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size random matrices. However, it involves massive mathematical concepts and no-

tations, and is really hard for a general reader to comprehend. The main goal of this

paper is to briefly describe this theory and its application in random matrices as simple

as possible so that it is easy to follow. Applying free probability theory, one is able
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1. INTRODUCTION

Free probability theory was started by Voiculescu in the 1980’s [1, 2, 3]. It is

about calculating moments (or distributions) of non-commutative random variables,

such as, random matricies where the matrix entries are classical random variables.

In classical probability theory, random variables are usually real-valued and can

be extended to be complex-valued. For convenience, let us say that they are real-

valued. Therefore, they are commutative. For example, assume x1, x2 are two inde-

pendent non-zero random variables and E denotes the expectation. Then,

E(x1x2x1x2) = E(x2
1x

2
2) = E(x2

1)E(x
2
2) > 0, (1)

no matter whether x1 and/or x2 have 0 mean or not, which is because x1 and x2 are

commutative.

However, if x1 and x2 are not commutative, then, the property (1) may not hold

and two natural questions are as follows. What will happen to (1)? What does the

independence mean to non-commutative random variables?

Free probability theory addresses the above two questions. It introduces free-

ness between non-commutative random variables, which is analogous to the indepen-

dence between classical commutative random variables. It basically says that although

E(x1x2x1x2) may not be equal to E(x2
1x

2
2), it is 0 if x1 and x2 are free and both have

mean 0.

With this freeness, when a large number of free random variables are summed

with proper weights, it converges to the classical semicircular distribution. This is the

free central limit theorem similar to the classical central limit theorem, where Gaussian

distribution corresponds to semicircular distribution. Note that the eigenvalue distri-

bution of a random matrix with entries of independent Gaussian random variables (for

simplicity, the matrix symmetricity is not specified here) goes to semicircular distribu-

tion as well when the matrix size goes to infinity. This suggests a connection between

free random variables and large size random matrices. Free probability theory says

that, it indeed has a strong connection, i.e., random matrices of independent Gaussian

random variables become free when the matrix size goes to infinity. In other words,

when the size of matrices is large, these matrices are approximately free.

Furthermore, the entries in random matrices can be replaced by free semicircular

random variables (called deterministic equivalent). With the replacement, all the joint

moments or cumulants of random matrices can be calculated, which may lead to the



calculations of the distributions of the eigenvalues of the functions of these random

matrices.

This is the reason why free probability theory has attracted much attention in wire-

less communications and signal processing areas. Massive MIMO systems have been

identified as potential candidates in future wireless communications systems, where

the number of inputs and/or the number of outputs are large. In massive MIMO sys-

tems, their channel matrices are random of large sizes. Therefore, it is natural to apply

free probability theory to do some of the difficult calculations, such as, channel capac-

ity [14, 16, 18]. It is particularly interesting when some statistics of a channel matrix of

large size, such as, the first two moments (covariances) of the channel coefficients, are

known, how we calculate the channel performance without performing Monte Carlo

simulations that may be hard to do in practice when the channel matrix size is large,

such as, a massive MIMO channel.

The main goal of this tutorial paper is to briefly introduce free probability theory

and its application to large size random matrices so that an ordinary researcher in signal

processing and communications areas can easily understand.

In the following, we adopt most of the notations in Speicher [4, 5, 6, 7]. All the

results described below are from [4, 5, 6, 7] as well. The remainder of this paper is

organized as follows. In Section 2, we describe the basics of free random variables

and the free central limit theorem without proof. In Section 3, we describe the calcula-

tions/relations of joint moments, cumulants, and distributions of multiple free random

variables. In Section 4, we describe random matrices and the approximate distribu-

tions of their eigenvalues. In Section 5, we describe free deterministic equivalents for

random matrices. We also describe how to calculate the Cauchy transforms of random

matrices using the second order statistics of their entries. In Section 6, we conclude

this paper.

2. FREE RANDOM VARIABLES

For convenience, in the following we will use as simple notations as possible,

which may be too simplified in terms of mathematical rigorousness.

Let x1, x2, ..., xn be n elements that may not be commutative, and E be a lin-

ear functional on these elements so that E(1) = 1. Examples of these elements are

matrices and E is like the expectation of a classical random variable.



Definition 2.1. Elements (or random variables) x1, x2, ..., xn are called free or freely

independent, if for any m polynomials pk(x), 1 ≤ k ≤ m, with m ≥ 2,

E(p1(xi1)p2(xi2) · · · pm(xim)) = 0, (2)

when E(pk(xik)) = 0 for all k, 1 ≤ k ≤ m, and any two neighboring indices il and

il+1 are not equal, i.e., 1 ≤ i1 6= i2 6= · · · 6= im ≤ n.

From (2), if x1 and x2 are free, thenE(x1x2x1x2) = 0 whenE(x1) = E(x2) = 0,

where m = 4, i1 = 1, i2 = 2, i3 = 1, i4 = 2, and polynomials pk(x) = x for 1 ≤
k ≤ 4. Comparing with (1) in the classical commutative case, independent real-valued

random variables are not free. The terminology “free” comes from the concept of free

groups, where there is no any nontrivial relation between any generating elements of a

free group.

One might want to ask why, in the above definition, polynomials of the random

variables xk are used. It is for the convenience later in calculating their joint mo-

ments. Note that in free probability theory context, it is not convenient to directly

define density functions (or distribution functions) for noncommutative random vari-

ables. However, as we can recall, in the classical probability theory, if all the moments

of a random variable are known, its characteristic function can be often determined and

therefore, its density function can be often determined as well. Thus, calculating all the

joint moments of free random variables may be sufficient for their joint distributions.

Its details will be described in Section 3.

The set Ak of all polynomials p(xk) of xk including the identity element 1 =

x0
k is called the subalgebra generated by element xk for 1 ≤ k ≤ n. Subalgebras

A1,A2, ...,An are called free if and only if elements x1, x2, ..., xn are free. Clearly,

when elements x1, x2, ..., xn are free, for any n polynomials p1(x), ..., pn(x), elements

p1(x1), ..., pn(xn) are free as well.

If elements x1, x2, · · · , xn are free, they are called free random variables. With the

above freeness definition, although one may construct abstract free random variables

using possibly many mathematical concepts, it is not easy to show concrete examples

of free random variables at this moment.

Two sets S1 and S2 are called free if any element in S1 and any element in S2

are free. With property (2), when {x1, x3} and x2 are free, it is easy to check that

E(x1x2) = E(x1)E(x2) and E(x1x2x3) = E(x1x3)E(x2).

In many practical applications, we may need to deal with complex-valued random

variables, such as, complex Gaussian, where the complex conjugation ∗ is usually



used. In correspondence with the complex conjugation, the above freeness becomes

∗-freeness. We call that x1, x2, · · · , xn are ∗-free, if (2) holds when the polynomials

pk(x) in Definition 2.1 are changed to polynomials pk(x, x∗) of two variables. If x =

x∗, element x is called self-adjoint. For example, when x is a matrix and ∗ is the

complex conjugate transpose operation, if x is Hermitian, then x is self-adjoint. In this

case, x can be diagonalized by a unitary matrix and all its eigenvalues are real-valued.

Definition 2.2. 1) When two random variables x1 and x2 have all the moments

the same, i.e., E(xm1 ) = E(xm2 ) for all positive integers m, they are called

identically distributed or having the same distribution.

2) For a sequence of random variables xn, n = 1, 2, ..., we call xn converges to x

in distribution when n goes to infinity, if all the moments of xn converge to the

moments of x as n goes to infinity, i.e., for any positive integer m,

lim
n→∞

E(xmn ) = E(xm),

which is denoted as limn→∞ xn
distr
= x or xn

distr−→ x as n→∞.

3) Let I be an index set. For each i ∈ I , let x(i)
n , n = 1, 2, ..., be a sequence of

random variables. We call that (x(i)
n )i∈I converges to (x(i))i∈I in distribution, if

lim
n→∞

E(x(i1)
n · · ·x(ik)

n ) = E(x(i1) · · ·x(ik))

for all positive integers k and all i1, ..., ik ∈ I , which is denoted as

lim
n→∞

(x(i)
n )i∈I

distr
= (x(i))i∈I or (x(i)

n )i∈I
distr−→ (x(i))i∈I as n→∞.

The definition in 2) is about the convergence in distribution for a single sequence

of random variables and the definition in 3) is about the convergence in distribution for

multiple sequences of random variables jointly.

One of the most important results in classical probability theory is the central limit

theorem. It says that the summation of independent random variables of a totally fixed

variance converges to Gaussian random variable, when the number of the independent

random variables goes to infinity. For free random variables, it has the following free

central limit theorem.

Theorem 2.1. Let xk, k = 1, 2, ..., be a sequence of self-adjoint, freely independent,

and identically distributed random variables with E(xk) = 0 and E(x2
k) = σ2. For a

positive integer n, let

Sn =
x1 + x2 + · · ·+ xn√

n
.



Then, Sn converges in distribution to a semicircular element s of variance σ2 as n →
∞, i.e.,

lim
n→∞

E(Sin) =

{
σiCi/2, if i is even,

0, if i is odd,
(3)

where Ck is the Catalan number and the (2k)th moment of the semicircular distribu-

tion:

Ck =
1

2π

∫ 2

−2

t2k
√
4− t2dt = 1

k + 1

(
2k

k

)
.

The random variable s in Theorem 2.1 is called a semicircular element in this

context and it, after divided by σ, has the same distribution as the classical semicircular

random variable of density function

q(t) =

{
1

2π

√
4− t2, if |t| < 2,

0, otherwise.
(4)

Its moment of an even order has the form in (3) and an odd order is always 0.

Note that semicircular distributions are the asymptotic distributions of the eigen-

values of Hermitian Gaussian random matrices when the matrix size goes to infinity,

which is called Wigner’s semi-circle law and will be discussed in more details in Sec-

tion 4 later.

3. MOMENTS, CUMULANTS, AND CAUCHY TRANSFORMS

As mentioned earlier, it is not convenient to directly define a density function or

probability measure for a noncommutative random variable, and instead its all mo-

ments are defined and the freeness is to simplify the joint moments between free ran-

dom variables.

In order to see how moments are related to distributions of free random variables,

let us first see how in classical probability theory, a probability measure and its mo-

ments are related.

Let µ(t) be a probability measure on the real line R. Assume its all moments are

finite and let mi be its ith moment for a positive integer i and ϕ(t) be its characteristic

function, i.e.,

mi =

∫
R
tidµ(t), and ϕ(t) =

∫
R
eiτtdµ(τ),

where i
∆
=
√
−1. Then, it is easy to see

mi = i−iϕ(i)(0), and ϕ(t) =
∞∑
i=0

mi
(it)i

i!
, (5)



where ϕ(i)(t) stands for the ith derivative of ϕ(t). Furthermore, we can write

log(ϕ(t)) =
∞∑
i=1

ki
(it)i

i!
with ki = i−i

di

dti
log(ϕ(t))

∣∣∣∣
t=0

, (6)

where ki are called the cumulants of µ(t). We will call them the classical cumulants.

The moment sequence {mi}i≥0 and the cumulant sequence {ki}i≥1 can be determined

from each other:

mn =
∑

1·r1+···+n·rn=n
r1,...,rn≥0

n!

(1!)r1 · · · (n!)rnr1! · · · rn!
kr11 · · · krnn (7)

kn =
∑

1·r1+···+n·rn=n
r1,...,rn≥0

(−1)r1+···+rn−1(r1 + · · · rn − 1)!n!

(1!)r1 · · · (n!)rnr1! · · · rn!
mr1

1 · · ·mrn
n . (8)

Sometimes, cumulants may be easier to obtain than moments. In this case, one may

first obtain cumulants and then moments.

Since for noncommutative random variables, we start with their moments as we

have seen so far, it is very important to investigate moment and cumulant sequences for

further calculations. Before going to more details, let us see some basic concepts about

partitions of an index set, which plays an important role in free probability theory.

3.1. Partitions, Non-crossing Partitions, and Free-Cumulants. For a positive inte-

ger n, we denote [n]
∆
= {1, 2, ..., n}. A partition π of set [n] means π = {V1, ..., Vk}

such that V1, ..., Vk ⊂ [n] with Vi 6= ∅, Vi ∩ Vj = ∅ for all 1 ≤ i 6= j ≤ n, and

V1 ∪ · · · ∪ Vk = [n]. Subsets V1, ..., Vk are called the blocks of π and #(π) denotes the

number of the blocks of π. P(n) denotes the set of all the partitions of [n]. A partition

is called a pairing if its each block has size 2 and the set of all the pairings of [n] is

denoted by P2(n).

Let π ∈ P(n) and {li}i be a sequence. We denote lπ
∆
= lr11 l

r2
2 · · · lrnn where ri

is the number of blocks of π of size i. Then, the determination formulas in (7)-(8) of

moments and cumulants can be re-formulated as

mn =
∑

π∈P(n)

kπ, (9)

kn =
∑

π∈P(n)

(−1)#(π)−1(#(π)− 1)!mπ. (10)



For π ∈ P(n), denote the moment of n random variables x1, ..., xn with partition

π as

Eπ(x1, ..., xn)
∆
=

∏
V ∈π

V=(i1,...,il)

E(xi1 · · ·xil),

where V = (i1, ..., il) means that set V has l distinct elements with increasing order as

i1 < i2 < · · · < il.

When π ∈ P2(2k), i.e., π is a pairing of [2k], we have

Eπ(x1, ..., x2k) =
∏

(i,j)∈π

E(xixj).

With this notation, for Gaussian random variables X1, X2, ..., Xn, we have the follow-

ing Wick’s formula:

E(Xi1 · · ·Xi2k) =
∑

π∈P2(2k)

Eπ(Xi1 , ..., Xi2k),

where i1, ..., i2k ∈ [n].

Let π ∈ P(n). If there exist i < j < k < l such that i and k are in one block V of

π, and j and l in another block W of π, we call that V and W cross. If one cannot find

any pair of blocks in π that cross, partition π is called non-crossing. Denote the set of

all non-crossing partitions of [n] by NC(n) and the set of all non-crossing pairings of

[n] by NC2(n).

The partition set P(n) of [n] is partially ordered via

π1 ≤ π2 if and only if each block of π1 is contained in a block of π2.

With this order, NC(n), as a subset of P(n), is also partially ordered. The largest

and the smallest partitions in both P(n) and NC(n) are [n] and {{1}, {2}, ..., {n}},
denoted as 1n and 0n, respectively.

Definition 3.1. The following free cumulants κn(x1, ..., xn) are defined inductively in

terms of moments by the moment-cumulant formula:

E(x1 · · ·xn) =
∑

π∈NC(n)

κπ(x1, ..., xn), (11)

where

κπ(x1, ..., xn)
∆
=

∏
V ∈π

V=(i1,...,il)

κl(xi1 , ..., xil).



The above inductive definition is not hard to implement as follows.

For n = 1, we have E(x1) = κ1(x1). Thus, κ1(x1) = E(x1).

For n = 2, we have

E(x1x2) = κ(1,2)(x1, x2) + κ(1),(2)(x1, x2) = κ2(x1, x2) + κ1(x1)κ1(x2).

Thus,

κ2(x1, x2) = E(x1x2)− E(x1)E(x2),

etc.

Let µ(π1, π2) be the Möbius function on P(n) [7, 8, 11] that has a recursion

formula to calculate. Then, we also have the following Möbius inversion formula:

κn(x1, ..., xn) =
∑

π∈NC(n)

µ(π, 1n)Eπ(x1, ..., xn). (12)

The moment-cumulant formulas (11) and (12) for momemts and free-cumulants

for noncummtative random variables are in analogous to (9) and (10) (or (7) and (8))

for classical random variables in classical probability theory.

Theorem 3.1. Random variables x1, ..., xn are free if and only if all mixed cumulants

of x1, ..., xn vanish. In other words, x1, ..., xn are free if and only if, for any i1, ..., ip ∈
[n] = {1, 2, ..., n} with ij 6= il for some j, l ∈ [p], we have κp(xi1 , ..., xip) = 0.

The result in the above theorem significantly simplifies the calculations of the free

cumulants of multiple free random variables and therefore, helps to calculate the joint

moments of multiple free random variables. For example, if x and y are free, then we

have

κx+y
n

∆
= κn(x+ y, ..., x+ y)

= κn(x, ..., x) + κn(y, ..., y) + (mixed cumulants in x, y)

= κxn + κyn. (13)

Definition 3.2. Let I be an index set. A self-adjoint family (si)i∈I is called a semicir-

cular family of covariance matrix C = (cij)i,j∈I if C is non-negative definite and for

any n ≥ 1 and any n-tuple i1, ..., in ∈ I we have

E(si1 · · · sin) =
∑

π∈NC2(n)

Eπ(si1 , ..., sin),

where

Eπ(si1 , ..., sin) =
∏

(p,q)∈π

cip,iq .



If C is diagonal, then (si)i∈I is a free semicircular family.

The above formula is the free analogue of Wick’s formula for Gaussian random

variables. If we let X1, ..., Xr be N × N matrices of all entries in all matrices i.i.d.

Gaussian random variables, then they jointly converge in distribution to a free semi-

circular family s1, ..., sr of covariance matrix (cij)1≤i,j≤r = Ir where Ir is the identity

matrix of size r, as N goes to infinity. More details on random matrices will be seen

in Section 4.

3.2. Cauchy Transforms and R-Transforms. As we have seen earlier, for classical

random variables, their distributions or density functions can be determined by their

moment sequences or cumulant sequences as shown in (5) and (6). To further study

noncommutative random variables, their moment and cumulant sequences similarly

lead to their analytic forms as follows.

Let x be a noncommutative random variable and mx
n = E(xn) and κxn be its

moments and free cumulants, respectively. Their power series (moment and cumulant

generating functions) in an indeterminate z are defined by

M(z) = 1 +
∞∑
n=1

mx
nz

n and C(z) = 1 +
∞∑
n=1

κxnz
n.

Then, the following identity holds:

M(z) = C(zM(z)).

The Cauchy transform of x is defined by

G(z)
∆
= E

(
1

z − x

)
=
∞∑
n=0

E(xn)

zn+1
=
∞∑
n=0

mx
n

zn+1
= z−1M(z−1),

and the R-transform of x is defined by

R(z)
∆
=
C(z)− 1

z
=
∞∑
n=0

κxn+1z
n.

If we let K(z)
∆
= R(z) + z−1, then K(G(z)) = z, i.e., K(z) is the inverse of the

Cauchy transform G(z).

If we let Gx(z) and Rx(z) denote the Cauchy transform and the R-transform of

random variable x, respectively, then, for two free random variables x and y, from (13)

we have

Rx+y(z) = Rx(z) +Ry(z).



In case not both Rx(z) and Ry(z) are well-defined on a region of z, one may be

able to find the Cauchy transform Gx+y(z) of x+ y for free random variables x and y

from the Cauchy transforms Gx(z) and Gy(z) of x and y as follows.

We shall see soon below that when z is in the upper complex plane C+ ∆
= {c ∈

C|Im(c) > 0} where C stands for the complex plane and Im stands for the imaginary

part of a complex numnber, a Cauchy transform is well-defined.

For an z ∈ C+, solve the following system of two equations for two unknown

functions ωx(z) and ωy(z):

Gx(ωx(z)) = Gy(ωy(z)) and ωx(z) + ωy(z)−
1

Gx(ωx(z))
= z.

Then,

Gx+y(z) = Gx(ωx(z)) = Gy(ωy(z)).

If noncommutative random variable x is self-adjoint, then it has a spectral mea-

sure ν on R such that the moments of x are the same as the conventional moments of

the probability measure ν. One can simply see it when x is a Hermitian matrix and

then x can be diagonalized by a unitary matrix and has real-valued eigenvalues. These

real-valued eigenvalues are the spectra of x that are discrete for a finite matrix but may

become continuous when x is a general operator over an infinite dimensional space. In

this case, we say that random variable x has distribution ν.

Then, the Cauchy transform G(z) of x can be formulated as

G(z) =

∫
R

1

z − t
dν(t), (14)

and G(z) is also called the Cauchy transform of ν.

One can clearly see from (14) that Cauchy transform G(z) is well-defined when

z ∈ C+. In fact, G(z) is analytic in C+, i.e., it exists derivatives of all orders for any

z ∈ C+. Furthermore, G(z) ∈ C−, the lower complex plane similarly defined as C+.

In other words, a Cauchy transform G(z) maps C+ to C−.

From (14), one can also see that the Cauchy transform excludes the real axis R
for z, which is because when z ∈ R, the integration may not exist. After saying so,

it may exist in the generalized function sense as if z ∈ R, the Cauchy transform (14)

becomes the Hilbert transform of dν(t)/dt.

When probability measure ν is compactly supported, i.e., it is supported on a

finite interval, not only its Cauchy transform is analytic in C+, but also its R-transform

is analytic on some disk centered at the origin. This, however, may not be true for a

general probability measure ν. For more details, see [6].



With a Cauchy transform G(z), its corresponding probability measure can be

formulated by the Stieltjes inversion formula as follows.

Theorem 3.2. Let ν be a probability measure on R and G(z) be its Cauchy transform.

For a < b, we have

− lim
τ→0+

1

π

∫ b

a

Im(G(t+ jτ))dt = ν((a, b)) +
1

2
ν({a, b}),

where ν((a, b)) and ν({a, b}) are the continuous and the discrete parts of the measure

ν, respectively. If ν1 and ν2 are two probability measures on R with equal Cauchy

transforms, i.e., Gν1(z) = Gν2(z), then ν1 = ν2.

This result tells us that Cauchy transforms and probability measures (distributions

or random variables) are one-to-one corresponding to each other.

If x and y are two free self-adjoint random variables with distributions νx and νy,

respectively. The distribution of x + y is called the free convolution of those of x and

y, which is denoted by νx � νy.

As an example of Cauchy transform, when ν is semicircular with density function

q(t) in (4), its Cauchy transform [6] is

Gs(z) =
z −
√
z2 − 4

2
. (15)

4. APPLICATION IN RANDOM MATRICES

As mentioned in Introduction, random matrices with entries of complex Gaussian

random variables are often used in wireless communications and signal processing.

In particular, their singular value (eigenvalue) distributions play an important role in

analyzing wireless communications systems. This section is on applying free proba-

bility theory to random matrices of large sizes. It tells us how to use the second order

statistics of the entries of random matries to calculate their asymptotic eigenvalue dis-

tributions.

4.1. GUE Random Matrices and Wigner’s Semi-Circle Law. LetXN be anN×N
matrix with complex random variables aij = xij + iyij as entries such that xij and yij
are real Gaussian random variables,

√
Naij is a standard complex random variable,

i.e., E(aij) = 0 and E(|aij|2) = 1/N and

1) aij = a∗ji,

2) {xij}i≥j ∪ {yij}i>j are i.i.d.



In this case, XN is Hermitian, i.e., self-adjoint. XN is called a Gaussian unitary en-

semble (GUE) random matrix. The following theorem is Wigner’s semi-circle law.

Theorem 4.1. If {XN}N is a sequence of GUE random matrices, then, for any positive

integer k,

lim
N→∞

E(tr(Xk
N)) =

1

2π

∫ 2

−2

tk
√
4− t2dt

=

{
1
l+1

(
2l
l

)
, if k = 2l for some positive integer l,

0, if k is odd.

where tr stands for the normalized matrix trace, i.e., tr(·) ∆
= Tr(·)/N with the conven-

tional matrix trace Tr.

Since XN is Hermitian, it has spectra (eigenvalues) νN that is a random variable

as well. Since tr(Xk
N) = tr(νkN), we have

lim
N→∞

E(tr(Xk
N)) = lim

N→∞

∫
R
tkdνN(t).

Thus, the above theorem says that the eigenvalues of XN converge in distribution to

the semicircular random variable. In fact, the convergence in distribution can be made

stronger to the almost surely convergence.

4.2. Asymptotic Freeness of GUE Random Matrices. For random matrices X as

noncommuntative random variables, their linear functional E used in Section 2 is de-

fined as E(tr(X)), i.e., E(·) used before for a noncommutative random variable x

corresponds to E(tr(·)) for a random matrix X in what follows.

Definition 4.1. Let {XN}N and {YN}N be two sequences of N × N matrices. We

say that XN and YN are asymptotically free if they converge in distribution to two free

random variables x and y, respectively, as N goes to infinity.

From Definitions 2.2 and 4.1, XN and YN are asymptotically free, if for any

positive integer m and non-negative integers p1, q1, ..., pm, qm we have

lim
N→∞

E(tr(Xp1
N Y

q1
N · · ·X

pm
N Y qm

N )) = E(xp1yq1 · · ·xpmyqm),

for two free random variables x and y.

For a sequence of N × N deterministic matrices {DN}N , if limN→∞ tr(D
m
N )

exists for every non-negative integer m, we say DN converges to d in distribution,

where d is a noncommutative random variable and its mth moment is the same as the

limit. We also write it as limN→∞DN
distr
= d or DN

distr,−→ d.



With the above notations, the following theorem of Voiculescu improves Wigner’s

semi-circle law.

Theorem 4.2. Assume X(1)
N , ..., X

(p)
N are p independent N ×N GUE random matrices

and D(1)
N , ..., D

(q)
N are q deterministic N ×N matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq as N →∞.

Then,

X
(1)
N , ..., X

(p)
N , D

(1)
N , ..., D

(q)
N

distr−→ s1, ..., sp, d1, ..., dq as N →∞,

where each si is semicircular and s1, ..., sp, {d1, ..., dq} are free. The convergence

above also holds almost surely.

This result tells that independent GUE random matrices X(1)
N , ..., X

(p)
N , {D(1)

N ,

...,D(q)
N } are asymptotically free when N is large. Furthermore, X(1)

N , ..., X
(p)
N asymp-

totically have the same distributions as free semicircular elements s1, ..., sp do, and this

is still true even when they are mixed with deterministic matrices.

4.3. Asymptotic Freeness of Haar Distributed Unitary Random Matrices. For a

general Hermtian random matrix, it can be diagonalized by a unitary matrix and in

this case, the unitary matrix is random as well. Therefore, it is also important to study

unitary random matrices.

Let U(N) denote the group ofN×N unitary matrices U , i.e., UU∗ = U∗U = IN .

Since U(N) is bounded (compact), it has Haar meansure dU with
∫
U(N)

dU = 1. Thus,

dU is a probability measure (it can be understood as a uniform distribution). A Haar

distributed unitary random matrix is a matrix UN randomly chosen in U(N) with re-

spect to Haar measure. One method to construct Haar unitary matrices is as follows.

First, take an N ×N random matrix whose entries are the independent standard com-

plex Gaussian random variables. Then, use the Gram-Schmidt orthogonalization pro-

cedure to make it unitary.

A noncommutative random variable u is called Haar unitary if it is unitary, i.e.,

uu∗ = u∗u = 1 and E(um) = δ0,m, i.e., 0 when m > 0. A Haar unitary random matrix

is Haar unitary, i.e., if U ∈ U(N), then E(tr(Um)) = 0 for m > 0 [6].

Theorem 4.3. Assume U (1)
N , ..., U

(p)
N are p independent N × N Haar unitary random

matrices and D(1)
N , ..., D

(q)
N are q deterministic N ×N matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq as N →∞.



Then, as N →∞,

U
(1)
N , U

(1)∗
N , ..., U

(p)
N , U

(p)∗
N , D

(1)
N , ..., D

(q)
N

distr−→ u1, u
∗
1, ..., up, u

∗
p, d1, ..., dq,

where each ui is Haar unitary and {u1, u
∗
1}, ..., {up, u∗p}, {d1, ..., dq} are free. The

convergence above also holds almost surely.

A more special case is as follows.

Theorem 4.4. Let {AN}N and {BN}N be two sequences of deterministic N × N

matrices with limN→∞AN
distr
= a and limN→∞BN

distr
= b. Let {UN}N be a sequence

of N ×N Haar unitary random matrices. Then,

AN , UNBNU
∗
N

distr−→ a, b as N →∞,

where a and b are free. This convergence also holds almost surely.

The above theorem says that AN and UNBNU
∗
N are asymptotically free when N

is large.

4.4. Aymptotic Freeness of Wigner Random Matrices. Let µ be a probability mea-

sure on R and aij with i ≤ j be i.i.d. real random variables with distribution µ. Let

aij = aji for i > j, and

AN =
1√
N
(aij)1≤i,j≤N ,

which is self-adjoint (symmetry) and called Wigner random matrix (ensemble).

Theorem 4.5. Let µ1, ..., µp be probability measures on R with all moments exist and

0 mean. Assume A(1)
N , ..., A

(p)
N are p independent N ×N Wigner random matrices with

entry distributions µ1, ..., µp, respectively, andD(1)
N , ..., D

(q)
N are q deterministicN×N

matrices such that

D
(1)
N , ..., D

(q)
N

distr−→ d1, ..., dq as N →∞,

and

sup
r,N
‖D(r)

N ‖ <∞.

Then, as N →∞,

A
(1)
N , ..., A

(p)
N , D

(1)
N , ..., D

(q)
N

distr−→ s1, ..., sp, , d1, ..., dq,

where each si is semicircular and s1, ..., sp, {d1, ..., dq} are free.

As a special case, ANDNAN , EN
distr−→ sds, e, where s is semicircular, sds and e

are free, and e can be arbitrary.



5. FREE DETERMINISTIC EQUIVALENTS AND RANDOM MATRIX SINGULAR

VALUE DISTRIBUTION CALCULATIONS

Let H be an N × M wireless channel matrix, which is usually modelled as a

random matrix, with additive white Gaussian noise (AWGN) of variance σ. Then, its

mutual information is

C(σ) =
1

N
E

[
log det

(
IN +

HH∗

σ

)]
, (16)

where ∗ stands for Hermitian operation. Let ν(λ) denote the eigenvalue distribution

(or spectra, or probability measure) of matrix HH∗. Then, when N is large,

C(σ) =

∫ ∞
0

log

(
1 +

λ

σ

)
dν(λ).

On the other hand, the Cauchy transform of the probability measure ν and matrixHH∗

is

G(z) =

∫ ∞
0

1

z − λ
dν(λ) = E(tr(zIN −HH∗)−1),

where z ∈ C+. Assume that G(z) exists as Im(z) → 0+, whose limit is denoted by

G(ω) with ω =Re(z). For semicircular distribution, from (15) one can see that G(ω)

exists when ω =Re(z) > 2. Then, [15],

C(σ) =

∫ ∞
σ

(
1

ω
−G(−ω)

)
dω.

The above formula tells us that, to calculate the mutual information of the channel with

channel matrix H , we only need to calculate the Cauchy transform of matrix HH∗.

As an example, if HH∗ is a GUE random matrix, then, when N is large, it is ap-

proximately semicircular and its Cauchy transform has the form of (15) with a proper

normalization. Thus, its mutual information can be calculated. However, in applica-

tions,HH∗ may not be a GUE matrix. We next introduce free deterministic equivalents

to help to calculate the Cauchy transforms of large random matrices, such as the above

HH∗, based on Speicher [4, 6, 9].

5.1. Matrix-Wise Free Deterministic Equivalents. From Section 4, we know that

when the entries Xij , i ≥ j, of an N × N self-adjoint (symmetry for real-valued or

Hermitian for complex-valued) matrix X are i.i.d. random variables, when N is large,

it is approximately semicircular. It is also true for multiple such random matrices and

multiple deterministic matrices jointly.

For a non-adjoint random matrix X of i.i.d. Gaussian entries, it can be made

into two independent self-adjoint GUE matrices as Y1 = (X + X∗)/
√
2 and Y2 =



−i(X−X∗)/
√
2. Then, X = (Y1+ iY2)/

√
2. In this case, X converges in distribution

to s = (s1 + is2)/
√
2 for two free semicircular elements s1 and s2 with the same

distribution. While s1 and s2 are semicircular, we call s circular.

In [9, 6] it is proposed to replace these random matrices by semicircular and

circular elements etc. Consider the following collections of N × N matrices, where

for each random matrix, its entries of different random variables are i.i.d.:

X = {X1, ..., Xn1} : independent self-adjoint matrices,

Y = {Y1, ..., Yn2} : independent non-self-adjoint matrices,

U = {U1, ..., Un3} : independent Haar distribued unitary matrices,

D = {D1, ..., Dn4} : deterministic matrices.

Let

s = {s1, ..., sn1} : free semicircular,

c = {c1, ..., cn2} : free circular,

u = {u1, ..., un3} : free Haar unitary,

d = {d1, ..., dn4} : abstract elements.

Assume that the joint distribution of D is the same as that of d, and X,Y,U are

independent among each other. Also assume that s, c,u have their each individual

distribution asymptotically the same as that of X,Y,U, respectively.

Let PN be a multi-variable polynomial of X,Y,U,D. Then, when N is large,

PN = P (X1, ..., Xn1 , Y1, ..., Yn2 , U1, ..., Un3 , D1, ..., Dn4)

can be replaced by

P�
N = P (s1, ..., sn1 , c1, ..., cn2 , u1, ..., un3 , d1, ..., dn4)

and P�
N is called the (matrix-wise) free deterministic equivalent of PN . Then, we have,

for any positive integer k,

lim
N→∞

E(tr(P k
N)) = E((P�

N )
k).

Now let us go back to the matrix HH∗ in (16). Although matrix H is not self-

adjoint itself, but if we follow [4] and [6] and let

T =

(
0 H

H∗ 0

)
,



then, matrix T is self-adjoint. Furthermore,

T 2 =

(
HH∗ 0

0 H∗H

)
,

which includes HH∗ as a diagonal block. Using operator-valued free probability the-

ory [9, 6], it can be similarly treated as what is done in the previous sections. Note

that T 2 is just a polynomial of T but unfortunately not all entries in matrix T have

the same distribution, which makes the above matrix-wise free deterministic equiva-

lent approach difficult to use. In order to deal with this problem, we next consider

component-wise free deterministic equivalents.

5.2. Component-Wise Free Deterministic Equivalents and Cauchy Transform Cal-
culation of Random Matrices. This part is mainly from [4]. We consider N × N

random matrices X = (Xij) where Xij are complex Gaussian random variables with

E(Xij) = 0 and E(XijX
∗
ij) = σij/N , where σij are independent of N . Now we

replace all entries Xij in X by (semi)circular elements cij such that

E(cijc
∗
ij) = E(XijX

∗
ij) = σij/N

where if Xij is real-valued (or complex-valued), then, cij is semicircular (or circular)

with mean 0; if Xij and Xkl are independent, then cij and ckl are free; if Xij = Xkl,

then cij = ckl; and E(XijX
∗
kl) = E(cijc

∗
kl) = (E(c∗ijckl))

∗. Then, we form an N ×N
matrix of (semi)circular elements as c = (cij). Matrix c is called the component-wise

free deterministic equivalent of matrix X .

Let X1, ..., Xn1 be n1 random matrices, each of which is specified above, where

all entries of each of these matrices are independent from all entries of all the re-

maining matrices. Let c1, ..., cn1 be the component-wise deterministic equivalents of

X1, ..., Xn1 , and all elements in ci are free from all elements in cj when i 6= j. Let

D1, ..., Dn2 be n2 deterministic matrices. Assume PN is a multi-variable polynomial

and

PN = P (X1, ..., Xn1 , D1, ..., Dn2),

P�
N = P (c1, ..., cn1 , D1, ..., Dn2).

We say that P�
N is the component-wise free deterministic equivalent of PN .

5.2.1. Independent Cases. Consider the case when every matrix Xi is Hermitian/self-

adjoint and entries Xij for i ≥ j are all independent. It is explicitly shown in [18]

that limN→∞(PN − P�
N ) = 0, i.e., the matrices X1, ..., Xn1 , D1, ..., Dn2 have the same



joint distribution as matrices c1, ..., cn1 , D1, ..., Dn2 do. Thus, c1, ..., cn1 may be used to

calculate the Cauchy transforms of X1, ..., Xn1 when only the variances of the entries

in matrices Xi are used, as N is large.

We now consider a special example shown in [4]. Let X = (Xij) be an N × N
Hermitian/self-adjoint Gaussian random matrix with E(Xij) = 0 and E(XijX

∗
ij) =

σij/N , and let c = (cij) be its component-wise deterministic equivalent, i.e., E(cij) =

0 and E(cijc∗ij) = σij/N . Note that since Xij = X∗ji, we have cij = c∗ji as well. Let A

be an N ×N deterministic matrix.

Consider the matrix sum Y = A+X . We next show how to calculate the Cauchy

transform of Y by calculating that of T = A+ c.

For an N × N deterministic matrix B = (Bij), define a mapping η that maps B

to another N ×N deterministic matrix η(B) with its (i, j)th component as

[η(B)]ij
∆
= E(cBc) =

∑
k,l

E(cikBklclj) =
∑
k,l

E(cikc
∗
jl)Bkl = δi,j

∑
k

σikBkk, (17)

which shows that η(B) is a diagonal matrix. Then, the Cauchy transform gT (z) of T

can be determined by solving the following fixed point equation [10], [4]:

gT (z) = tr(GT (z)), (18)

GT (z) = E

(
1

z − η(GT (z))− A

)
, (19)

where E(B)
∆
= (E(Bij)). It is shown in [10] that there is exactly one solution of the

above fixed point equation with the proper positivity constriant.

We next consider the case when X is not Hermitian, such as the channel matrix

H in (16), where all entries of X are independent. In this case, consider Y = A +X

and we next calculate the Cauchy transform of Y Y ∗. To do so, define

T =

(
0 Y

Y ∗ 0

)
=

(
0 A

A∗ 0

)
+

(
0 X

X∗ 0

)
.

Then,

T 2 =

(
Y Y ∗ 0

0 Y ∗Y

)
.

Since the eigenvalue distributions of Y Y ∗ and Y ∗Y are the same, the Cauchy transform

of Y Y ∗ is the same as that of T 2. It is presented in [4] as follows.

For an M ×M matrix B = (Bij), define

EDM
(B)

∆
= diag(E(B11), · · · , E(BMM)),



where diag stands for the M ×M diagonal matrix with its arguments as its diagonal

elements, and also define

η1(B)
∆
= E(cBc∗) and η2(B)

∆
= E(c∗Bc).

Note that since all the entry elements in matrix c are free from each other, E(cBc∗) =

EDN
(cBc∗) and E(c∗Bc) = EDN

(c∗Bc) as what is shown for η in (17).

Then, the Cauchy transform gT 2(z) of T 2 or Y Y ∗ is gT 2(z) = tr(GT 2(z)) and

GT 2(z) can be obtained by solving the following fixed point equations [13], [4]:

zGT 2(z2) = GT (z) = ED2N

( z − zη1(G2(z
2)) −A

−A∗ z − zη2(G1(z
2))

)−1
 , (20)

where

zG1(z) = EDN

[(
1− η1(G2(z)) + A

1

z − zη2(G1(z))
A∗
)−1

]
, (21)

zG2(z) = EDN

[(
1− η2(G1(z)) + A

1

z − zη1(G2(z))
A∗
)−1

]
. (22)

5.2.2. Correlated Cases and Summary. When the entries in matrix X are correlated,

similar treatment as the above can be done [4]. One can still get the Cauchy transform

of Y whenX is Hermitain by solving the fixed point equation (18)-(19) and the Cauchy

transform of Y Y ∗ when X is not Hermitian by solving the fixed point equation (20)-

(22), where η(B) = E(cBc) may not be diagonal as what is calculated in (17), and

η1(B) and η2(B) may not be diagonal either. An example of correlated entries in X

is that each column vector (or row vector) of X is a linear transform of a vector of

independent Gaussian random variables.

A simpler example of correlated cases is when random matrix X1 = BX where

B is a deterministic matrix and X is a random matrix of independent entries. In this

case, X1 can be treated as a product of two matrices of B and X and thus, was covered

previously.

The above Cauchy transform calculation is only based on the covariances (the

second order statistics) of the entries of random matrix X . As we mentioned easlier,

in this case one does not need to implement Monte-Carlo simulations to do the calcu-

lations that may be not convenient in practice when X has a large size.

Going back to the mutual information in the beginning of this section, we can just

let A = 0 in the above to get the Cauchy transform of HH∗ = Y Y ∗.



As a remark, the deterministic equivalents defined above are from [9, 6, 4], which

we refer to for any difference with those appeared in [12, 13].

6. CONCLUSIONS

As mentioned in the beginning of this paper, the main goal here is to introduce

free probability theory and its application to random matrices as simple as possible. It

is intended for a non-mathematics major researcher in, for example, communications

and signal processing areas. This paper is mainly based on [4, 5, 6, 7].

Free probability theory is about noncommutative elements or random variables,

such as, random matrices, in contrast to the conventional (real-valued or complex-

valued) commutative random variables in the classical probability theory. The free-

ness significantly simplifies the calculations of the moments and therefore the distribu-

tions, and interestingly, random matrices, when their size is large, do have the freeness

asymptotically. Therefore, free probability theory is naturally applied to calculate the

asymptotic distributions of the eigenvalues/singular-values of random matrices when

their size is large, such as wireless channel matrices in massive MIMO systems. It is

particularly interesting that the calculation only needs the second order statistics of the

matrix entries.

This paper is based on the author’s own understanding on free probability the-

ory and by no means the material covered in this paper is complete. More complete

materials on this topic are referred to [4, 5, 6, 7, 8, 11, 15, 17].
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