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A Robust Generalized Chinese Remainder Theorem
for Two Integers

Xiaoping Li, Xiang-Gen Xia, Fellow, IEEE, Wenjie Wang, Member, IEEE, and Wei Wang

Abstract— A generalized Chinese remainder theorem (CRT)
for multiple integers from residue sets has been studied recently,
where the correspondence between the remainders and the
integers in each residue set modulo several moduli is not known.
A robust CRT has also been proposed lately to robustly recon-
struct a single integer from its erroneous remainders. In this
paper, we consider the reconstruction problem of two integers
from their residue sets, where the remainders not only are out
of order but also may have errors. We prove that two integers
can be robustly reconstructed if their remainder errors are less
than M/8, where M is the greatest common divisor of all the
moduli. We also propose an efficient reconstruction algorithm.
Finally, we present some simulations to verify the efficiency of
the proposed algorithm. This paper is motivated from and has
applications in the determination of multiple frequencies from
multiple undersampled waveforms.

Index Terms— Chinese remainder theorem (CRT), robust CRT,
dynamic range, residue sets, remainder errors, frequency deter-
mination from undersampled waveforms.

I. INTRODUCTION

THE traditional Chinese remainder theorem (CRT) is to
reconstruct a single nonnegative integer from its remain-

ders modulo several smaller positive integers (called moduli)
and it has tremendous applications in various areas [1]–[4].
There are various generalizations of CRT, see, for exam-
ple, [5] for some of them. One of the generalizations, general-
ized CRT, is to determine multiple integers from their residue
sets where each residue set is the set of remainders of the
multiple integers modulo a modulus and the correspondence
between the remainders and the multiple integers is not
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known, i.e., each residue set is not ordered. This problem
was first studied in [6]. It was later independently studied
in [7]–[13], motivated from multiple frequency determina-
tion in multiple undersampled waveforms. It exists in many
engineering applications, such as phase unwrapping in signal
processing [14]–[20], multiwavelength optical interferometry
[21], [22], radar signal processing [23]–[27], mechanical engi-
neering [28], and wireless sensor networks [29], [30].

Usually the moduli in CRT or the generalized CRT men-
tioned above are required to be pairwisely co-prime, which
causes the reconstruction not robust in the sense that a small
error in its remainders may cause a large reconstruction error.
Robust reconstruction methods, i.e., robust CRT, for a single
integer from its erroneous remainders have been studied and
obtained in [31]–[39]. The basic idea for these robust CRT
is to include a common factor among all the moduli and
then as long as the remainder errors are less than the quarter
of the greatest common divisor (gcd) of all the moduli, a
reconstruction error of the integer will be less than the max-
imum remainder error. Several robust reconstruction methods
have been proposed, for example, searching based robust
CRT [33]–[35], closed-form robust CRT [36], multi-stage
robust CRT [38], [39], where in [39] the upper bound, i.e., the
quarter of the gcd, has been improved, when the remaining
integers of the moduli factorized by the gcd are not necessarily
co-prime. All these studies are only for the traditional CRT
for single integer. There is no attempt in the literature to
robustly reconstruct multiple integers from their erroneous
residue sets, i.e., robust generalized CRT, although [12] studies
the case when most of the residue sets are error-free but
only a few remainder sets include erroneous remainders and
is not in the sense of the robustness in the literature. The
main goal of this paper is on a robust generalized CRT for
two integers.

For the case of more than one integer estimation from their
residue sets, i.e., the generalized CRT, the reconstruction is
more complicated. As mentioned in [8], the main difficulty for
the case of no less than two integers comes from the fact that
the correspondence between the integer and its remainder is
not known, which happens when the remainders are obtained
by detecting the peaks of the discrete Fourier transforms (DFT)
of an undersampled waveform as described in [8]. Moreover,
the number of the remainders in a residue set may be less
than the number of the integers to determine, since there
may be two or more integers sharing the same remainder
for some moduli. While all the distinct elements in a residue
set are known, the number of repetitions of any remainder
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is not known in general unless there are only two integers
to determine. As mentioned earlier, for the robustness of
reconstructing a single integer from its erroneous remainders,
it is critical to have a gcd larger than 1 among all the
moduli. This has to hold for the above generalized CRT
for multiple integers. However, the generalized CRT methods
studied before are only when all the moduli are pairwisely co-
prime. Therefore, in order to study a robust generalized CRT,
we first need to study the generalized CRT when all the moduli
have a gcd larger than 1 and all the remainders are error-
free. A basic problem then is to determine the dynamic range
for a given set of moduli, i.e., the largest range within which
multiple nonnegative integers can be uniquely determined from
their residue sets modulo the given moduli. For this problem
and when all the moduli are pairwisely co-prime, several lower
bounds for the dynamic range were obtained in [7]–[10].
A most recent tight bound was obtained in [13] for two
integers where a closed-form and a simple determination
algorithm were also obtained.

In this paper, we first present the largest dynamic range for
two integers when all the moduli have a gcd larger than 1 and
the remaining integers factorized by the gcd of the moduli are
pairwisely co-prime. For the generalized CRT with erroneous
remainders, we obtain a remainder error bound of the eighth
of the gcd of all the moduli that leads to a robust estimation
of two integers. An efficient reconstruction algorithm is also
presented when two integers are within the largest dynamic
range. Note that, for the robustness, the remainder error bound,
the eighth of the gcd for two integers, seems not surprising,
when the remainder error bound, the quarter of the gcd, for
a single integer in CRT is known. However, as we shall see
later, the proof is not trivial at all.

This paper is organized as follows. In Section II, we
briefly describe the mathematical problem and introduce some
notations. In Section III, we present the largest dynamic range
and a closed-form determination algorithm for two integers
from their error free residue sets, where the moduli are no
longer pairwisely co-prime. In Section IV, we present a robust
generalized CRT for two integers. In Section V, we present
an application of the proposed robust generalized CRT in
frequency estimation from multiple undersampled waveforms.
In Section VI, we conclude this paper.

II. PROBLEM DESCRIPTION

We begin with the multiple frequency determination prob-
lem from multiple undersampled waveforms [8]. For simplic-
ity, a complex-valued waveform is given as

x(t) =
L∑

l=1

Ale
2π j fl t + w(t) (1)

where w(t) is the additive noise, Al and fl are nonzero
coefficients and frequencies, respectively. Suppose that these
frequencies are distinct non-negative integers, i.e., fl = Nl ,
where Nl ∈ N and N denotes the set of natural numbers,
Ni �= N j for i �= j , in Hz. Let K ≥ 2 and m1, . . . , mK be K
positive integers with 1 < m1 < · · · < mK . For each subscript
k ∈ {1, . . . , K }, the sampled signal with sampling frequency

mk Hz is

xmk [n]= x
( n

mk

)
=

L∑

l=1

Ale
2π j Nl n/mk + w

( n

mk

)
, n ∈ Z (2)

where Z denotes the set of integers. Then we take the mk-point
DFT to xmk [n] in (2), and obtain

DFTmk

(
xmk [n])[r ] =

L∑

l=1

Alδ[r − rl,k ] + W [r ] (3)

where δ[n] is the the Kronecker delta function, i.e., δ[n] equals
one when n = 0 and zero elsewhere. Without considering
the influence of noise, remainders rl,k ≡ Nl mod mk can be
detected from the mk-point DFT without the order information.
Then we have the K error-free residue sets

Rk(N1, . . . , NL ) = {
r1,k, . . . , rL ,k

}
, k = 1, . . . , K (4)

from the K DFTs. In practice, signals are usually corrupted by
noises and thus the obtained remainders rl,k may have errors.
Let the erroneous remainders be r̃l,k :

r̃l,k = rl,k + �rl,k , l = 1, . . . , L; k = 1, . . . , K (5)

where �rl,k denote the errors. Then the erroneous residue sets
are

R̃k(N1, . . . , NL ) = {
r̃1,k, . . . , r̃L ,k

}
, k = 1, . . . , K . (6)

The problem is to determine the L frequencies {N1, . . . , NL }
from these erroneous residue sets.

Under the condition of all the remainders are error-free,
L = 2, and all the K moduli m1, . . . , mK are pairwisely
co-prime, in [13] we obtained the largest dynamic range
within which two frequencies (integers), {N1, N2}, can be
uniquely determined from their residue sets Rk(N1, N2),
where an efficient reconstruction algorithm was also proposed.
In this paper, we first generalize the largest dynamic range
result obtained in [13] from pairwisely co-prime moduli
M′ = {m1, . . . , mK } to non-pairwisely co-prime moduli
M = {M1, . . . , MK } with Mk = Mmk for k = 1, . . . , K ,
where 0 < m1 < · · · < mK are pairwisely co-prime
moduli and M is a positive integer. We then study the
reconstruction problem of two integers {N1, N2} from the
erroneous residue sets R̃1(N1, N2), . . . , R̃K (N1, N2) modulo
M1, . . . , MK , respectively. This question has two parts: 1) the
bound of errors, i.e., to what extent of errors we can have
a robust estimation of {N1, N2}? 2) how to efficiently and
robustly reconstruct {N1, N2}? In what follows, we always
denote M′ = {m1, . . . , mK } a set of moduli, � = ∏K

k=1 mk ,
and M = {M1, . . . , MK } a set of moduli. A set of moduli,
such as M, is called a modulus set.

III. GENERALIZED CRT FOR TWO INTEGERS

WITH ERROR-FREE RESIDUE SETS

In this section, we first recall the basics of dynamic range
with modulus set M′ obtained in [13]. Then we obtain the
largest dynamic range with a modulus set M and an efficient
method to determine two integers from their error-free residue
sets.
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We first introduce some notations. The remainder of x
modulo y is denoted as 〈x〉y . For integer n > 0, let Zn denote
the set {0, 1, . . . , n − 1}. A set of n elements is called an n-set.
If we let N = {N1, . . . , NL } with Nl ∈ N, Rk(N1, . . . , NL )
is also denoted by Rk(N ).

Definition 1: The dynamic range of a modulus set M =
{m1, . . . , mK } is the minimal positive integer D such that
there are two different L-sets A and B with A,B ⊆ ZD+1
satisfying Rk(A) = Rk(B) for each modulus mk . It is denoted
by DL(m1, . . . , mK ), or simply DL(M).

According to Definition 1, if any set of L integers in
ZD′ can be uniquely determined by their remainders modulo
m1, . . . , mK , then we have DL(M) ≥ D′. On the other hand,
if L integers are in ZDL (M), then they can be uniquely deter-
mined from their residue sets modulo m1, . . . , mK . Hence, the
dynamic range DL(M) in Definition 1 is the largest dynamic
range within which any L integers can be uniquely determined
by their residue sets. For L = 2 and a given modulus set M′,
the largest dynamic range D2(M′) is obtained as follows.

Lemma 1 [13]: If mK−1 ≥ 3, then D2(M′) = d , where

d = min
I⊆{1,...,K }

{∏

i∈I

mi +
∏

i∈I

mi

}
. (7)

In other words, if M′ �= {2, 2n +1} for any positive integer n,
then D2(M′) = d .

As an example, we consider the case of M′ = {3, 5, 7}.
According to Lemma 1, we know that the largest dynamic is
d = 3 × 5 + 7 = 22, i.e., D2(M′) = 22. For the largest
dynamic range with modulus set M, we have the following
result.

Theorem 1: If m1 ≥ 3 and K > 2, then D2(M) = Md .
The proof of this theorem is similar to [13, Th. 1] and

therefore it is omitted.
Let us continue the above example. Let M = 100, then the

largest dynamic range with modulus set M for two integers
is Md = 2200, i.e., D2(M) = 2200. Next, we give the basic
idea of reconstructing the two integers {N1, N2} from their
error-free residue sets Rk(N1, N2) with modulus set M, where
the two integers are within the largest dynamic range.

We begin with the reconstruction of one integer N with
modulus set M. Let N be an integer to be reconstructed, and
rk be the remainders of N modulo Mk , i.e.,

rk ≡ N mod Mk , k = 1, . . . , K (8)

where 0 ≤ rk < Mk . From (8), we have

rk ≡ N mod M, k = 1, . . . , K . (9)

That is, all remainders rk modulo M have the same value,
named common remainder [40], denoted as rc. It follows from
(8) that both rk − rc and N − rc have the same factor M . Let

Q = N − rc

M
(10)

and

qk = rk − rc

M
. (11)

Then, congruence (8) is equivalent to

qk ≡ Q mod mk, k = 1, . . . , K .

According to the traditional CRT, Q can be uniquely recon-
structed as

Q ≡
K∑

k=1

�k�kqk mod � (12)

if and only if Q < �, where �k = �/mk , and �k is the
multiplicative inverse of �k modulo mk , i.e.,

�k�k ≡ 1 mod mk .

Therefore, N can be uniquely reconstructed by

N = M Q + rc. (13)

Similar to the reconstruction of one integer, the common
remainders are significant to the reconstruction of {N1, N2}
from the residue sets Rk(N1, N2) with modulus set M. First,
from the residue sets, obtain the two common remainders
modulo all the remainders by M .

Let {rc
1 , rc

2} be the two common remainders. When the two
common remainders are not equal, i.e., rc

1 �= rc
2 , we have

Rk(N1, N2) = {
r1,k, r2,k

}
with r1,k �= r2,k . Note that

{rc
1 , rc

2 } = {〈r1,k〉M , 〈r2,k〉M
}

holds for each k ∈ {1, . . . , K }. On the other hand,

{rc
1 , rc

2} = {〈N1〉M , 〈N2〉M
}
.

Hence, all the remainders in Rk(N1, N2) can be split into
two sets, {r1,1, . . . , r1,K } and {r2,1, . . . , r2,K }, according to
rc

1 and rc
2 . Using the traditional CRT, N1 and N2 can be

uniquely determined by their remainders {r1,1, . . . , r1,K } and
{r2,1, . . . , r2,K }, respectively. This also means that {N1, N2}
can be uniquely determined if and only if 0 ≤ N1, N2 < M�.

When the two common remainders are the same, i.e., rc
1 =

rc
2 = rc, we let

ql,k = rl,k − rc

M
, l = 1, 2; k = 1, . . . , K .

Then, (8) is equivalent to

ql,k ≡ Nl − rc

M
mod mk . (14)

Denote Rk(Q1, Q2) = {q1,k, q2,k} for k = 1, . . . , K , where
Ql = (Nl − rc)/M for l = 1, 2. Since Nl < Md , we
have Ql < d . By the definition of dynamic range, we know
that {Q1, Q2} can be uniquely determined by their residue
sets Rk(Q1, Q2). Consequently, {N1, N2} can be uniquely
reconstructed by using (13).

In summary, we have the following corollary.
Corollary 1: Assume that m1 ≥ 3 and K > 2. Let {rc

1 , rc
2}

be the common remainders defined as above. Then we have
the following results. 1) If rc

1 �= rc
2 and 0 ≤ N1, N2 < M�,

then {N1, N2} can be uniquely determined from the above
algorithm; 2) If rc

1 = rc
2 and 0 ≤ N1, N2 < Md , then {N1, N2}

can be uniquely determined from the above algorithm.
Example 1: Let M = 100,M′ = {3, 5, 7}. According

to the above discussion, we know that D2(M) = 2200.
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Suppose that the residue sets are R1(N1, N2) = {69, 195},
R2(N1, N2) = {95, 169}, and R3(N1, N2) = {69, 395}. Then
the two common remainders are {rc

1 , rc
2} = {69, 95}. Hence,

the remainder in the residue sequences can be split into
{69, 169, 69} and {195, 95, 395} corresponding to rc

1 = 69 and
rc

2 = 95, respectively. By using the traditional CRT, we have
{N1, N2} = {2169, 1095}.

Example 2: Consider the example above. Suppose that the
residue sets are R1(N1, N2) = {98, 198}, R2(N1, N2) =
{98, 398}, and R3(N1, N2) = {398, 498} modulo 300, 500,
and 700, respectively. In this case, the two common remainders
are the same: rc

1 = rc
2 = 98. By (11), we have R1(Q1, Q2) =

{0, 1}, R2(Q1, Q2) = {0, 3}, R3(Q1, Q2) = {3, 4} modulo 3,
5, and 7, respectively. By using the reconstruction algorithm
obtained in [13], we have {Q1, Q2} = {10, 18}. By (13), we
can reconstruct the two integers {N1, N2} as {1098, 1898}.

IV. A ROBUST GENERALIZED CRT FOR TWO INTEGERS

In this section, we discuss a robust generalized CRT for two
integers when the residue sets have errors.

A. Remainders With Errors

As discussed above, the two common remainders, {rc
1 , rc

2 },
are the key of the reconstruction of integers {N1, N2}. When
remainders are error-free, the two common remainders can be
directly determined by any residue set of {N1, N2}. However,
this may not be true when residue sets have errors. Take
Example 2 for example. Suppose that the erroneous residue
sets are R̃1(N1, N2) = {108, 209}, R̃2(N1, N2) = {92, 399},
and R̃3(N1, N2) = {397, 507}. Then the residue sets modulo
M are {8, 9}, {92, 99}, and {7, 97}, respectively. Clearly, the
erroneous residue sets R̃k(N1, N2) modulo M are different
from each other and we can not directly determine the common
remainders {rc

1 , rc
2 } from R̃k(N1, N2).

Let r̃ c
l,k be the remainder of r̃l,k modulo M , i.e.,

r̃ c
l,k = 〈r̃l,k〉M , l = 1, 2; k = 1, . . . , K . (15)

In case S̃k(N1, N2) has only one element, i.e., r̃1,k = r̃2,k ,
we have r̃ c

1,k = r̃ c
2,k counted twice (repeated once) in the

above sequence. This provides total 2K common remainders
and some of them may be the same. In order to estimate
two common remainders from these 2K common remainders
r̃ c

1,1, . . . , r̃ c
1,K , r̃ c

2,1, . . . , r̃ c
2,K , two appropriate clusters, each

of which contains K remainders, are formed first. Intuitively
the deviation of two clusters should be large. Now, we
determine two clusters from these erroneous residue sets. For
convenience, we denote these 2K common remainders as
r̃ c

1 , . . . , r̃ c
2K , and then sort them in the increasing order as

follows

r̃ c
ς(1)

≤ · · · ≤ r̃ c
ς(2K )

(16)

where ς is a permutation of the set {1, . . . , 2K }.
For any two adjacent common remainders r̃ c

ς(k)
and r̃ c

ς(k+1)
,

we define the distance Dk as

Dk =
{

r̃ c
ς(k+1)

− r̃ c
ς(k)

, if k = 1, . . . , 2K − 1

r̃ c
ς(1)

− r̃ c
ς(2K )

+ M, if k = 2K .
(17)

Fig. 1. Illustration of Dk .

Fig. 1 gives the illustration of the defined distance Dk . It is
clear that the nonnegative distances Dk satisfy the following
equation

2K∑

k=1

Dk = M. (18)

Moreover, we have the following results.
Lemma 2: Let τ = max

{∣∣�rl,k
∣∣ , l = 1, 2; k = 1, . . . , K

}
,

where �rl,k are the remainder errors as defined in (5).
If τ < M/8, then there exists one and only one subscript
k0 ∈ {1, . . . , K } satisfies

Dk0 + Dk0+K > M/2. (19)

Moreover, if we let

�1 � {ω1, . . . , ωK } = {
r̃ c
ς(k0+1)

, . . . , r̃ c
ς(k0+K )

}
,

�2 � {υ1, . . . , υK }

=

⎧
⎪⎪⎨

⎪⎪⎩

{r̃ c
ς(1)

, . . . , r̃ c
ς(K )

}, if k0 = K

{r̃ c
ς(k0+1+K )

−M, . . . , r̃ c
ς(2K )

−M, r̃ c
ς(1)

, . . . , r̃ c
ς(k0 )

}, if k0 �= K

(20)

with ωi ≤ ω j , υi ≤ υ j for 1 ≤ i < j ≤ K , then

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ. (21)
This Lemma is proved in Appendix A.

Example 3: Let us consider the example proposed at the
beginning of this section. By (16), we obtain the remainder
sequence {r̃ c

1 , . . . , r̃ c
2K } = {8, 9, 92, 99, 97, 7} and its sorted

sequence {r̃ c
ς(1)

, . . . , r̃ c
ς(2K )

} in (16) as

0 < 7 < 8 < 9 < 92 < 97 < 99 < M = 100.

Since D3 + D6 = (92 − 9)+ (7 − 99 + 100) = 83 + 8 > M/2,
we know that k0 = 3 and obtain from (20) that the two clusters
are

�1 = {92, 97, 99}, �2 = {7, 8, 9}. (22)

Fig. 2(a) and (b) show the sketches of two clusters �1 and
�2 when the two common remainders satisfy

0 ≤ ∣∣dM (rc
1 , rc

2)
∣∣ < M/4 (23)
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Fig. 2. (a) Two common remainders satisfy (23); (b) Two common
remainders satisfy (24).

and

M/4 ≤ ∣∣dM (rc
1 , rc

2 )
∣∣ ≤ M/2 (24)

respectively. In the figures, the remainder error bound is τ ,
and the common remainders of rc

1 (or N1) and rc
2 (or N2) are

denoted by “�” and “©”, respectively. In the case of (23),
two clusters �1 and �2 may not be properly grouped from
the sequence

{
r̃ c
ς(1)

, . . . , r̃ c
ς(2K )

}
, as shown in Fig. 2(a). To be

specific, both of �1 and �2 may contain erroneous common
remainders of rc

1 and rc
2 . In the case of (24), two clusters

�1 and �2 can be grouped without any overlaps from the
sequence, as shown in Fig. 2(b).

Before reconstructing {N1, N2}, we introduce a kind of
circular distance below.

Definition 2: For real numbers x and y, the circular dis-
tance of x to y for a non-zero positive number C is defined
as

dC(x, y)
�= x − y −

[
x − y

C

]
C (25)

where [·] stands for the rounding integer, i.e., for any x ∈ R,
where R denotes the set of all reals, [x] is an integer and
subject to

−1/2 ≤ x − [x] < 1/2. (26)
The main processes of determining two integers {N1, N2}

are divided into three steps. Firstly, estimate two common
remainders {rc

1 , rc
2 } from the obtained two clusters �1 and �2.

Then reconstruct two integers {Q1, Q2} after the residue sets
{q1,k, q2,k} are properly determined. Finally, reconstruct two
integers {N1, N2} by using the traditional CRT after two
common remainders are modified.

Let

ω′
k =

{
ωk, if ωK − υ1 ≤ M/2

ωk − M, if ωK − υ1 > M/2
(27)

for all k = 1, . . . , K . Then, the two common remainders{
rc

1 , rc
2

}
can be estimated as {ω1, ω2}:

ω1 �
ω′

1 + · · · + ω′
K

K
, ω2 � υ1 + · · · + υK

K
. (28)

Note that ω1 and ω2 defined in (28) may be negative values.
After cancelling the appropriate estimate of common remain-
der from the erroneous remainders r̃l,k , we can obtain the

estimates of integers ql,k in (14), denoted as q̂l,k :

q̂l,k =
[

r̃l,k − ωt

M

]
, l = 1, 2; k = 1, . . . , K (29)

where

t =
{

1, if dM (r̃ c
l,k, ωk1 ) = 0 for some k1

2, if dM (r̃ c
l,k, υk2 ) = 0 for some k2

(30)

with k1, k2 ∈ {1, . . . , K }. Let

Rk(Q̂1, Q̂2) = {
q̂1,k, q̂2,k

}
, k = 1, . . . , K . (31)

Then the two estimates {Q̂1, Q̂2} of the integers {Q1, Q2} can
be reconstructed from the residue sets Rk(Q̂1, Q̂2) modulo
M′ by using the generalized CRT for two integers obtained
in [13].

Example 4: Let us consider Example 3. Since ω3 − υ1 =
99 − 7 = 92 > M/2, we obtain

ω′
1 = −8, ω′

2 = −3, ω′
3 = −1.

Recall that υ1 = 7, υ2 = 8, and υ3 = 9. According to the
definitions of ω1 and ω2 in (28), we have

ω1 = −4, ω2 = 8.

By (29) and (31), we obtain R1(Q̂1, Q̂2) = {1, 2},
R2(Q̂1, Q̂2) = {1, 4}, and R3(Q̂1, Q̂2) = {4, 5}. By using the
generalized CRT for two integers obtained in [13], we have

{Q̂1, Q̂2} = {11, 19}.
Now, we estimate the two integers {N1, N2} after the esti-

mates {ω1, ω2} of the two common remainders and {Q̂1, Q̂2}
are obtained. The estimates of {N1, N2} are denoted as
{N̂1, N̂2} in the following.

1) Q̂1 = Q̂2 = Q̂.
In this case, the estimates {N̂1, N̂2} can be reconstructed as

{
N̂1, N̂2

} = {
M Q̂ + ω1, M Q̂ + ω2

}
. (32)

2) Q̂1 �= Q̂2.
In this case, we can not determine {N̂1, N̂2} from {ω1, ω2}

and {Q̂1, Q̂2}, which is because the correspondence between
the elements in two sets {ω1, ω2} and {Q̂1, Q̂2} is not known.
To be specific, we cannot determine whether {N̂1, N̂2} are
{M Q̂1 +ω1, M Q̂2 +ω2} or {M Q̂1 +ω2, M Q̂2 +ω1}. Next, we
modify the two estimates {ω1, ω2} of the common remainders
{rc

1 , rc
2 } so that the modified estimates r̂ c

1 and r̂ c
2 correspond to

Q̂1 and Q̂2, respectively. The main processes are two: Firstly,
we select the elements from {ω′

1, . . . , ω
′
K } and {υ1, . . . , υK }

to form two groups, where all the elements in one group
correspond to Q̂1 and the other correspond to Q̂2. Then, r̂ c

1
and r̂ c

2 are determined by averaging the groups corresponding
to Q̂1 and Q̂2, respectively.

Let

�′ �
{
ω′

1, . . . , ω
′
K , υ1, . . . , υK

}
. (33)

By (20) and (27), we know that the elements in �′
are either r̃ c

ς(i)
or r̃ c

ς(i)
− M for all i = 1, . . . , 2K .

From the definitions of r̃ c
ς(i)

in (16), we know that
{r̃ c

ς(1)
, . . . , r̃ c

ς(2K )
} are the 2K sorted common remainders
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from {r̃ c
1,1, . . . , r̃ c

1,K , r̃ c
2,1, . . . , r̃ c

2,K }. Hence, for all l = 1, 2;
k = 1, . . . , K , either r̃ c

l,k or r̃ c
l,k − M is included in �′, and in

the meanwhile, �′ only consists of these 2K elements. In the
following, for convenience, we call both r̃ c

l,k and r̃ c
l,k − M as

the common remainders of r̃l,k .
When Q̂1 �= Q̂2, we know from the traditional CRT that

there exists at least a subscript k ∈ {1, . . . , K } such that

q̂1,k �= q̂2,k . (34)

Let

K � {k1, . . . , k�}, 1 ≤ ki ≤ K

be all the distinct subscripts of q̂1,ki (or q̂2,ki ) satisfying (34),
i.e., q̂1,ki �= q̂2,ki , and thus from (34), we have � ≥ 1. When
q̂1,ki �= q̂2,ki , the correspondence between {q̂1,ki , q̂2,ki } and
{Q̂1, Q̂2} is known because we can determine q̂l,ki by the
obtained integers Q̂l modulo mki , i.e.,

q̂l,ki = 〈
Q̂l

〉
mki

, l = 1, 2 (35)

for every i , 1 ≤ i ≤ �. Note that the obtained values
q̂1,ki and q̂2,ki above are the same the values as determined
by (29) from the residue set {r̃1,ki , r̃2,ki }. Since q̂1,ki �= q̂2,ki ,
we have r̃1,ki �= r̃2,ki . Thus, the correspondence between
{q̂1,ki , q̂2,ki } and {r̃1,ki , r̃2,ki } (or {Q̂1, Q̂2}) is known as well,
which can be uniquely determined by (29). Assume that the
common remainders of r̃1,ki and r̃2,ki in �′ are r̂ c

1,ki
and

r̂ c
2,ki

, respectively. As discussed above, r̂ c
1,ki

are either r̃ c
1,ki

or r̃ c
1,ki

− M , and r̂ c
2,ki

are either r̃ c
2,ki

or r̃ c
2,ki

− M . Thus,
r̂ c

1,ki
, r̂ c

2,ki
∈ �′ can be determined by

dM(r̃ c
1,ki

, r̂ c
1,ki

) = 0, dM (r̃ c
2,ki

, r̂ c
2,ki

) = 0 (36)

where ki ∈ K. By (15), we know that r̂ c
1,ki

and r̂ c
2,ki

can also
be determined by

dM (r̃1,ki , r̂ c
1,ki

) = 0, dM (r̃2,ki , r̂ c
2,ki

) = 0. (37)

Clearly, r̂ c
1,ki

and r̂ c
2,ki

correspond to the remainders r̃1,ki

and r̃2,ki , respectively. Hence, r̂ c
1,ki

corresponds to Q̂1, while

r̂ c
2,ki

corresponds to Q̂2. In other words, {r̂ c
1,k1

, . . . , r̂ c
1,k�

} and

{r̂ c
2,k1

, . . . , r̂ c
2,k�

} correspond to the common remainders rc
1 and

rc
2 , respectively. Under the least square estimate criterion, the

two common remainders can be modified as

r̂ c
1 � arg min

x∈[c1,c2]

�∑

i=1

‖x − r̂ c
1,ki

‖2,

r̂ c
2 � arg min

x∈[c3,c4]

�∑

i=1

‖x − r̂ c
2,ki

‖2 (38)

where the variable x takes integer values, and

c1 = min{r̂ c
1,k1

, . . . , r̂ c
1,k�

}, c2 = max{r̂ c
1,k1

, . . . , r̂ c
1,k�

},
c3 = min{r̂ c

2,k1
, . . . , r̂ c

2,k�
}, c4 = max{r̂ c

2,k1
, . . . , r̂ c

2,k�
}.

Therefore, the estimates {N̂1, N̂2} can be reconstructed as
{

N̂1, N̂2
} = {

M Q̂1 + r̂ c
1 , M Q̂2 + r̂ c

2

}
. (39)

Noting that the estimates {N̂1, N̂2} obtained by (32) or (39)
may be non-integers. For this case, we use

{[N̂1], [N̂2]
}

as

the estimates of the integers {N1, N2}, where [·] denotes the
rounding operation defined in (26).

Example 5: Let us consider Example 4. Note that
{Q̂1, Q̂2} = {11, 19} calculated before. Then the remainders
of Q̂1 = 11 and Q̂2 = 19 modulo M′ are {q̂1,1, q̂1,2, q̂1,3} =
{2, 1, 4} and {q̂2,1, q̂2,2, q̂2,3} = {1, 4, 5}, respectively. Clearly,
q̂1,k �= q̂2,k , for k = 1, 2, 3. According to (29), we deduce that

{r̃1,1, r̃1,2, r̃1,3} = {209, 92, 397},
{r̃2,1, r̃2,2, r̃2,3} = {108, 399, 507}.

By (33), we have

�′ = {ω′
1, ω

′
2, ω

′
3, υ1, υ2, υ3} = {−8,−3,−1, 7, 8, 9}.

Since dM (r̃1,1, 9) = 0, dM(r̃1,2,−8) = 0, dM (r̃1,3,−3) = 0,
we obtain from (37) that

r̂ c
1,1 = 9, r̂ c

1,2 = −8, r̂ c
1,3 = −3.

By (38), we can obtain the estimate

r̂ c
1 = −1.

Similarly, we have

dM (r̃2,1, 8) = 0, dM (r̃2,2,−1) = 0, dM (r̃2,3, 7) = 0.

Hence,

r̂ c
2,1 = 8, r̂ c

2,2 = −1, r̂ c
2,3 = 7

and then we obtain r̂ c
2 = 5. By (39), we have

{
N̂1, N̂2

} = {1099, 1905}.
Next theorem shows that the above estimates

{
N̂1, N̂2

}
of

the two integers {N1, N2} are robust when the remainder error
bound is less than M/8.

Theorem 2: Let τ = max{|�rl,k |, l = 1, 2; k = 1, . . . , K },
where �rl,k are the remainder errors as defined in (5).
If τ < M/8, then

∣∣N̂l − Nl
∣∣ ≤ τ, l = 1, 2 (40)

where
{

N̂1, N̂2
}

are defined in (32) or (39).
The proof of this theorem can be divided into three

steps. First, obtain the two estimates ω1 and ω2 from the
given residue sets {r̃1,1, r̃2,1}, . . . , {r̃1,K , r̃2,K }. Then check
the two integers {Q̂1, Q̂2}, where the two integers are deter-
mined by solving the quadratic equation that is obtained by
the residue sets {q̂1,1, q̂2,1}, . . . , {q̂1,K , q̂2,K }. Finally, check
the reconstructions {N̂1, N̂2} after the estimates {r̂ c

1 , r̂ c
2 } and

{Q̂1, Q̂2} are properly corresponded. More details can be seen
Appendix B .

Let us recall the example presented at the beginning of this
section. Note that the remainder error bound τ = 11, which
is less than the robustness error upper bound M/8 = 12.5.
By Theorem 2, we know that the estimates are robust. In fact,
the true values of the two integers are {1098, 1898} and the
estimates are {1099, 1905}. Hence, the maximal estimation
error of the two integers is 7, which is small than the remainder
error bound τ and conforms the result obtained in Theorem 2.
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Algorithm 1 Robust Generalized CRT for Two Integers
Step 1 Calculate r̃ c

l,k in (15) and sort them in the increasing
order as (16).
Step 2 Compute k0 as

k0 = arg max
k∈{1,...,K }

{
Dk + Dk+K

}
(41)

where Dk is defined in (17).
Step 3 Obtain the two clusters �1 and �2 by (20).
Step 4 Calculate ω1 and ω2 by (28).
Step 5 Determine residue sets Rk(Q̂1, Q̂2) as

Rk
(
Q̂1, Q̂2

) = {
q̂1,k, q̂2,k

}
(42)

where q̂l,k are defined in (29).
Step 6 Reconstruct {Q̂1, Q̂2} by using the generalized CRT
for two integers obtained in [13].
Step 7 Reconstruct

{
N̂1, N̂2

}
by (32) or (39).

B. Robust Generalized CRT Algorithm for Two Integers

To summarize what we have studied before, we obtain
Algorithm 1.

Although the above robust generalized CRT is for two
integers, it is straightforward to be generalized to two reals
as the case of one integer in our previous work [36], [37].

V. SIMULATION RESULTS

In this section, we show some simulations to illustrate the
performance of the proposed robust generalized CRT for two
integers and its application in two frequency determination
from multiple undersampled waveforms.

A. Simulation of the Robust Generalized CRT

Let us first consider the estimation error versus the error
upper bound for the proposed robust generalized CRT for two
integers. By Theorem 2, we know that the maximal error
level τ needs to be upper bounded by τ < M/8 for the
robustness. In the simulation, parameter M = 100, and the
co-prime integers from m1 to m3 are 3, 5, and 7, respectively.
Two unknown integers {N1, N2} are chosen uniformly at
random from the interval (0, 2000) and the maximal error
levels are set as 0, 1, . . . , 15. For these maximal error levels,
the last three parameters, 13, 14, and 15, do not satisfy the
robustness upper bound τ < M/8 = 12.5. We call the process
of determining {N1, N2} as a trial, and 10000 trials for each
of the maximal error level are simulated. In Fig. 3, we present
the curve of the mean error EN versus the maximal error level.
The mean error is defined as

EN = Etrials

{
1

2

2∑

l=1

|N̂l − Nl |
}

(43)

where Etrials stands for the mean over all the trials,
Nl and N̂l are the true integers and the estimates in one
trial, respectively. Fig. 3 shows that the two integers can
be robustly reconstructed from their erroneous residue sets
by using the proposed robust generalized CRT method,

Fig. 3. Estimation errors versus the maximal error level.

Fig. 4. Probability Pe versus the maximal error level.

i.e., when all the errors of the remainders are less than
the error upper bound, the reconstruction errors of {N1, N2}
are also less than this bound. It also shows that the recon-
struction errors of the two integers are small compared to
their dynamic range. When the remainder errors are larger
than the upper bound, the reconstruction errors increase
rapidly.

In Fig. 4, we give the curve of the probability Pe versus the
remainder error bound τ , where

Pe = P
(

max{�Nl } > max{�rl,k}
∣∣|�rl,k | ≤ τ

)
. (44)

It shows that the probability is zero when the error bound
τ < 13 is satisfied and non-zero when τ ≥ 13, i.e., the error
bound is not satisfied. In other words, the reconstruction is
not robust when the remainder errors are larger than the error
upper bound M/8, which agrees with Theorem 2. It also shows
that the probability increases with the increase of τ , i.e., the
larger remainder errors, the higher probability Pe or the worse
estimation performance.
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B. Two-Frequency Determination From Multiple
Undersampled Waveforms

In the simulations, two frequencies { f1, f2} are taken ran-
domly and uniformly distributed in the range (0, 2000), and
three sampling frequencies are set to be 300, 500, and 700.
The noise w(t) in (1) is additive white Gaussian noise with
mean zero and variance 10−S N R/10, and the observation of
the time duration is 10s. For each signal-to-noise ratio (SNR),
the number of trials is 10000. Beyond the proposed robust
generalized CRT, three other methods are considered: the
generalized CRT proposed in Section III, the robust CRT based
method, and the (optimal) searching based method.

For the generalized CRT, we choose the average of the
common remainders by using an arbitrary grouping. After
cancelling the common remainders from the erroneous remain-
ders, the two integers are reconstructed by using the general-
ized CRT for two integers proposed in [13].

For the robust CRT based method, we consider all possible
remainder combinations of { f1, f2} from their residue sets.
Note that the remainders in each residue set are unordered,
we have four cases, i.e.,

{{r̃1,1, r̃1,2, r̃1,3}, {r̃2,1, r̃2,2, r̃2,3}
} ;{{r̃1,1, r̃2,2, r̃1,3}, {r̃1,1, r̃1,2, r̃2,3}
} ;{{r̃1,1, r̃1,2, r̃2,3}, {r̃2,1, r̃2,2, r̃1,3}
} ;{{r̃1,1, r̃2,2, r̃2,3}, {r̃2,1, r̃1,2, r̃1,3}
}
. (45)

For each case, we estimate f1 and f2 by using the fast
MLE algorithm proposed in [37]. Take the first case as an
example, f1 and f2 can be determined by {r̃1,1, r̃1,2, r̃1,3} and
{r̃2,1, r̃2,2, r̃2,3} modulo M1, M2, M3, respectively. If both of
the two estimates { f̂1, f̂2} are within the dynamic range, then
they can be viewed as the estimates of { f1, f2}.

For the searching based method, the two frequencies
{ f1, f2} are determined by solving the four minimization
problems, which correspond to the four cases in (45). Take
the first case as an example, { f1, f2} can be determined by
solving the following minimization problem:

min
f1, f2

{
d2

M1
( f1, r̃1,1) + d2

M2
( f1, r̃1,2) + d2

M3
( f1, r̃1,3)

+ d2
M1

( f2, r̃2,1) + d2
M2

( f2, r̃2,2) + d2
M3

( f2, r̃2,3)
}

(46)

where f1 and f2 take integer values. The minimum value
of (46) is denoted as S1. Similarly, for the other three
cases in (45), we can obtain the minimum values S2, S3, S4,
respectively. Hence, the optimal estimates of { f1, f2} are the
frequencies that correspond to the minimum of {S1, . . . , S4}.

Now, we compare the different methods by investigating the
root mean square error (RMSE) and the test fail rate (TFR).
The RMSE is defined as

fRM S E =
√√√√E

{
1

2

2∑

l=1

( f̂l − fl)2

}
(47)

where fl and f̂l are the true frequencies and the estimates in
one trial, respectively. In each trail, if the estimation errors

Fig. 5. RMSE versus SNR.

Fig. 6. TFR versus SNR.

of the two frequencies are no larger than the given positive
number τ , i.e.,

| f̂l − fl | ≤ τ, l = 1, 2

we say that the test is successful, otherwise, the test is failed.
In the simulations, we set τ = 12.5.

From Figs. 5 and 6, one can see that the error floors of
the generalized CRT and the robust CRT based method are
high, i.e., the RMSE or the TFR will not decrease or decrease
very slowly at high SNR. On the contrary, the RMSE or the
TFR of the robust generalized CRT and the searching based
method decreases sharply as SNR, while there are also error
floors at high SNR. The reason for the error floors at high
SNR for the robust generalized CRT and the searching based
method is because a finite size FFT has a limited resolution in
frequency domain and it causes remainder errors and results
in error floors at high SNR. Compared with the generalized
CRT method, the robust generalized CRT has a much better
performance, which is because the two common remainders
are optimally estimated. For the robust CRT based method, the
two estimates may not be optimal when the correspondence
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between the two frequencies and the remainders are not
proper. It is clear that the searching based method has the
best performance. For our proposed robust generalized CRT,
it performs slightly worse than the searching based method,
but has a much less computation. In fact, the computational
complexity of the searching based method and our proposed
method are in the order of (6M�)2 and 6K 2, respectively.

VI. CONCLUSION

In this paper, we studied a robust generalized CRT for
determining two integers from their residue sets and moduli,
where the remainders of the two integers in each residue set
are not ordered and may have errors. We first obtained the
largest dynamic range of two integers from their error free
residue sets of a given modulus set, where all the moduli have
a gcd M larger than 1 and the remaining integers factorized
by the gcd, M , of all the moduli are pairwisely co-prime.
We also presented an efficient reconstruction algorithm of
two integers from their error free residue sets, when the two
integers are within the largest dynamic range. We then proved
that the two integers can be robustly reconstructed if their
remainder errors are less than the eighth of the gcd of all the
moduli. Finally, we applied the proposed robust generalized
CRT for two integers to the determination of two frequencies
from multiple undersampled waveforms. Our numerical results
showed that the frequency determination performance using
our newly proposed robust generalized CRT is better than that
using the generalized CRT and the robust CRT based method.
Compared with the optimal searching based method, it has a
slightly worse performance but much less computation.

APPENDIX

A. Proof of Lemma 2

Proof: Without loss of generality, we suppose rc
1 ≤ rc

2 .
Our proof consists of two steps: firstly, we prove that there
exists a subscript k0 ∈ {1, . . . , K } satisfying (19). Further-
more, we obtain two clusters, �1 and �2, and prove that they
satisfy (21). Then we prove the uniqueness of such k0. By the
definition of circular distance in (25), we obtain

0 ≤ ∣∣dM (rc
1 , rc

2 )
∣∣ ≤ M/2. (48)

Then we have two cases below.
Case 1: 0 ≤ ∣∣dM (rc

1 , rc
2 )

∣∣ < M/4.
In this case, we have 0 ≤ rc

2 − rc
1 < M/4 or 3M/4 <

rc
2 − rc

1 < M . Let ρ and π be two permutations of the set
{1, . . . , K } satisfy

�rρ(1) ≤ · · · ≤ �rρ(K ) and �rπ(1) ≤ · · · ≤ �rπ(K ) (49)

respectively, where �rρ(k) ∈ {�r1,1, . . . ,�r1,K }, �rπ(k) ∈
{�r2,1, . . . ,�r2,K } for k = 1, . . . , K . Define {c1, . . . , c2K }

as in (50), as shown at the bottom of this page, where ci are
sorted in the increasing order as

c1 ≤ · · · ≤ c2K . (51)

Note that
∣∣�l,k

∣∣ < M/8 for l = 1, 2; k = 1, . . . , K . If 0 ≤
rc

2 − rc
1 < M/4, then we have

−M/4 < rc
2 + �rπ(K ) − rc

1 − �rρ(1) < M/2. (52)

If 3M/4 < rc
2 − rc

1 < M , then we have

−M/4 < rc
1 + �rρ(K ) − (rc

2 + �rπ(1) − M) < M/2. (53)

Therefore,

0 ≤ c2K − c1 < M/2. (54)

Let

ci = αi + �i M, i = 1, . . . , 2K (55)

where 0 ≤ αi < M and �i ∈ Z. Then, we obtain from (51)
that

�1 ≤ · · · ≤ �2K . (56)

By (54) and (55), we have

0 ≤ α2K − α1 + (�2K − �1)M < M/2. (57)

Since 0 ≤ αi < M , we have −M < α2K −α1 < M . It follows
from (56) and (57) that

�2K − �1 = 0 or 1.

Subcase 1: �2K − �1 = 0.
In this case, �1 = · · · = �2K . From (57), we have

0 ≤ α2K − α1 < M/2 (58)

and from (51) and (55) we have

0 ≤ α1 ≤ · · · ≤ α2K < M. (59)

From (5) and (11), we have

r̃l,k = Mql,k + rc
l + �rl,k, l = 1, 2; k = 1, . . . , K . (60)

Hence,

〈r̃l,k 〉M = 〈rc
l + �rl,k〉M , l = 1, 2; k = 1, . . . , K . (61)

On the other hand, we obtain from (55) that

〈ci 〉M = αi , i = 1, . . . , 2K . (62)

Combining (50), (61), and (62), we have that {α1, . . . , α2K }
are the 2K remainders

{
r̃ c

1 , . . . , r̃ c
2K

}
. Hence, (16) is equiv-

alent to (59). If we let k0 = K , then we obtain from (58)
that

Dk0 + Dk0+K = Dk0 + r̃ c
ς(1)

− r̃ c
ς(2K )

+ M

= Dk0 + α1 − α2K + M

> M/2.

{c1, . . . , c2K } �
{{

rc
1 + �rρ(1) , . . . , rc

1 + �rρ(K ) , rc
2 + �rπ(1) , . . . , rc

2 + �rπ(K )

}
, if 0 ≤ rc

2 − rc
1 < M/4{

rc
1 + �rρ(1) , . . . , rc

1 + �rρ(K ) , rc
2 + �rπ(1) − M, . . . , rc

2 + �rπ(K ) − M
}
, if 3M/4 < rc

2 − rc
1 < M.

(50)
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By the definitions of �1 and �2, we obtain from (59) that

�1 = {αK+1, . . . , α2K }
= {cK+1 − �K+1M, . . . , c2K − �2K M}

�2 = {α1, . . . , αK } = {c1 − �1 M, . . . , cK − �K M} (63)

Recall that c1, . . . , c2K are sorted in the increasing order
from erroneous remainders rc

1 + �rρ(1) , . . . , rc
1 + �rρ(K ) , rc

2 +
�rπ(1) , . . . , rc

2 + �rπ(K ) . Since
∣∣�rl,k

∣∣ ≤ τ for l = 1, 2;
k = 1, . . . , K , we have

cK − c1 ≤ 2τ, c2K − cK+1 ≤ 2τ. (64)

Thus,

ωK − ω1 = α2K − αK+1 = c2K − cK+1 ≤ 2τ,

υK − υ1 = αK − α1 = cK − c1 ≤ 2τ.

Subcase 2: �2K − �1 = 1.
In this case, there exist some j ∈ {1, . . . , 2K } satisfying

� j+1 − � j = 1. Due to (56), such subscript j is the only one.
Moreover, we have �1 = · · · = � j and � j+1 = · · · = �2K .
From (51), (54), and (55), we have

α1 ≤ · · · ≤ α j , α j+1 ≤ · · · ≤ α2K

and

α j − α1 < M/2, α2K − α j+1 < M/2.

Since 0 ≤ c2K − c1 < M/2 and �2K − �1 = 1, we obtain
from (55) that α2K − α1 < −M/2, i.e.,

α1 − α2K > M/2. (65)

Thus,

0 ≤ α j+1 ≤ · · · ≤ α2K < α1 ≤ · · · ≤ α j < M. (66)

Note that {α1, . . . , α2K } are the 2K remainders {r̃ c
1 , . . . , r̃ c

2K }.
Hence, (16) is equivalent to (66). 1) If j < K and let
k0 = K − j , then we obtain from (65) that

Dk0 + Dk0+K = Dk0 + r̃ c
ς(2K− j+1)

− r̃ c
ς(2K− j)

= Dk0 + α1 − α2K

> M/2.

By the definitions of �1 and �2, we obtain from (66) that

�1 = {αK+1, . . . , α2K }
= {cK+1 − �K+1 M, . . . , c2K − �2K M}

�2 = {α1 − M, . . . , α j − M, α j+1, . . . , αK }
= {c1 − M − �1 M, . . . , c j − M − � j M, c j+1 − � j+1M,

. . . , cK − �K M}. (67)

Hence, similar to (64), we have

ωK − ω1 = c2K − cK+1 ≤ 2τ, υK − υ1 = cK − c1 ≤ 2τ.

2) If j ≥ K and let k0 = 2K − j , then we obtain from (65)
that

Dk0 + Dk0+K = r̃ c
ς(2K− j+1)

− r̃ c
ς(2K− j)

+ Dk0+K

= α1 − α2K + Dk0+K

> M/2.

By the definitions of �1 and �2, we obtain from (66) that

�1 = {α1, . . . , αK } = {c1 − �1M, . . . , cK − �K M}
�2 = {αK+1 − M, . . . , α j − M, α j+1, . . . , α2K }

= {cK+1 − M − �K+1M, . . . , c j − M − � j M,

c j+1 − � j+1M, . . . , c2K − �2K M} (68)

Hence,

ωK − ω1 = αK − α1 = cK − c1 ≤ 2τ,

υK − υ1 = α2K − αK+1 + M = c2K − cK+1 ≤ 2τ.

Case 2: M/4 ≤ ∣∣dM(rc
1 , rc

2)
∣∣ ≤ M/2.

In this case, we have M/4 ≤ rc
2 − rc

1 ≤ M/2 or M/2 <
rc

2 − rc
1 ≤ 3M/4. Hence, M/4 ≤ rc

2 − rc
1 ≤ 3M/4. Since

|�rl,k | < M/8 for l = 1, 2; k = 1, . . . , K , we have

0 < rc
2 + �rπ(k2) − rc

1 − �rρ(k1 ) < M (69)

for any k1, k2 ∈ {1, . . . , K }. Hence, we obtain

rc
2 + �rπ(1) > rc

1 + �rρ(K ) (70)

and

rc
2 + �rπ(K ) < rc

1 + �rρ(1) + M. (71)

Since 0 ≤ rc
1 , rc

2 < M , rc
2 − rc

1 ≥ M/4 and |�rl,k | < M/8,
we have

−M/8 < rc
1 + �rρ(k1) ≤ rc

2 − M/4 + �rρ(k2) < M (72)

and

0 < rc
1 + M/4 + �rπ(k1) ≤ rc

2 + �rπ(k2) < 9M/8 (73)

for any k1, k2 ∈ {1, . . . , K }. By (69) and (72), we obtain that
if there exist some k ∈ {1, . . . , K } satisfying rc

1 + �rρ(k) < 0,
then we have rc

2 + �rπ(k2) < M for any k2 ∈ {1, . . . , K }.
By (69) and (73), we obtain that if there exist some k ∈
{1, . . . , K } satisfying rc

2 + �rπ(k) > M , then we have rc
1 +

�rρ(k1) > 0 for any k1 ∈ {1, . . . , K }. Hence, we have three
cases below.

Subcase 1: rc
1 + �rρ(k) < 0 for some k ∈ {1, . . . , K }.

Define k ′ ∈ {1, . . . , K } as

k ′

�

⎧
⎪⎨

⎪⎩

K , if rc
1 + �rρ(K ) < 0

max
{
k : rc

1 + �rρ(k)

< 0, rc
1 + �rρ(k+1) ≥ 0

}
, otherwise.

1) k ′ = K .
Combining (70) and (71), we have

0 < rc
2 + �rπ(1) ≤ · · · ≤ rc

2 + �rπ(K ) < rc
1 + �rρ(1) +M

≤ · · · ≤ rc
1 + �rρ(K ) + M < M. (74)

From (61) and (74), we obtain that {rc
1 +�rρ(1) + M, . . . , rc

1 +
�rρ(K ) + M, rc

2 +�rπ(1) , . . . , rc
2 +�rπ(K )} are the 2K remain-

ders
{
r̃ c

1 , . . . , r̃ c
2K

}
. Hence, (16) is equivalent to (74). If we let

k0 = K , then we have

Dk0 + Dk0+K

= r̃ c
ς(K+1)

− r̃ c
ς(K )

+ r̃ c
ς(1)

− r̃ c
ς(2K )

+ M

= rc
1 +�rρ(1) +M−rc

2 −�rπ(K ) +rc
2 +�rπ(1) −rc

1 −�rρ(K )

= �rρ(1) + M − �rπ(K ) + �rπ(1) − �rρ(K ) .



LI et al.: ROBUST GENERALIZED CRT FOR TWO INTEGERS 7501

Since
∣∣�rl,k

∣∣ < M/8 for l = 1, 2; k = 1, . . . , K , we have

Dk0 + Dk0+K > M/2.

By the definitions of �1 and �2, we obtain
from (74) that

�1 = {rc
1 + �rρ(1) + M, . . . , rc

1 + �rρ(K ) + M}
�2 = {rc

2 + �rπ(1) , . . . , rc
2 + �rπ(K )} (75)

Thus,

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ.

2) k ′ ∈ {1, . . . , K − 1}.
Combining (70) and (71), we have

0 ≤ rc
1 + �rρ(k′+1)

≤ · · · ≤ rc
1 + �rρ(K ) < rc

2 + �rπ(1)

≤ · · · ≤ rc
2 + �rπ(K ) < rc

1 + �rρ(1) + M ≤ · · ·
≤ rc

1 + �rρ(k′) + M < M. (76)

From (61) and (76), we obtain that {rc
1 +�rρ(1) + M, . . . , rc

1 +
�rρ(k′) + M, rc

1 + �rρ(k′+1)
, . . . , rc

1 + �rρ(K ) , rc
2 + �rπ(1) ,

. . . , rc
2 +�rπ(K )} are the 2K remainders {r̃ c

1 , . . . , r̃ c
2K }. Hence,

(16) is equivalent to (76). If we let k0 = K − k ′, then we have

Dk0 + Dk0+K

= r̃ c
ς(K−k′+1)

− r̃ c
ς(K−k′) + r̃ c

ς(2K−k′+1)
− r̃ c

ς(2K−k′)
= rc

2 +�rπ(1) −rc
1−�rρ(K ) +rc

1 +�rρ(1) + M−rc
2 −�rπ(K )

= �rπ(1) − �rρ(K ) + �rρ(1) − �rπ(K ) + M

> M/2.

By the definitions of �1 and �2, we obtain from (76) that

�1 = {rc
2 + �rπ(1) , . . . , rc

2 + �rπ(K )}
�2 = {rc

1 + �rρ(1) , . . . , rc
1 + �rρ(K )} (77)

Thus,

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ.

Subcase 2: rc
1 + �rρ(k) ≥ 0 and rc

2 + �rπ(k) < M for all k.
According to (70), we have

0 ≤ rc
1 + �rρ(1) ≤ · · · ≤ rc

1 + �rρ(K ) < rc
2 + �rπ(1)

≤ · · · ≤ rc
2 + �rπ(K ) < M. (78)

From (61) and (78), we obtain that
{
rc

1 + �rρ(1) , . . . , rc
1 + �rρ(K ) , rc

2 + �rπ(1) , . . . , rc
2 + �rπ(K )

}

are the 2K remainders
{
r̃ c

1 , . . . , r̃ c
2K

}
. Hence, (16) is equiva-

lent to (78). If we let k0 = K , then we have

Dk0 + Dk0+K

= r̃ c
ς(K+1)

− r̃ c
ς(K )

+ r̃ c
ς(1)

− r̃ c
ς(2K )

+ M

= rc
2 + �rπ(1) −rc

1 −�rρ(K ) +rc
1 +�rρ(1) −rc

2 −�rπ(K ) +M

= �rπ(1) − �rρ(K ) + �rρ(1) − �rπ(K ) + M

> M/2.

By the definitions of �1 and �2, we obtain from (78) that

�1 = {rc
2 + �rπ(1) , . . . , rc

2 + �rπ(K )}
�2 = {rc

1 + �rρ(1) , . . . , rc
1 + �rρ(K )} (79)

Thus,

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ.

Subcase 3: rc
2 + �rπ(k) ≥ M for some k ∈ {1, . . . , K }.

Define k ′′ ∈ {1, . . . , K } as

k ′′

�

⎧
⎪⎨

⎪⎩

1, if rc
2 + �rπ(1) ≥ M

min
{
k : rc

2 + �rπ(k−1)

< M, rc
2 + �rπ(k) ≥ M

}
, otherwise.

1) k ′′ = 1.
Combining (70) and (71), we have

0 ≤ rc
2 + �rπ(1) − M ≤ · · · ≤ rc

2 + �rπ(K ) − M

< rc
1 + �rρ(1) ≤ · · · ≤ rc

1 + �rρ(K ) < M. (80)

From (61) and (80), we obtain that {rc
1 + �rρ(1) , . . . , rc

1 +
�rρ(K ) , rc

2 + �rπ(1) − M, . . . , rc
2 + �rπ(K ) − M} are the 2K

remainders
{
r̃ c

1 , . . . , r̃ c
2K

}
. Hence, (16) is equivalent to (80).

If we let k0 = K , then we have

Dk0 + Dk0+K

= r̃ c
ς(K+1)

− r̃ c
ς(K )

+ r̃ c
ς(1)

− r̃ c
ς(2K )

+ M

= rc
1 +�rρ(1) − rc

2 − �rπ(K ) + M + rc
2 + �rπ(1) − M − rc

1

−�rρ(K ) + M

= �rρ(1) − �rπ(K ) + �rπ(1) − �rρ(K ) + M

> M/2.

By the definitions of �1 and �2, we obtain from (80) that

�1 = {rc
1 + �rρ(1) , . . . , rc

1 + �rρ(K )}
�2 = {rc

2 + �rπ(1) −M, . . . , rc
2 + �rπ(K ) −M} (81)

Thus,

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ.

2) k ′′ ∈ {2, . . . , K }.
Combining (70) and (71), we have

0 ≤ rc
2 + �rπ(k′′) − M ≤ · · · ≤ rc

2 + �rπ(K ) − M

< rc
1 + �rρ(1) ≤ · · · ≤ rc

1 + �rρ(K ) < rc
2 + �rπ(1)

≤ · · · ≤ rc
2 + �rπ(k′′−1)

< M. (82)

From (61) and (82), we obtain that {rc
1 + �rρ(1) , . . . , rc

1 +
�rρ(K ) , rc

2 + �rπ(1) , . . . , rc
2 + �rπ(k′′−1)

, rc
2 + �rπ(k′′) −

M, . . . , rc
2+�rπ(K )−M} are the 2K remainders

{
r̃ c

1 , . . . , r̃ c
2K

}
.

Hence, (16) is equivalent to (82). If we let k0 = K − k ′′ + 1,
then we have

Dk0 + Dk0+K

= r̃ c
ς(K−k′′+2)

− r̃ c
ς(K−k′′+1)

+ r̃ c
ς(2K−k′′+2)

− r̃ c
ς(2K−k′′+1)

= rc
1 +�rρ(1) −rc

2 − �rπ(K ) + M+rc
2 + �rπ(1) −rc

1 −�rρ(K )

= �rρ(1) − �rπ(K ) + �rπ(1) − �rρ(K ) + M

> M/2.

By the definitions of �1 and �2, we obtain from (82) that

�1 = {rc
1 + �rρ(1) , . . . , rc

1 + �rρ(K )}
�2 = {rc

2 + �rπ(1) −M, . . . , rc
2 + �rπ(K ) −M} (83)
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Thus,

ωK − ω1 ≤ 2τ, υK − υ1 ≤ 2τ.

Next, we prove that k0 is the only subscript satisfying (19).
In fact, for any k∗ ∈ {1, . . . , K } \ {k0}, we obtain from (18)
that

Dk∗ + Dk∗+K ≤
∑

k �=k0

(Dk + Dk+K )

= M − (Dk0 + Dk0+K )

< M/2.

This completes the proof.

B. Proof of Theorem 2

Proof: From (29) and (60), we obtain

q̂l,k =
[

Mql,k + rc
l + �rl,k − ωt

M

]

= ql,k +
[

rc
l + �rl,k − ωt

M

]
(84)

where l = 1, 2; k = 1, . . . , K , and t is defined in (30). For
convenience, we denote

�r l � 1

K

K∑

k=1

�rl,k , l = 1, 2.

Clearly, |�rl | ≤ τ .
Case 1: 0 ≤ ∣∣dM (rc

1 , rc
2 )

∣∣ < M/4.
Since the proof of the two cases 0 ≤ rc

2 − rc
1 < M/4 and

3M/4 < rc
2 − rc

1 < M are similar, we only consider the case
3M/4 < rc

2 − rc
1 < M . Note that two sets �1 and �2 are

described in Fig. 2(a). As previously shown in (54) that c2K −
c1 < M/2, which means ωK − υ1 < M/2. According to (27),
we have

ω′
k = ωk , k = 1, . . . , K . (85)

By the definitions of ωt in (28), we know that either

ω1 = rc
1 + ε1, ω2 = rc

2 − M + ε2 or

ω1 = rc
2 − M + ε2, ω2 = rc

1 + ε1 (86)

hold for some |εt | ≤ τ , t = 1, 2. Now, we check {q̂1,k, q̂2,k}
for k = 1, . . . , K .

According to (29), either ω1 or ω2 is subtracted from r̃l,k .
Hence, we obtain from (84) that q̂l,k is either

q̂l,k = ql,k +
[

rc
l + �rl,k − ω1

M

]
or

q̂l,k = ql,k +
[

rc
l + �rl,k − ω2

M

]
. (87)

When l = 1, ω1 = rc
1 + ε1, and ω2 = rc

2 − M + ε2, we have

rc
1 + �r1,k − ω1 = �r1,k − ε1,

rc
1 + �r1,k − ω2 = rc

1 + �r1,k − rc
2 + M − ε2.

Since 3M/4 < rc
2 − rc

1 < M ,
∣∣�r1,k

∣∣ ≤ τ , and τ < M/8, we
obtain

−M/4 < �r1,k − ε1 < M/4,

−M/4 < rc
1 + �r1,k − rc

2 + M − ε2 < M/2.

Hence,
[

rc
1 + �r1,k − ω1

M

]
= 0,

[
rc

1 + �r1,k − ω2

M

]
= 0.

It follows from (87) that

q̂1,k = q1,k, k = 1, . . . , K . (88)

Similarly, when l = 1, ω1 = rc
2 − M + ε2, and ω2 = rc

1 + ε1,
we also have (88).

When l = 2, ω1 = rc
1 + ε1, and ω2 = rc

2 − M + ε2, we have

rc
2 + �r2,k − ω1 = rc

2 + �r2,k − rc
1 − ε1,

rc
2 + �r2,k − ω2 = �r2,k + M − ε2.

Note that M/2 < rc
2 + �r2,k − rc

1 − ε1 < 5M/4 and 3M/4 <
�r2,k + M − ε2 < 5M/4. Then we have

[
rc

2 + �r2,k − ω1

M

]
= 1,

[
rc

2 + �r2,k − ω2

M

]
= 1.

By (87), we have

q̂2,k = q2,k + 1, k = 1, . . . , K . (89)

Similarly, when l = 2, ω1 = rc
2 − M + ε2, and ω2 = rc

1 + ε1,
we also have (89). Therefore,

{q̂1,k, q̂2,k} = {q1,k, q2,k + 1}, k = 1, . . . , K .

By the generalized CRT for two integers obtained in [13], we
have

{Q̂1, Q̂2} = {Q1, Q2 + 1}.
Next, we check {N̂1, N̂2} for the cases
Q̂1 = Q̂2 and Q̂1 �= Q̂2.

1) Q̂1 = Q̂2 = Q1 = Q2 + 1.
In this case, we obtain from (32) and (86) that

{N̂1, N̂2} = {N1 + ε1, N2 + ε2}.
Thus, (40) holds.

2) Q̂1 �= Q̂2.
For simplicity, we suppose that q̂1,k �= q̂2,k for all

k = 1, . . . , K . By (33) and (85), we obtain

�′ = {ω1, . . . , ωK , υ1, . . . , υK }
= {rc

1 + �r1,1, . . . , rc
1 + �r1,K , rc

2 + �r2,1 − M, . . . ,

rc
2 + �r2,K − M}.

According to (60), we have

dM (r̃1,k, rc
1 + �r1,k) = 0, dM (r̃2,k, rc

2 + �r2,k − M) = 0.

It follows from (37) that

r̂ c
1,k = rc

1 + �r1,k, r̂ c
2,k = rc

2 + �r2,k − M.

From (38), we obtain the estimates

r̂ c
1 = rc

1 + ε3, r̂ c
2 = rc

2 − M + ε4

where ε3 and ε4 are some integers satisfying |εt | ≤ τ, t = 3, 4.
By (39), we have

{N̂1, N̂2} = {N1 + ε3, N2 + ε4}.
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Thus, (40) holds.
Case 2: M/4 ≤ ∣∣dM (rc

1 , rc
2 )

∣∣ ≤ M/2.
In this case, all the possible cases of the two clusters, �1

and �2, are described in Fig. 2(b) and given by (75), (77),
(79), (81), and (83) in details. Since the proofs of these cases
are similar, we only consider the case of (75), i.e.,

�1 = {ω1, . . . , ωK }
= {

rc
1 + M + �rρ(1) , . . . , rc

1 + M + �rρ(K )

}
,

�2 = {υ1, . . . , υK } = {
rc

2 + �rπ(1) , . . . , rc
2 + �rπ(K )

}
.

Without loss of generality, we suppose that 0 < ωK − υ1 ≤
M/2. By the definitions of ω′

k in (27), we have

ω′
k = ωk , k = 1, . . . , K . (90)

According to the definitions of ωt in (28), we obtain

ω1 = rc
1 + M + �r1, ω2 = rc

2 + �r2. (91)

Now, we check {q̂1,k, q̂2,k} for k = 1, . . . , K .
According to (29) and (84), we have

q̂1,k =
[

r̃1,k − ω1

M

]
= q1,k − 1,

q̂2,k =
[

r̃2,k − ω2

M

]
= q2,k .

Therefore,

{q̂1,k, q̂2,k} = {q1,k − 1, q2,k}, k = 1, . . . , K .

By the generalized CRT for two integers obtained in [13],
we have

{Q̂1, Q̂2} = {Q1 − 1, Q2}.
Next, we check {N̂1, N̂2} for the cases Q̂1 = Q̂2 and
Q̂1 �= Q̂2.

1) Q̂1 = Q̂2.
By (32) and (91), we have

{N̂1, N̂2} = {N1 + �r1, N2 + �r2}.
Thus, (40) holds.

2) Q̂1 �= Q̂2.
For simplicity, we suppose that q̂1,k �= q̂2,k for all

k = 1, . . . , K . By (33) and (90), we obtain

�′ = {ω′
1, . . . , ω

′
K , υ1, . . . , υK }

= {rc
1 + M+�r1,1, . . . , rc

1 + M+�r1,K , rc
2 + �r2,1, . . . ,

rc
2 + �r2,K }.

According to (60), we have

dM (r̃1,k, rc
1 + �r1,k) = 0,

dM (r̃2,k, rc
2 + �r2,k) = 0.

It follows from (37) that

r̂ c
1,k = rc

1 + M + �r1,k, r̂ c
2,k = rc

2 + �r2,k .

From (38), we obtain the estimates

r̂ c
1 = rc

1 + M + ε5, r̂ c
2 = rc

2 + ε6

where ε5 and ε6 are some integers satisfying |εt | ≤ τ, t = 5, 6.
By (39), we have

{N̂1, N̂2} = {N1 + ε5, N2 + ε6}.
Thus, (40) holds. This completes the proof of the theorem.
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