z a;9iy; 7 0. (31) 2) Necessity part:We next prove that these two con-
J=0 ditions are also necessary conditions.Gf, and G7, =
SinceGz,,Gx,., ...,Gzy_, are linearly independent, the col-Gzo: - - -Gz, Gz, - - -, Gz, ] are notlinearly indepen-
umn vectorg;, ,,j = 0,1,...,n;,—1,in Gz, do not belong dent, i.e., there exists a column vectorGfy, such that this

to the vector spac&, defined in (12). From (31) and theVector belongs to the subspa€e, . Without loss of generality,
we assume this vector i, ,. In this case, we have

IHere the linear independence over the whole complex fieldefvector
sets is needed/used and the linear independence/veis not sufficient. Pz1,G1, = |0,P1,9i,,,P1,9i\ 5 7PIkgik,7lk—1 .
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Take Axz, = [a,0,0,...,0]T € AA™, wherea € AA,a # only one symbol, the second condition can be rephrased as:
0, then we havé|Pz, Gz, Axz, | = 0, which contradicts with G(h) is a column full rank matrix foth # 0.

the condition that the systems in (27) have power gain Ord&r)rollary 3. In the case of symbol-by-symbol PIC group

nr - 1y ThUs, we must have théiz, is linearly independent decoding, i.e., each group only contains one symbol, thigdes

. . . . ; .
of Gz,. Sincef is an arbnrary Integer number 'W.’N __criterion in the main theorem is equivalent to the Shang-Xia
1,Gz,,Gz1,,...,G1,_, are linearly independent. This proves

that the second condition in the main theorem must hold. criterion proposed in [36], i.e.,
Let Az # 0 € AA™ and Axz,,k = 0,1,...,N — 1, be det (G(R)"G(h)) > c||h|*", h e C,
the corresponding sub-vectors Afe to the grouping scheme.

Thus, there is at least onAzy, # 0. Without loss of wherec is a constant independent of the chanhel
L k .

generality, we assumAzz, # 0. Then, Proof: Since we have tha® (k) is full column rank for
h # 0, the following inequality must hold,
G(h) Az 7 g Inequaly
N—1 2 det (G(h)"G(R)) >0, h £ 0,

GZOAEL‘ZO + Z C'rVZkAiL‘Z,c

i=1

Let us restrict the parametkrto the unit sphere, i.e|lh| = 1.
Note that the unit sphere is a compact set, (G(h)"G(h))

is a continuous function oh. There must exist a positive
constantc > 0 such at

det (G(h)"G(h)) > ¢, h # 0,

N-1
PZOGIO szo + QIOGZOAEL‘ZO + Z sz AiL‘Lc

=1

Since
P1,Gr,Azz, € Vi, as what is used in [51]. Generally, fére C'\ {0}, we have
and N that A \H h
- det [G(—) G@(— )] >¢c h#£0. 32
Q1,Gn Az, + Y Gz Az, €V, e(@w) @U)C 7o G2
=1
we have Since the entries ofG(h) are linear combinations of
) ho, h1,...,h—1 andh§, i, ..., hj_;, inequality (32) can be
|G (h)Az| rewritten as
N—-1 2 H
G(h)"G(h
= ||PIOGIOA33L)”2 + QIOGIOA:BIO + Z GIkAka det <%> > c, h 75 0. (33)
=1
> |Pz,Gz, Az, |? Thus,
1 det (G(R)"G(h)) > c||h|*", h e C!, (34)
2 2
Zc ( Z i ) l1Azz, ||” >0, h # 0. which is the Shang-Xia condition given in [36]. This proves
=0

that the criterion in Theorem 1 implies the Shang-Xia cidter

Using Theorem 2, the first condition in the theorem is provegh the case when all symbols are in separate groups, i.e., the
In the case that the received signals are decodgg receiver.

with the PIC-SIC group decoding, we assume the de-Since the criterion in Theorem 1 is necessary and sufficient,

coding order isZ;,,Z;,,...,Z;y_,. Similar to the above it can be derived from the Shang-Xia criterion too. In other

argument, we must have thaFz, is linearly indepen- words, the criterion in Theorem 1 is equivalent to the Shang-

dent of Gz, ,Gz,,,...,Gz1,,_; Gz, is linearly indepen- Xia criterion in the case when the ZF receiver is used.m
dent of GLWGLS,...,GLNA; Gz,, is linearly inde-

pendent ofGL.yGLA’...,GL,,Nf1 etc. So we have thatE' Some Discussions

GL,O,G'L.I,...,G’LM1 are linearly independent. The proof

of the first condition to be necessary is the same as the PLCFr(;m Thle_orem dl' and _Thegr_l?éncz, it is Iinterest_ing to Se?
case. This completes our proof of the main theorem. that for a linear dispersion _(comp X .conj_ugat_es 0
symbols may be embedded) to achieve full diversity: (i) the

) ) o weakest criterion is that the column vectors of the equiviale

D. Connection with the Full Rank Criterion and the Shangshannel matrix are linearly independent over a differerete s
Xia Criterion of a signal constellationA.4, when the ML receiver is used,

In the case when there is only one group, then the Pighich is equivalent to the code full rank criterion known in
group decoding algorithm becomes the ML decoding. In thtke literature; (ii) the strongest criterion (in the sen$ehe
case the second condition can always be satisfied. Thus, simplest complex-symbol-wise decoding) is that the column
proposed design criterion in Theorem 1 is equivalent to thegctors of the equivalent channel matrix are linearly iretep
of [13], [40]. dent over the whole complex field when the ZF receiver is

We now consider the symbol-by-symbol grouping case oied, which is, in fact, weaker than the orthogonality in the
the PIC group decoding algorithm, which is equivalent to th@STBC case that is not necessary for achieving full diversit
ZF decoding algorithm. In this case when each group contaiwgh a linear receiver. In the case of the weakest criterion
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but the optimal and the most complicated receiver, i.e., Mliniform distribution. The optimal way to decode;, from
receiver, the symbol rate can I for n, transmit antennas. the received signals is to fingl;, € A™* such that

In the case of the strongest criterion but the simplest vecei
i.e., linear receiver, the symbol rate can not be abbya6].
Similarly, we have the following corollary, which include
Shang-Xia’'s rate upper bound result as a special case.

&z, = arg 2%, P(ylzz,).

STo derive the decoding rule, let us first write (11) in the
following form,
Corollary 4. Let X be a linear dispersion STBC. At the TS rINTE)
receiver the PIC group decoding is used with a grouping 7 SNRGz 2z, + SNRK; 1GL"TL' +w. (39)
scheme{Zy,7Z1,...,Zn—1}. Let each group hav& symbols. Stk
If & satisfies the full diversity conditions for the PIC grouggte that except for the symbol groupr,, all the other

. . . k!
decoding in Theorem 1, then the maximum symbol rat& Ofsymbols can be viewed as noises that interfere with.

is upper bounded by Define the noise ternwz, as
The proof is straightforward. From Corollary 1, we only wy. = vVSNR Z Grz7 +w
need to consider the one receiver antenna caseni.es 1. r el L
Symbol rateR, = 7 = @ We also haven = tn, = t, itk (36)
wherem andt are the vector space dimension of the equivalent — v/SNR Z giTi + w.
channel column vectors and the time slots used, respegtivel i@Th

as defined in Section Il. In vector spaCé&’, there are at most .
: Then, we can write (35) as
m vector groups that can be independent from each other.
Thus, N < m. HenceR, = £X < BN < K As one can y = VSNRGz, =7, + wz,. (37)
see that wheri{ = 1, i.e., each group has only one elemen

. ) o . trhe optimal decoding o7, from the received signal vector
the symbol rate is upper bounded bywhich coincides W|tr_1 y depends on the distribution of the noisey,, which is

the result obtained for linear receivers in [36]. A more tedi 7. . . )
. : difficult to analyze in general. According to Lyapunov’s trah
rate upper bound can be similarly obtained when the gr@ups . . ; PR
imit theorem, w7z, converges to a Gaussian distribution as

1=0,1,..., N — 1, do not have the same number of elemenlﬁ - . e
: ) L : e number of the terms in the summation goes to infinity.
in the grouping scheme, which is omitted here.

To simplify the discussion, we assume that the naisg,
of lt\lrgitmhﬁtatgtz :16:2: gtf)gsst-l(;ei)rc\i‘iﬁipt;/) g)r?c;:gfs 3;;2? ngzzr di %Gaussian distributed. Similar assumption has been used i
3/4 for more thar2 transmit antennas [47]. By increasing th(l? ]. We call the optimal result derived under this assuonpti

. . : . . . . asymptotically optimal.
decoding complexity and improving a receiver as increasing|; qer the above assumption, the probability density func-
the group sizes in our proposed PIC group decoding, the cfi ’

i . . ; e G6n p y | £z, ) can be explicitly expressed and the optimal
terion to achieve full d'VeFS'W becomes weaker. The aoter ecodi(ng|rulek )can be easily derived. First let us compute the
for the PIC group decoding serves as a bridge betweenhﬁbq/ariance matrix of the noise vectary, -

strongest and the weakest criteria for the ZF and the g

receivers, respectively, and the corresponding symbes ratte Kz, =¢ {WIk w;,c}

expected between and n;. The examples to be presented —1,,+SNR Z g:9".

later in Section VI are some simple examples to show this !

. i¢Ty
rate-complexity tradeoff. N ) k ~ )
Hence the probability density functioR (y | €z, ) is as fol-
lows,
V. ASYMPTOTIC OPTIMAL GROUP DECODING _
. . . P(y | ka)
From the above discussions, it is clear that the PIC group 1 H .
decoding is an intermediate decoding algorithm between the = W exp [— (y - VSNRGIk-’BZk) K7,
ML and the ZF decoding algorithms. In practice, the MMSE I
decoding algorithm has better performance than the ZF decod (y — VSNRG7z, mzk) } )

ing algorithm. One natural question is: is there an inteliated

decoding algorithm between the ML decoding and the MMSEor the above equation, we can see that maximizing
decoding algorithms? The answer is YES. In this sectioR,(y | z,) iS equivalent to minimizing

we propose such an intermediate algorithm cadsgmptotic

optimal (AO) group decoding algorithm. (y - \/SN—RGIkak)H K;! (y - \/S'\I—RGIkak)
= ||&2} (v - VoNRGz,az, )| ’

)

A. Asymptotic Optimal Group Decoding Algorithm

Consider the channel model in (9). Suppose the signals #feere K * is the square root of the matrik 7. So the
decoded using a group decoding algorithm, and the groupiagymptotic optimal decoding rule is

scheme isZ = {Zy,71,Z2,...,Zn—1}. Assume the symbols K;k% (y _ \/SN—RGI@%) H (38)

. . . xr = ar max
are taken from a signal constellatiod according to the L gazzkeAnk
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WhenZ = {Z,} = {{0,1,2,...,n — 1}}, we only have A. Example 1
one symbol groupez,, which contains all the symbols. The  consider a code for 2 transmit antennas with 3 time slots
variance of the noise i¥'z, = I,,. In this case, the above yf the following form,

decoding rule can be simplified as
cxrog+ sx1  cro + sx3 0

0 —sxg+ cr1  —STo + cx3

X = , 39
& = &1, = arg Imax Hy—vSNRG(h):EH, [ (39)
we n
wherec = cosf,s = sinf,0 € [0,27). The symbol rate of
which is the ML decoding. this code is%.
Similar to the PIC case, we can use the SIC technique toin the following, we show that this code can be decoded
aid the AO group decoding process, the resulting decodi@gth pair-by-pair PIC group decoding.

algorithm is called AO-SIC group decoding. The decodin_lc[]rheorem 3. Let A C ZJi] be a QAM signal constellation

order can be simply determined according to the maximu )

SINR criterion, which is similar to the PIC-SIC case. LetT = {{0,1},{2,3}} be a grouping scheme for the PIC
group decoding algorithm. lifan 8 ¢ Q, then codeX in (39)
achieves full diversity using the PIC group decoding altfori

B. Connection with the MMSE Decoding with the grouping schemé.
Now let us consider the symbol-by-symbol case of the AO  Proof: Firstly, we prove that the code given in (39) has
group decoding algorithm. In this case, full rank property for any4 C Z[i]. In order to prove this, we
only need to prove that for any; € Z[¢],i = 0,1, 2, 3, which
I=T0,T1,...,Zn—1={{0},{1},...,{n—1}}. satisfies thatr; not all equal to zeroX is full rank. Since

tan @ ¢ Q, equationcxg + sx; = 0 holds forzg, 1 € AA if
In the following discussion, we use the simplified notatioBnd only if zo = 2, = 0. Similarly, equation-sz, + cz3 = 0

convention introduced in IlI-B. Thus, we ud€, instead of holds forz,, 25 € AA if and only if zo = 23 = 0. Next, we
K7, to denote discuss two different cases.

B e i). When zy and z; are not all equal to zero ang,
Ky =TI+ SNRZgzgi ' and z3 not all equal to zero, thenzy + sz # 0,

7k —sxg + cxs # 0. In this case X is full rank;
So the decoding rule is ii).  Whenz, andz; are not all equal to zero but, =
) z3 = 0, then
k =
Hpr—1 0 —sxg+cry O
= arg max —\/;il—kRKkHI:{y — Tk is full rank; similarly, in the case whem, and z3
i e 1 1
* Ji 2 gk are not all equal to zero buty = 27 = 0, X is full
Hpe—1 rank too.
The term—2:%x ¥

——k-k = isth biased estimat . In thi .
VSNR g K i.g), 1S the .un lase .es |ma or m.fc nis So the code in (39) has full rank property.
case, the AO group decoding algorithm is equivalent to the o, e prove that the cod¥ satisfies the second condi-

unbiased MMSE decoding [44]. E:|y a proper scaling, we €4bn in the main theorem. Suppose there is only one receive

. 9. K . .
get the MMSE estimator fm% [44]. Although  antenna, the equivalent channel can be written as

the MMSE estimator is optimal with respect to the mean
squared error, it may not be optimal with respect to the symbo
error probability and the unbiased MMSE may have a better
performance [3].

Cho Sh,o 0 0

[90.91,92,93] = |—sh1 chi chy sho|,
0 0 —Shl Chl

obviously gy andg; can not be expressed as a linear combi-
nation of g2, g3, and vice versa, wheh # 0. Thus,[go, g1]
C. Full Diversity Design Criterion for AO Group Decoding and|g,, g3] are linearly independent, when+ 0. According
H@ the main theorem, the code achieves full diversity with th

Since the AO group decoding is asymptotically optimal, t i ; ) - _
)IC decoding algorithm provided that the grouping scheme is

performance of the AO group decoding outperforms the PI

group decoding. So the full diversity criterion for codeghwi = {{0,1},{2,3}}. u
the PIC group decoding can also be applied to the AO group
decoding. B. Example 2

The code shown in (40) in next page is designed 4or
transmit antennas with 6 time slots. The parameteand s
are defined ag = cos6, s = sinf, 6 € [0,27). Clearly, its

In this section, we present two design examples that achieage is alsal/3. It can be proved that this code satisfies the two
the full diversity conditions with pair-by-pair PIC grouped conditions given in the main theorem if the grouping scheme
coding. isZ={{0,1},{2,3},{4,5},{6,7}}.

V1. DESIGN EXAMPLES



14

cro+ sr1  —cxy — STy x4+ ST5  —CcxG — ST 0 0

0 0 —sxo+cr1 STy —cxi  —STa+cxs Sk — cxh
cry + sry  cxf + sz} cxg + sxr cxy + sk 0 0

0 0 —5T2 +cr3 —Ssxy+cx] —sxg+cxr —sx) + cTf

(40)

Theorem 4. Let A C Z[i] be a QAM signal constellation. Letwhile at the high bandwidth efficiency of bits/sec/Hz, its

7 =1{{0,1},{2,3},{4,5},{6,7}} be a grouping scheme for performance degrades significantly.

the PIC group algorithm. Ifan 0 ¢ Q, then the cod&X in (40) For the4 by 6 code in (40) for4 transmit antennas, we
achieves full diversity using the PIC group decoding algori compare it with the QOSTBC with the optimal rotation [38]
with the grouping scheme. and Nguyen-Choi code [30]. The number of receive antennas
is also3 for all these codes. Our new coding scheme uses a

Fi tProof: The ?fzo?iﬁf S|m|(ljar o th?—tra?hsm;t—l?nter:(na .Ctzs.e'64-QAM constellation and the QOSTBC uses2a6-QAM
Irst we prove that this code salisties the Tull rank Criero ., qljation so that the bit rates for both schemes &are

This is efrl]sy to v_ern‘y IUStfby looking into the code case bPfits/sec/Hz. For Nguyen-Choi code, the constellation is 32
case as the previous proot. . . QAM (it is obtained by deleting the four corner points from
Next we prove that the second condition in the mai e 6 by 6 square QAM as what is commonly used) so that
theorem also holds. In the case when there is only one recel¥g hit rate is7.5 bits/sec/Hz. We use the PIC and PIC-SIC
H?oup decodings for the new code, respectively, and the ML

next page. Let # 0. We can see tha{y‘?’gl] is _orthogonal decoding for the QOSTBC, and the PIC-SIC group decoding
o [g2, gs]. Vector grouplgo, 1] is also linearly independent ¢, Nguyen-Choi code. In this case, all these decodings are

of g4,95,96,97- ThUS, [go,g1] can not be expressed bysymbol—pair—wise based. The simulation results show that o
any linear combination of the rest column vectorsGn A

7 ! . . new code with the PIC group decoding and the PIC-SIC group
similar discussion can be applied to the other vector gmu%%coding is2.3 dB and 2.8 dB better than the QOSTBC

Therefore, the second condition in the main theorem al?é)spectively From Fig. 4, one can see that our new code
holds. This completes the proof. does achieve full diversity as compared with the full divtgrs
QOSTBC and the diversity gain of Nguyen-Choi code is
VIl. SIMULATION smaller than that of our new code.

In this section, we present some simulation results. In all VIIl. CONCLUSION
the simulations, the channel is assumed quasi-static Rayle | this paper, we first proposed a PIC group decoding

flat fading. First we choose the rotation angléor the codes 4 qrithm and an AO group decoding algorithm that fill the
in (39) and (40) by numerically estimating the coding gaingans petween the ML decoding algorithm and the symbol-
of the codes for a series of values®fHere the coding gain ,y_symnol linear decoding algorithms namely the ZF and the
C, is defined as MMSE decoding algorithms, respectively. We then derived
B 1 a design criterion for codes to achieve full diversity when
Cy —argmc‘&X{Cg | Poiockerr(SNR) < C—SNR_D"}7 (42) they are decoded with the PIC and AO group decoding
g g algorithms. The new derived criterion is a group indeperden
where D, is the diversity order. We use Monte Carlo simeriterion for an equivalent channel matrix and fills the gap
ulations to estimate the coding gains for differétd. As between the loosest full rank criterion for the ML receiveda
we can see from Fig. 1, the peak value(f is reached at the strongest linear independence criterion of the ecqental
two points:§ = 0.55 and # = 1.02. Interestingly enough, channel matrix for linear receivers. Note that the full rank
these two values of) are very close toi arctan(2) and criterion is equivalent to the loosest linear independeioce
7 — L arctan(2), which maximize the coding gain of tt#ex 2 the column vectors of the equivalent channel matrix over a
diagonal code [44]. An intuitive explanation is that the eoddifference set of a finite signal constellation while thesgest
in (39) can be viewed as two diagonal codes stacked togetlirear independence criterion is the linear independence f
and even after the interference cancellatiéns %arctan(Z) the column vectors of the equivalent channel matrix over the
andf = 3 — %arctan(2) still maximize the coding gain. whole complex field. The relaxed condition in the new design
In Fig. 2 and Fig. 3, we compare our new code in (39riterion for STBC to achieve full diversity with the PIC gno
with Alamouti code and Golden code [2] at the bandwidtbecoding provides an STBC rate bridge betwegnand 1,
efficiencies of4 bits/sec/Hz and bits/sec/Hz, respectively, where raten; is the full symbol rate for the ML receiver and
with two transmit and three receive antennas. For both neate 1 is the symbol rate upper bound for linear receivers.
code and Golden code, the group size of the group decod&hais, it provides a trade-off between decoding complexity
are all set to2. Both Fig. 2 and Fig. 3 show that Goldenand symbol rate when full diversity is required. We finally
code with the ML decoder performs the best. Also we can speesented two design examples for 2 and 4 transmit antennas
that Golden code does not achieve full diversity with the PIGf rate4/3 that satisfy the new design criterion and thus they
group decoding or ZF decoding. At the bandwidth efficiencgchieve full diversity with the PIC group decoding of group
of 4 bits/sec/Hz, Alamouti code outperforms our new codsjze 2, i.e., complex-pair-wise decoding.
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G= [90791,92,93794795,96797]

Cho Sho Chg Shg 0 0 0 0
chiy  shs —chy —shg 0 0 0 0
o —Shl Chl —Shg Chg Cho Sho ChQ Sh2 (41)
T |—shi chi shi —chi chy shi —chy —sh
0 0 0 0 —Sh,l Ch,l —Sh,g Chg
0 0 0 0 —shi chy shi —chj
IX. ACKNOWLEDGMENT APPENDIX B

) ) PROOF OFLEMMA 2
The authors would like to thank the anonymous review-

ers for their useful comments and careful reading of the Proof: SinceP is a projection matrixP can be decom-
manuscript. posed as

P=U"DU, (45)

APPENDIXA whereU € C™*™ is an unitary matrix and
PROOF OFLEMMA 1

I’I‘ T OT‘ m—r
Proof: Writing Pz, defined in (15) and an arbitrary D= Om:«w Oijmfr , 7 =rank(P). (46)
matrix Pz, € Pz, in the following forms,
By multiplying both sides of (20) b¥J to the left, we have
Pr — [pT pT T T
T [p()aplv"'apm—l} ’

= T . T Uy = VSNRUGz + DUw. (47)
PZk = [pg)rap-lra"'ap;rn—l} )
Since the column vectors @ belong toV, G = PG, (47)

according to the definition oPz, in (18), we must have that can be written as

pl,p; € VJ-k, 1 =0,1,...,m — 1. Note thatrank (P}k) =

— di L ich impli
-rankl(PIk) = dim (Vz, ), wh|ch_ implies thgt aI_I the vgctors Uy = VSNRUPGz+DUw = VSNRDUGz+DUw (48)
in Vz can be expressed as linear combinationgpfi =

0,1,...,m — 1. So there must exisf;,0 < i,j < m, such Note that the effect of multiplyind to the left of a vector is
that picking up the first- entries and setting the rest-r entries to
. ml . . zero. Hence from (48), we can see that only the firshtries
b = z; fiipj; of Uy matter and all other entries are zeros. We also have that
i—

the firstr entries of DUw are i.i.d. Gaussian noise sinteis
unitary, the resti — r entries are all zeros. Uge],. to denote
he vector that contains the firgtentries ofv € C™. Then,
I%'48) is equivalent to

or in the matrix form we havé’zk = FPz,, where the(i, j)-
th entry of F' is f; ;. SoPz, can be viewed as a concatenatio
of the linear filtersPz, andF'. Substituting the above equation

into (19), we get Uy], — VSNR[DUG], + [DUw],. (49)
z1, = F (P1,Gr 2z, + Pr,w) = Fag,, (43)  since[DUw], is a white Gaussian noise, the ML decision is

. the same as the minimum distance decision for (49), i.e.,
wherezz, = P71, Gz, 1, + Pz, w. For anSNR, the optimal (49)

decoding ofxz, from zz, is as follows, Uy, — \/SN—R[DUG:E]

T = arg min

&7, =arg min P (z7,|Z1,) - (50)
I — g:?:zkeA"k Ll L) = argirg% HUy — VSNRDUGz||,
and the optimal decoding @z, from 2z, is as follows, where the second equality holds because therlast entries
R ) B have no effect on the distance. Noting tifatis an unitary
Tz, =arg min P (Fzz, |®z,) - (44) matrix andG = PG, the above detection is equivalent to
k
i ilteri isi P = in \{UMUy — VSNRU"DUGz
Notice that any filtering may not help an ML decision. T = arg mu, Y T
Therefore, for arSNR, we have (51)

= arg }n}é{l Hy — \/SNRG:EH )
~ e A"
P...(Pz,,SNR) < P (Pz,,SNR),
Thus, we conclude that the minimum distance decision in this
which completes the proof. B case is equivalent to the maximum likelihood decision.m
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APPENDIXC Now let us consider a fixed\z € AA™ and restrict the

PROOF OFLEMMA 3 parameterh to the unit sphere, i.e||k|| = 1. Since the unit
Proof: For a givenh = [h, hi, -,hl_1]T, and two sphere is a compact set, from (53), for thige there must
symbol vectorsz, & € A" with = # %, the pairwise error €XISt @ constanta, > 0 such that
probability P, (x — ) with ML receiver is as follows, |G(h)Az| > cas. (54)
Pr(z — ) =Q (\/SNR ||G(h)AwH) For 0 # h € C!, we always have
-1 : H L Gh)ax ’G ( h ) Az|| > (55)
— = TFA 2> CAms
<Q ( VSNR <Z |hi,c|2> ||Am|> 52) [A] A
k=0 or

1 CQ'SNRT_1 2 2
s5exp(— SV B
k=0

where the last inequality is obtained by applying the welgince AA™
known upper-bound for th&-function,

-1 2
IG(h)Az| > caz |h] = caw (Z Ihil2> - (56)

1=0
is a finite set, we can defin@,;, and dy,.x SO

that
2
Qz) < %exp (—%) ) 0 < Cmin = Min{cag,0 # Az € AA"}, (57)
) ) ’ 0 < dmax = max {||Az|,Axz € AA"}. (58)
By taking expectation oveh at both sides of (52), we get o
Then
Plx—x :(S'h Ph T — T

2 SNR =3 3
<Enlexp| - 5 Z|hik|2”Aw”2 : Conin (= 2

To evaluate the above expectation, we use

-1 2
1 n
En (exp(—a|h|2) =— h~CN(0,1), a>0, =c <Z |hi|2> |Az|, YAz € AA", h e C!,
1+a P
and note that the expectation can be taken separately to each & e :
h;,,» which leads to the following result, Wherec £ dmax ’ This completes the proof. -
- ) 1 9 " APPENDIX E
r—x) <=
=2\ 21 2SNR ”Asz PROOF OFTHEOREM 2
or—1 Proof: LetH = (h; ;) € C™*"" be the channel matrix as
SCRTI—TST NR™". in (1) andh = vec(H). SupposeX is an STBC that satisfies
" || A the full rank criterion, i.e., any matri@ # AX € AX is a full
SinceAx € AA™ andA A" is a finite set, there existsAz, rank matrix. WrittAX AX" into the following decomposition
such that AXAXH =UDU", (60)
dinin = [|Azol| = min {|Az[|,0 7 Az € AA"}. where U € C™*™ is an unitary matrix andD =
Hence for anyz, z € A" with = # , we always have diag(Ao, A1, ..., A, —1). Since AX is a full rank matrix,
o1 )\min(AX) £ min {)\0, Alyenn, /\nt—l} > 0. Note thatAX
Plx — &) < 272 SNR™". is a finite set, we can defing,;, such that
C- dmin "
) ( ) ) Amin = min {Anin(AX),0 # AX € AX} > 0. (61)
The symbol error probability’ser (SNR) is upper-bounded by
21 (LA 1) Hence we have
Pser(SNR) < T d SNR™, |HAX||” = tr (HAXAXPH")
C* Qmin
o H
i.e., the system achieves the diversity order ] = (HUD (HU) )
> tr (/\minHU (HU)”) (62)
APPENDIXD 11
PROOF OFLEMMA 4 = i Z Z |hij|2,VH c Cnrxne.
Proof: For a given0 # h € C!' and0 # Ax € AA", i=0 ;=0
since the column vectors af(h) are linearly independent
over AA, G(h)Ax # 0, or (h) y P As (7) mentioned in Section I[[HAX||*> can also be written

as
IG(h)Az| > 0. (53) IHAX||* = |G(h)Ax|*. (63)



where Az € AA". By (62) and (63), we can see that fon12]
h # 0, G(h)Ax = 0 if and only if Az = 0, i.e., the column
vectors ofG(h) are linearly independent ovex.A.

We now prove the necessity. Sindgis a linear dispersion
code, the scaling invariance (30) is satisfied. If the colurrH14]
vectors of G(h) are linearly independent oveAA, then
according to Lemma 4, there exists a constant 0 such
that

|HAX|® = tr (HAXAXPH")
nr—1ns—1

>cla|® Y D byl VH € Cr,

i=0 j=0

[13]

[15]

[16]
(64)

[17]

Next we prove that the above inequality implies that thié8l
eigenvalues oA X AXH are all greater than zero f&xX # 0.

The uniqueness from the decodablity of the STBQells us

that AX # 0 implies Az # 0. Consider the decomposition[1°]
(60) for AX. If there is an eigenvalug, = 0, then we can [y
find anH € C"*™ such that

HU =[0,0,...,v,...,0], (65) [21]

where thek-th column vectorv € C" can be arbitrary non- 22]
zero vector. The existence of sugh## 0 is ensured sincé&

is invertible. For theH that satisfies (65), 23]

tr (HAXAX"H") = tr (HUD (HU)") =0, (66) g

which contradicts with the inequality in (64). So we have
proved that all the eigenvalues akXAXH must satisfy [2°]
A >0, i.e., AX is a full rank matrix. [ |

[26]
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