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Abstract. In this paper, we consider the problem of extrapolation of a band-limited signal
outside a fixed interval from its (approximate or contaminated) values in that interval. We
propose a new extrapolation method that estimates the error between the extrapolated and
true values, and which also resolves the ill-posedness of the problem. The method is called
a modified minimum norm solution (MMNS) method. Both the continuous MMNS and its
discretization are studied. The error estimates hold for some classes of band-limited signals,
when the maximum magnitude of the data error is known. These classes of band-limited signals
are also characterized.

1. Introduction

Let f be a finite energy signal, i.e.f ∈ L2(R). Its Fourier transformf̂ is defined by

f̂ (ω) =
∫ ∞
−∞

f (t)eitω dt. (1.1)

If there exists a positive number� such thatf̂ (ω) = 0 when|ω| > �, f is called� band
limited. An � band-limited signalf can be represented by its inverse Fourier transform:

f (t) = 1

2π

∫ �

−�
f̂ (ω)e−itω dω. (1.2)

It is known (see for example [1]) that a band-limited signalf is the restriction to the real
line R of an entire function defined on the complex planeC. Therefore, in theory,f is
determined everywhere by its values on an interval no matter how small this interval is.
This motivates the following band-limited signal extrapolation problem.

How does one practically extrapolate an� band-limited signalf outside an interval
[−T , T ] whenf (t) is given fort ∈ [−T , T ] with a certain contamination error?

The above extrapolation problem is interesting not only in theory but also in many
applications, such as spectral estimation (Papoulis [25]) and limited-angle tomography
in medical image reconstruction (Natterer [24]), where only limited observation data are
available.

Sincef is analytic, a trivial solution for the problem is to compute the derivativesf (n)

at t = 0 by using the values off in [−T , T ] and then use the Taylor expansion. However,
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this method is extremely unstable due to the instability of the derivative computations.
Numerical differentiation is an ill-posed problem and the degree of ill-posedness (which can
be made precise using Sobolev negative norms) increases with the order of differentiation.
Therefore, researchers have been seeking other methods. Since the early 1970s there has
been considerable interest in this area, for example [4–8, 11–17, 24–30, 32–36, 38-40]. Since
the problem itself is basically an inverse problem, it has been recognized that the existing
extrapolation methods are generally unstable in terms of inaccurate data. The extrapolated
values can change dramatically when the given data in an interval change slightly, see
for example [27]. There are also many modified algorithms that have been proposed to
improve the extrapolation performance. However, to the best of our knowledge there is no
extrapolation algorithm with which one is able to estimate the error between the extrapolated
and true values outside the given interval [−T , T ] for any nontrivial class of� band-limited
signals, when the given data are inaccurate.

In this paper, we propose a new extrapolation method for band-limited signals that we
call a modified minimum norm solution(MMNS) method. With the MMNS method we
are able to estimate the error between the extrapolated and true values for some nontrivial
classes of band-limited signals, when the maximum magnitude of the error of the given
inaccurate data in a certain interval is known. This paper is organized as follows. In
section 2 we study the MMNS method for continuous-time signals. In section 3 we study
the MMNS method for discrete-time signals, which is a discretization of the method in
section 2. In section 4 we present tractable characterizations of the classes of band-limited
signals studied in sections 2 and 3. In section 5 we make several remarks.

2. Band-limited signal extrapolation in the continuous-time domain

In this section, we study the MMNS method for continuous-time band-limited signals.
Without loss of generality, in what follows we assume� = 2π and T = 1 although we
continue to use� and T to emphasize where they appear. We also assumefε = f + η
where η is the error signal that is continuous in time and|η(t)| 6 ε for t ∈ [−T , T ],
andfε(t) for t ∈ [−T , T ] are the given data. By normalization, we may assume that the
maximal error magnitudeε < 1.

We first introduce some notation. LetL2[−D,D] denote the space of all signalsf that
satisfy

‖f ‖(D) 1=
(∫ D

−D
|f (t)|2 dt

)1/2

<∞

whereD is a positive number or∞.
LetBL denote all� band-limited signals. Forγ > 0, letBLγ denote all� band-limited

signalsf ∈ BL that satisfy the following condition.
For anyδ > 0, there exists a signalgδ ∈ L2[−T , T ] such that

f̂δ(ω)
1= 1

2π

∫ T

−T
gδ(t)e

itω dt (2.1)

satisfies the following two properties:

‖f̂ − f̂δ‖(�) 6 δ (2.2)

and

‖f̂δ‖(∞) 6 Cδ−γ (2.3)
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whereC is a constant that is independent ofδ andγ , andf̂ is the Fourier transform off .
The physical meaning of the above subspace of all� band-limited signals is as follows.

For an� band-limited signalf , its Fourier transformf̂ is supported in [−�,�] and
f̂ ∈ L2[−�,�]. The correspondence between the spaceBL of all � band-limited signals
and the spaceL2[−�,�] of all finite L2 norm signals defined on [−�,�] is one-to-one
and onto. Therefore, for a general� band-limited signalf its Fourier transformf̂ may
not have any smoothness property. The subspaceBLγ contains all� band-limited signals
f with the following properties.

(i) The Fourier transformf̂ can be approximated in theL2 sense by a family{f̂δ} of
T band-limited signals (entire functions of exponential order). This approximation holds
inside the frequency band off , i.e. the support [−�,�] of f̂ .

(ii) The L2 norms on the whole real line of the signals in the family{f̂δ} may not be
uniformly bounded, but the rate of thedivergenceis not arbitrary. Rather the rate is related
to the rate of theconvergenceof {f̂δ} in L2[−�,�] to f̂ asδ→ 0.

In this approximations framework, what is gained is the smoothness while what is lost
is the boundedness of the family ofL2 norms on the real line. This trade-off is similar
to the bandwidth and the timewidth trade-off [29, 30]. More precise interpretation and
characterization of the above subspace will be given in section 4.

For the maximal error magnitudeε mentioned at the beginning of this section and any
numberλ > 0, letBT ε,λ denote the set of all signalsg ∈ L2[−T , T ] such that∣∣∣∣ 1

2π2

∫ T

−T

sin 2π(s − t)
s − t g(s) ds − fε(t)

∣∣∣∣ 6 λ for t ∈ [−T , T ]. (2.4)

The basic idea for this subspace is to find signals in a neighbourhood of the inaccurate data
signalfε(t) for t ∈ [−T , T ] such that the Fourier transforms of these signals areT band
limited.

For λ > ε, let gε,λ be the unique element (the existence and uniqueness will be shown
in lemma 2) inBT ε,λ that has the minimum norm:

‖gε,λ‖(T ) = min{‖g‖(T ); g ∈ BT ε,λ}. (2.5)

Let

fε,λ(t) = 1

2π2

∫ T

−T

sin 2π(s − t)
s − t gε,λ(s) ds (2.6)

which is called the MMNS of the continuous-time band-limited signal extrapolation problem.
We now have the following error analysis for the above MMNS.

Theorem 1. Let fε,2ε be defined by (2.6) with the constantλ = 2ε. If f ∈ BLγ for some
numberγ with 06 γ < 1

2, then

|fε,2ε(t)− f (t)| 6 Cε(1−2γ )/3 for all t ∈ R (2.7)

whereC is a constant independent ofε andγ .

Before we prove theorem 1, we establish two lemmas. We first recall the following
known results from operator theory of ill-posed problems. LetH1 andH2 be two Hilbert
spaces, andK be a bounded linear operator fromH1 to H2. Let K∗ denote the adjoint of
the operatorK andK† be the generalized inverse ofK (see [9, 19, 20]). LetR(K∗) denote
the range of the operatorK∗.

We recall that the (Moore–Penrose) generalized inverseK† of the operatorK is
characterized by the following extremal property. For anyg in the domainD(K†) =
R(K)+R(K)⊥, the elementK†g is the minimal norm least-squares solution of the operator
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equationKf = g. If R(K) is nonclosed, which is the case, for example, whenK is a
compact operator with infinite-dimensional range, then the operatorK† is unbounded, so
the problem is ill-posed. The well known Tikhonov regularization uses the approximation

xα = (K∗K + αI)−1K∗g α > 0

whereI is the identity operator. It is well known that

lim
α→0

xα = K†g for g ∈ D(K†).

Without any ‘smoothness’ assumption onK†g, it is not possible in general to estimate the
rate of convergence ofxα toK†g or to obtain an error estimate‖xα−K†g‖ for fixedα > 0.
In what follows we will use the following proposition (see, e.g., [10, 18]) which states that
if K†g ∈ R(K∗), a kind of smoothness condition, then an error estimate holds.

Proposition 1. If K†g ∈ R(K∗), sayK†g = K∗g∗ for someg∗ ∈ H2, then

‖K†g − xα‖ 6
√
α‖g∗‖.

Let us consider the operatorF−1 from L2[−�,�] to L2[−T , T ], a restriction of the
inverse Fourier transform (1.2), defined by:

(F−1f̂ )(t) = f (t) = 1

2π

∫ �

−�
f̂ (ω)e−itωdω t ∈ [−T , T ]. (2.8)

Then its adjoint(F−1)∗ is

[(F−1)∗g](ω) = 1

2π

∫ T

−T
g(s)eisω ds ω ∈ [−�,�].

From (2.8),(F−1f̂ )(t) = 0 for almost allt ∈ [−T , T ] if and only if f̂ (ω) = 0 for
almost allω ∈ [−�,�]. This implies that the null spaceN (F−1) of the operatorF−1

is the zero element. This also implies that the spaceR((F−1)∗) is dense inL2[−�,�]
since Closure(R((F−1)∗)) = N (F−1)⊥ = L2[−�,�]. Thus we have proved the following
lemma.

Lemma 1. For anyδ > 0, there existsgδ ∈ L2[−T , T ] such that

‖f̂ − f̂δ‖(�) 6 δ
where

f̂δ(ω) = 1

2π

∫ T

−T
gδ(s)e

isω ds

and f̂ is the Fourier transform off .

By lemma 1 and its implication in the time domain, it is clear that the setBT ε,λ defined
by (2.4) is not empty whenλ > ε. Since the setBT ε,λ is closed and convex, we have
proved the following.

Lemma 2. For λ > ε, there is a unique elementgε,λ in BT ε,λ such that

‖gε,λ‖(T ) = min{‖g‖(T ) : g ∈ BT ε,λ}.
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With the functiongε,λ as in lemma 2, define

ḡε,λ(ω) = 1

2π

∫ T

−T
gε,λ(s)e

isω ds. (2.9)

Then the MMNSfε,λ in (2.6) can also be represented as

fε,λ(t) = 1

2π

∫ �

−�
ḡε,λ(ω)e

−isωdω.

With the signalf̂δ in (2.1), define

f̄δ(t) = 1

2π

∫ �

−�
f̂δ(s)e

−istds. (2.10)

We are now ready to prove theorem 1.

Proof of theorem 1. When f ∈ BLγ for γ > 0, by (2.1), (2.2) the signalgδ with
δ = (2π/√2�)ε satisfies

‖f̂ − f̂δ‖(�) 6 2π√
2�
ε

where f̂δ is related togδ via (2.1). In the time domain, by using the Cauchy–Schwarz
inequality and the above inequality we have

|f (t)− fδ(t)| 6 1

2π

∣∣∣∣ ∫ �

−�
(f̂ (ω)− f̂δ(ω))e−itω dω

∣∣∣∣ 6 ε
where

fδ(t) = 1

2π

∫ �

−�
f̂δ(ω)e

−itωdω

(2.1)= 1

2π

∫ �

−�

1

2π

∫ T

−T
gδ(s)e

iω(s−t)ds dω

= 1

2π2

∫ T

−T

sin 2π(s − t)
s − t gδ(s) ds

where the convention� = 2π made at the beginning of this section is used. By the
assumption

|fε(t)− f (t)| 6 ε
we have

|fδ(t)− fε(t)| 6 2ε.

According to (2.4), we have proved thatgδ is in BT ε,2ε . Hence, by lemma 2 we obtain

‖gε,2ε‖(T ) 6 ‖g(2π/√2�)ε‖(T ).
Moreover, by (2.1) and (2.3), we have

‖gε,2ε‖(T ) 6 ‖g(2π/√2�)ε‖(T ) 6 2πC(2π/
√

2�)−γ ε−γ .

Since

|fε,2ε(t)− fε(t)| 6 2ε t ∈ [−T , T ]

we have

|fε,2ε(t)− f (t)| 6 3ε t ∈ [−T , T ].
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For the signalf̄δ in (2.10) and considering (2.2) in the time domain, we have

|f̄δ(t)− f (t)| 6
√

2�

2π
δ for t ∈ R.

Therefore,

|fε,2ε(t)− f̄δ(t)| 6 3ε +
√

2�

2π
δ for t ∈ [−T , T ]. (2.11)

For α > 0, let

xα = ((F−1)∗F−1+ αI)−1(F−1)∗(fε,2ε(t)− f̄δ(t)).
By using proposition 1 withK = F−1 andδ = ε, and (2.1), (2.2), we have

‖ḡε,2ε − f̂δ − xα‖(�) = ‖K†(fε,2ε − f̄δ)− xα‖(�)
6
√
α(‖gε,2ε‖(T ) + ‖gδ‖(T ))

6 2πCε−γ
√
α,

whereC is a constant, and̄gε,2ε − f̂δ = K∗(gε,2ε − gδ) from (2.1) and (2.9). On the other
hand,

‖xα‖(�) 6 1

α

T
√

2�

π

(
3ε +

√
2�

2π
δ

)
= T
√

2�

π

(
3+
√

2�

2π

)
ε

α
.

Thus,

‖ḡε,2ε − f̂δ‖(�) 6 2πCε−γ
√
α + T

√
2�

π

(
3+
√

2�

2π

)
ε

α
.

Using (2.2) withδ = ε, we have

‖ḡε,2ε − f̂ ‖(�) 6 2πCε−γ
√
α + T

√
2�

π

(
3+
√

2�

2π

)
ε

α
+ ε.

In the time domain, using the Cauchy–Schwarz inequality, we obtain

|fε,2ε(t)− f (t)| 6
√

2�

2π

[
2πCε−γ

√
α + T

√
2�

π

(
3+
√

2�

2π

)
ε

α
+ ε

]
for t ∈ R.

Therefore, estimate (2.7) in theorem 1 can be proved by takingα = ε2(1+γ )/3 and using the
assumptionε < 1 made at the beginning of this section. �

3. Discretization of the MMNS method

Since in practice we usually process discrete-time signals, it is very important to consider
the discretization of the MMNS method proposed in section 2. To do so, we need some
notation.

For any numberλ with λ > ε and positive integerm, letMl2λ(2m+ 1) denote the set
of (2m+ 1)-dimensional vectorsa = {a(k)} ∈ C2m+1 such that∣∣∣∣∣ 1

2π2

1

m

m∑
k=−m

sin 2π
(
k
m
− n

m

)
k
m
− n

m

a(k)− fε
( n
m

)∣∣∣∣∣ 6 λ for −m 6 n 6 m. (3.1)
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For λ > ε, let zλm = {zλm(k)} be the unique element (the existence and the uniqueness will
be shown in lemma 4) inMlλ(2m+ 1) such that

‖zλm‖ = min{‖a‖;a = {a(k)} ∈Ml2λ(2m+ 1)} (3.2)

where

‖a‖ 1=
( m∑
k=−m
|a(k)|2

)1/2

.

Finally, let

9λ
m(t) =

1

2π2

1

m

m∑
k=−m

sin 2π
(
k
m
− t)

k
m
− t zλm(k). (3.3)

Notice that, for a signalf ∈ BL and any constantsλ > ε > 0 and any positive integer
m, we can always construct the signalfε,λ in (2.6) and the signal9λ

m in (3.3) from the
given datafε(t) for t ∈ [−T , T ]. In other words, the MMNSfε,λ given in (2.6) and
its discretization9λ

m in (3.3) can be found for anyf ∈ BL using its known values on a
segment.

In practice, it is usually difficult to get the MMNSfε,λ in (2.6). A practical way to
compute it is to use the discretization form that is formulated by9λ

m in (3.3). We have the
following convergence of the discretization9λ

m of the MMNS.

Theorem 2. For any constantλwithλ > ε, the discretization9λ
m converges tofε,λ uniformly

on compact sets ofR whenm→∞.

It is interesting to notice that the convergence result in theorem 2 does not require any
additional condition for a band-limited signalf . In order to get an error estimation for the
MMNS, an additional condition, i.e.f ∈ BLγ , in theorem 1 is needed.

To prove theorem 2, we need several lemmas.

Lemma 3. For each fixedλ0 > ε, there existsM > 0 such that, whenm > M andλ > λ0,
the setMl2λ(2m + 1) defined in (3.1) is not empty and‖zλm‖ 6 Cλ0, whereCλ0 is some
positive constant and independent ofm andλ with λ > λ0.

Proof. By lemma 1, forδ = (λ− ε)/3, there existsgδ ∈ L2[−1, 1] such that

‖f̂ − f̂δ‖(2π) 6 (λ− ε)/3
where

f̂δ(ω) = 1

2π

∫ 1

−1
gδ(s)e

isω ds.

Thus, ∣∣∣∣ 1

2π

∫ 2π

−2π
f̂δ(ω)e

−itω dω − f (t)
∣∣∣∣ 6 (λ− ε)/(3√π) for all t ∈ R.

In other words,∣∣∣∣ 1

2π

∫ 2π

−2π
e−itω 1

2π

∫ 1

−1
gδ(s)e

isωdsdω − f (t)
∣∣∣∣ 6 (λ− ε)/3 for all t ∈ R. (3.4)

Since the space of continuous functions is dense inL2[−1, 1], there existshδ ∈ C[−1, 1]
such that

‖gδ − hδ‖(1) 6 (λ− ε)/3.
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Thus,∣∣∣∣ 1

2π

∫ 2π

−2π
e−itω 1

2π

∫ 1

−1
(gδ(s)− hδ(s))eisω ds dω

∣∣∣∣ 6 1

2π

∫ 2π

−2π

1

2π

∫ 1

−1
|gδ(s)− hδ(s)| ds dω

6
√

2(λ− ε)/(3π) < (λ− ε)/3 for all t ∈ R.
By (3.4) we have∣∣∣∣ 1

2π

∫ 2π

−2π
e−itω 1

2π

∫ 1

−1
hδ(s)e

isωdsdω − fε(t)
∣∣∣∣ 6 (2λ+ ε)/3 for all t ∈ [−1, 1].

That is,∣∣∣∣ 1

2π2

∫ 1

−1

sin 2π(s − t)
s − t hδ(s)ds − fε(t)

∣∣∣∣ 6 (2λ+ ε)/3 for all t ∈ [−1, 1]. (3.5)

Sincehδ is continuous on [−1, 1], the following sum

1

2π2

1

m

m∑
k=−m

sin 2π( k
m
− t)

k
m
− t hδ

(
k

m

)
converges uniformly to

1

2π2

∫ 1

−1

sin 2π(s − t)
s − t hδ(s) ds

for t ∈ [−1, 1]. Therefore, for(λ− ε)/3, there existsM > 0 such that, whenm > M, we
have∣∣∣∣ 1

2π2

1

m

m∑
k=−m

sin 2π
(
k
m
− n

m

)
k
m
− n

m

hδ

(
k

m

)
− 1

2π2

∫ 1

−1

sin 2π(s − n
m
)

s − n
m

hδ(s) ds

∣∣∣∣
6 (λ− ε)/3 for |n| 6 m.

Combining this with (3.5), we obtain∣∣∣∣∣ 1

2π2

1

m

m∑
k=−m

sin 2π
(
k
m
− n

m

)
k
m
− n

m

hδ

(
k

m

)
− fε

( n
m

)∣∣∣∣∣ 6 λ for all |n| 6 m.

Let a(k) = hδ(
k
m
) for |k| 6 m. Then, {a(k)} ∈ Ml2λ(2m + 1). This proves that the set

Ml2λ(2m+ 1) is not empty whenm > M.
Moreover, the aboveM can be large enough such that, whenm > M,

1

m

m∑
k=−m
|a(k)|2 6

∫ 1

−1
|hδ(s)|2 ds + 1

=
∫ 1

−1
|h(λ−ε)/3(s)|2 ds + 1

6 (‖g(λ−ε)/3‖(1) + (λ− ε)/3)2+ 1.

Let (λ− ε)/3< 1 and

Cλ0 =
{
(‖g(λ0−ε)/3‖(1) + 1)2+ 1

}1/2
.

Then lemma 3 is proved. �
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Similar to lemma 2, since the setMl2λ(2M+1) is closed and convex, we prove lemma 4.

Lemma 4. For everym andλ with λ > ε, there exists a unique element

zλm = {zλm(k)} ∈Ml2λ(2m+ 1)

such that

‖zλm‖ = min{‖a‖ : a = {a(k)} ∈Ml2λ(2m+ 1)}.
Recall that a family of functions of a complex variable is called anormal familyif every

sequence of the family contains a subsequence which converges uniformly on compact sets.
It is known that a family of functions that is uniformly bounded in any compact set is a
normal family. We use this result in the proof of the following lemma.

Lemma 5. For eachλ0 (> ε), the family of functions{9λ
m(t)}λ>λ0,m defined in (3.3) is normal

whent is extended to the complex planeC.

Proof. The functions9λ
m in (3.3) can be rewritten as

9λ
m(t) =

1

4π2

1

m

∫ 2π

−2π
e−itω

m∑
k=−m

eikω/mzλm(k)dω

= 1

2π

∫ 2π

−2π
e−itω

(
1

2π

1

m

m∑
k=−m

eikω/mzλm(k)

)
dω.

Thus,

|9λ
m(z)| 6

e2π |z|

4π2

∫ 2π

−2π

∣∣∣∣ 1

m

m∑
k=−m

e−ikω/mzλm(k)

∣∣∣∣ dω

6 e2π |z|

π

1

m

m∑
k=−m
|zλm(k)|

6 e2π |z|

π

(
2m+ 1

m

)1/2

‖zλm‖
lemma 3
6 1

π

(
2m+ 1

m

)1/2

Cλ0e2π |z| for λ > λ0 z ∈ C.

This proves that the family{9λ
m}λ>λ0,m is normal. �

Define

φλm(ω) =
1

2π

1

m

m∑
k=−m

eikω/mzλm(k). (3.6)

Lemma 6. For eachλ0 (> ε) the family{φλm(z)}λ>λ0,m is normal and its limit functions are
1 band limited.

Proof. The proof of normality is similar to the proof of lemma 5 by using lemma 3.
By Fatou’s lemma and lemma 3, it is easy to prove that all limit functions of the family
{φλm(z)}λ>λ0,m are in L2(R) when z is restricted to the real lineR. Therefore, by the
Paley–Wiener theorem (see [1]), lemma 6 is proved. �

Lemma 7. Let gε,λ be as defined in (2.5). For a fixedε, let h(λ) = ‖gε,λ‖(1). Then the
functionh(λ) is continuous forλ > ε.
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Proof. Let λ0 andλ1 be any two positive numbers such thatλ0 > λ1 > ε. For anyλ > λ1,
define

ḡε,λ(ω) = 1

2π

∫ 1

−1
eisωgε,λ(s) ds.

Then

|ḡε,λ(ω)| =
∣∣∣∣ 1

2π

∫ 1

−1
eisωgε,λ(s)ds

∣∣∣∣ 6 e|ω|
√

2

2π
‖gε,λ‖(1) 6

√
2

2π
e|ω|‖gε,λ1‖(1) for λ > λ1.

This implies that the family{ḡε,λ(ω)}λ>λ1 is normal. Similar to lemma 6, its limit functions
are 1 band limited. Let̄hε,λ0 be one of its limit functions. Letλ(n) → λ+0 and suppose
that the sequence{ḡε,λ(n)} converges tōhε,λ0 uniformly on compact sets ofC. Then, there
existshε,λ0 ∈ L2[−1, 1] such that

h̄ε,λ0(ω) =
1

2π

∫ 1

−1
eisωhε,λ0(s)ds.

By the definition offε,λ(n) we have∣∣∣∣ 1

2π

∫ 2π

−2π
e−itωḡε,λ(n)(ω)dω − fε(t)

∣∣∣∣ = |fε,λ(n)(t)− fε(t)| 6 λ(n) for t ∈ [−1, 1].

Let n→∞ in the above inequality,∣∣∣∣ 1

2π

∫ 2π

−2π
e−itω 1

2π

∫ 1

−1
hε,λ0(s)e

isω dω ds − fε(t)
∣∣∣∣ 6 λ0 for t ∈ [−1, 1].

Thus,hε,λ0 ∈ BT ε,λ0. Therefore,

‖hε,λ0‖(1) > ‖gε,λ0‖(1). (3.7)

On the other hand, for anyB > 0,∫ B

−B
|h̄ε,λ0(ω)|2dω = lim

n→∞

∫ B

−B
|ḡε,λ(n)(ω)|2dω

6 limn→∞
∫ ∞
−∞
|ḡε,λ(n)(ω)|2dω = limn→∞‖ḡε,λ(n)‖2

(∞)

= 1

2π
limn→∞‖gε,λ(n)‖2

(1) 6
1

2π
‖gε,λ0‖2

(1).

Therefore,

‖h̄ε,λ0‖(∞) 6
1√
2π
‖gε,λ0‖(1).

In other words,

‖hε,λ0‖(1) 6 ‖gε,λ0‖(1).
By (3.7) and lemma 2, we have proved thathε,λ0 = gε,λ0. Therefore, we have proved

lim
λ→λ+0

h(λ) = h(λ0). (3.8)

Now we want to prove that

lim
λ→λ−0

h(λ) = h(λ0). (3.9)
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Let λ1 be any positive with 0< λ1 < λ0. Let {λ(n)} be any sequence of numbers with
λ1 6 λ(n) 6 λ(n+ 1) 6 λ0 that converges toλ0. Define

hn(s) =
(

1− λ(n)− λ1

λ0− λ1

)
gε,λ1(s)+

λ(n)− λ1

λ0− λ1
gε,λ0(s) for s ∈ [−1, 1]. (3.10)

Define

h̄n(t) = 1

2π

∫ 2π

−2π
e−itω

(
1

2π

∫ 1

−1
hn(s)e

isωds

)
dω.

Then

|h̄n(t)− fε(t)| =
∣∣∣∣ 1

2π2

∫ 1

−1

sin 2π(s − t)
s − t hn(s) ds − fε(t)

∣∣∣∣
6
(

1− λ(n)− λ1

λ0− λ1

) ∣∣∣∣ 1

2π2

∫ 1

−1

sin 2π(s − t)
s − t gε,λ1(s) ds − fε(t)

∣∣∣∣
+λ(n)− λ1

λ0− λ1

∣∣∣∣ 1

2π2

∫ 1

−1

sin 2π(s − t)
s − t gε,λ0(s) ds − fε(t)

∣∣∣∣
6
(

1− λ(n)− λ1

λ0− λ1

)
λ1+ λ(n)− λ1

λ0− λ1
λ0 = λ(n).

This implies thathn ∈ BT ε,λ(n).
From (3.10) we have

‖hn‖(1) 6
(

1− λ(n)− λ1

λ0− λ1

)
‖gε,λ1‖(1) +

λ(n)− λ1

λ0− λ1
‖gε,λ0‖(1).

Letting n→∞ we obtain

limn→∞‖hn‖(1) 6 ‖gε,λ0‖(1).
Since we have proved thathn ∈ BT ε,λ(n),

‖gε,λ(n)‖(1) 6 ‖hn‖(1).
This proves that

limn→∞‖gε,λ(n)‖(1) 6 ‖gε,λ0‖(1).
On the other hand, the following is clear:

‖gε,λ(n)‖(1) > ‖gε,λ0‖.
Thus,

lim
n→∞‖gε,λ(n)‖(1) = ‖gε,λ0‖(1)

that is, (3.9) is proved. This proves lemma 7. �
We are now ready to prove theorem 2.

Proof of theorem 2. By (3.3) and (3.6) we have

9λ
m(t) =

1

2π

∫ 2π

−2π
φλm(ω)e

−itωdω.

If we can prove that every limit function of the sequence{9λ
m} is fε,λ, theorem 2 is proved.

Assumeh̄ε,λ is a limit function of the sequence{9λ
m}. Without loss of generality, we may

assume the sequence{9λ
m} converges tōhε,λ. Since the family{9λ

m} for a fixedλ is normal
by lemma 5, the convergence is uniform on compact sets ofC. By lemma 6, the family
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{φλm} is also normal for a fixedλ. We may assume that the sequence{φλm} converges tôhε,λ
uniformly on compact sets ofC and

h̄ε,λ(t) = 1

2π

∫ 2π

−2π
ĥε,λ(ω)e

−itωdω.

By Lemma 6, there exists̃hε,λ ∈ L2[−1, 1] such that

ĥε,λ(ω) = 1

2π

∫ 1

−1
eisωh̃ε,λ(s)ds.

Taking the limit asm→∞ in∣∣∣9λ
m

( n
m

)
− fε

( n
m

)∣∣∣ 6 λ for |n| 6 m

and using the continuity of̄hε,λ(t) andfε(t) for t ∈ [−1, 1], we obtain

|h̄ε,λ(t)− fε(t)| 6 λ t ∈ [−1, 1].

This proves that̃hε,λ ∈ BT ε,λ. Thus,

‖h̃ε,λ‖(1) > ‖gε,λ‖(1). (3.11)

We next want to prove the reverse inequality.
For λ > ε, chooseµ such thatλ > µ > ε. For thisµ, we havegε,µ ∈ BT ε,λ. Using

the same argument as in the proof of lemma 3, for(λ− µ)/3 there exists̃gε,µ ∈ C[−1, 1]
such that

‖gε,µ − g̃ε,µ‖(1) 6 λ− µ
3

.

Thus, if we let

¯̃gε,µ(t) =
1

2π2

∫ 1

−1

sin 2π(s − t)
s − t g̃ε,µ(s) ds

then,

| ¯̃gε,µ(t)− fε,µ(t)| 6
√

2

π

λ− µ
3

for t ∈ [−1, 1].

Therefore, there existsM > 0 such that whenm > M we have∣∣∣∣ 1

2π2

1

m

m∑
k=−m

sin 2π
(
k
m
− n

m

)
k
m
− n

m

g̃ε,µ

(
k

m

)
− fε

( n
m

) ∣∣∣∣ 6 2λ+ µ
3

< λ.

By (3.1), this implies that̃gε,µ = {g̃ε,µ( km)} ∈Ml2λ(2m+ 1). Therefore,

‖g̃ε,µ‖ > ‖zλm‖.
Thus

limm→∞
1

m
‖zλm‖2 6 limm→∞

1

m
‖g̃ε,µ‖2 = ‖g̃ε,µ‖2

(1).

Therefore, (
limm→∞

1

m
‖zλm‖2

)1/2

6 ‖gε,µ‖(1) + λ− µ
3

. (3.12)
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On the other hand, for anyB > 0,∫ B

−B
|ĥε,λ(ω)|2 = lim

m→∞

∫ B

−B
|φλm(ω)|2dω

6 limm→∞
∫ πm

−πm
|φλm(ω)|2dω

(3.6)= limm→∞
∫ πm

−πm

(
1

2πm

m∑
k=−m

eikω/mzλm(k)

)(
1

2πm

m∑
k=−m

e−ikω/mzλm(k)

)
dω

= limm→∞
∫ πm

−πm

1

(2π)2m2
|zλm(k)|2dω

= limm→∞
1

2πm

m∑
k=−m
|zλm(k)|2.

Therefore,

‖ĥε,λ‖2
(∞) 6

1

2π
limm→∞

1

m

m∑
k=−m
|zλm(k)|2.

Since

‖h̃ε,λ‖2
(1) = 2π‖ĥε,λ‖2

(∞)
we have

‖h̃ε,λ‖2
(1) 6 limm→∞

1

m

m∑
k=−m
|zλm(k)|2.

By (3.12),

‖h̃ε,λ‖(1) 6 ‖gε,µ‖(1) + λ− µ
3

.

Letting µ→ λ, by the continuity ofh(λ) on (ε,∞) in lemma 7, we have

‖h̃ε,λ‖(1) 6 ‖gε,λ‖(1).
By (3.11), we have proved that

‖h̃ε,λ‖(1) = ‖gε,λ‖(1).
Sinceh̃ε,λ ∈ BT ε,λ, by lemma 2, we have

h̃ε,λ(s) = gε,λ(s) for s ∈ [−1, 1], almost surely.

This proves that9λ
m converges tofε,λ asm→∞. �

4. Band-limited signal spacesBLγ

The error estimate result in theorem 1 is for band-limited signals in the spacesBLγ . The
conditions in (2.1)–(2.3) defining these spaces are rather abstract. In this section, we study
their properties and simplifications. To do so, let us first review the prolate spheroidal
wavefunctions (see [25, 29, 30]).

Let K be the following operator

(Kf )(t) =
∫ T

−T

sin�(t − τ)
π(t − τ) f (τ) dτ f ∈ L2[−T , T ]. (4.1)
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It is clear that the operatorK defined onL2[−T , T ] is self-adjoint and compact. Letφk and
λk, k = 0, 1, 2, . . . , be the eigenfunctions and the corresponding eigenvalues of the operator
K, respectively, such thatφk, k = 0, 1, 2, . . . , form an orthogonal basis forL2[−T , T ] with∫ T

−T
φj (t)φk(t) dt = λkδ(j − k)

whereδ(n) = 1 whenn = 0 andδ(n) = 0 otherwise. Moreover, we have

1> λ0 > λ1 > · · · > 0 and λk → 0 ask→∞. (4.2)

From (4.1),

φk(t) = 1

λk

∫ T

−T

sin�(t − τ)
π(t − τ) φk(τ ) dτ t ∈ [−T , T ] k = 0, 1, 2, . . . . (4.3)

Although the above eigenfunctionsφk are only defined on the interval [−T , T ], they can be
easily extended to the whole real lineR by letting t take an arbitrary real value in formula
(4.3). By doing so, it was proved in [29, 30] that the extended eigenfunctionsφk for t ∈ R
have the following orthonormality:∫ ∞

−∞
φj (t)φk(t) dt = δ(j − k).

These extended eigenfunctionsφk are called theprolate spheroidal wavefunctionsin [29, 30].
It was also proved in [29, 30] that these prolate spheroidal wavefunctionsφk, k = 0, 1, 2, . . .,
form an orthonormal basis for the� band-limited signal spaceBL. Thus, anyf ∈ BL can
be expanded as

f (t) =
∞∑
k=0

akφk(t) t ∈ R (4.4)

where

ak =
∫ ∞
−∞

f (t)φk(t) dt = 1

λk

∫ T

−T
f (t)φk(t) dt (4.5)

and

‖f ‖2
(∞) =

∞∑
k=0

a2
k (4.6)

and

‖f ‖2
(T ) =

∞∑
k=0

a2
kλk. (4.7)

We now have the following result.

Theorem 3. Let f be an� band-limited function and have the expansion (4.4), (4.5). If

∞∑
k=0

a2
k

λ
1−2γ /3
k

<∞ for someγ, 06 γ < 1
2

thenf ∈ BLγ .
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Proof. For A > 0, letDA be the truncation operator onL2(R): for h ∈ L2(R),

(DAh)(t) =
{
h(t) t ∈ [−A,A]

0 otherwise.

By (4.4) and (4.5), lettingF denote the Fourier transform, we obtain

f̂ (ω) = Ff (ω) =
∞∑
k=0

akFφk(ω)

=
∞∑
k=0

akD�FDT φk(t)/λk

= D�

∞∑
k=0

ak

λk
FDT φk(t).

Let

f̂n =
n∑
k=0

akFφk = D�

n∑
k=0

ak

λk
FDT φk.

Then

fn =
n∑
k=0

akφk

and

‖fn − f ‖2
(∞) =

∞∑
k=n+1

a2
k

‖f̂n − f̂ ‖2
(�) = 2π

∞∑
k=n+1

a2
k

and

f̂n = D�F

(
DT

n∑
k=0

ak

λk
φk

)
.

Let

gn = 2πDT

n∑
k=0

ak

λk
φk.

Then

f̂n = D�

1

2π
Fgn

and

‖gn‖2
(T ) =

n∑
k=0

a2
k

λ2
k

‖φk‖2
(T ) =

n∑
k=0

a2
k

λk
.

Let

b2
k =

a2
k

λ
1−2γ /3
k

k = 0, 1, 2, . . . .
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Then by the assumption

B
1=
∞∑
k=0

b2
k <∞

we have

‖gn‖2
(T ) =

n∑
k=0

b2
kλ
−2γ /3
k

and

‖f̂n − f̂ ‖2
(�) = 2π

∞∑
k=n+1

b2
kλ

1−2γ /3
k .

By (4.2), for anyδ > 0, there existsN such that

λ
1−2γ /3
k 6 δ for k > N + 1

and

λ
1−2γ /3
k > δ for k 6 N.

Then

‖f̂N − f̂ ‖2
(�) 6 2π

∞∑
k=N+1

b2
kδ 6 2πBδ

and

‖gN‖2
(T ) 6

N∑
k=0

b2
kδ
− 2γ /3

1−2γ /3 6 Bδ−
2γ

3−2γ .

For 06 γ < 1
2, there exists a constantC > 0 such that

δγ ‖gN‖2
(T ) 6 C.

Let

f̂√2Bπδ =
1

2π
FgN.

Then

f̂N = D�f̂
√

2Bπδ

‖f̂√2Bπδ − f̂ ‖(�) 6
√

2Bπδ

and (√
2Bπδ

)γ
‖f̂√2Bπδ‖(∞) =

(√
2Bπδ

)γ 1√
2π
‖gN‖(T )

6 Bγ/2(2π)(γ−1)/2δγ/2‖gN‖(T )
6 Bγ/2C1/2(2π)(γ−1)/2 for 06 γ < 1

2.

This proves thatf satisfies (2.1)–(2.3). �
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Before going to the next result, we recall a result on operator equations. Suppose thatK

is a compact linear operator from Hilbert spaceH1 to Hilbert spaceH2. Let θ2
1 > θ2

2 > · · ·
be the sequence of eigenvalues of the operatorK∗K, and v1, v2, . . . be the associated
orthonormal eigenfunction sequence. Letµn = θ−1

n and

un = µnKvn. (4.8)

Then{un} is an orthonormal sequence inH2 and

vn = µnK∗un. (4.9)

We call the sequence{un, vn;µn} a singular systemfor the operatorK. Then, Picard’s
theorem can be stated as follows (for details, see, for example [10, 20]).

Proposition 2. Let K : H1 → H2 be a compact linear operator with singular system
{un, vn;µn}. In order that the equationKz = g has a solution, it is necessary and sufficient
that g ∈ Ker(K∗)⊥(= ClosureR(K)) and

∞∑
n=0

µ2
n|〈g, un〉|2 <∞

where〈 , 〉 is the inner product onH2.

We now have the following result.

Theorem 4. Assume thatf is � band limited and with expansion (4.4), (4.5). Then:
(i) f ∈ BLγ with γ = 0 if and only if its Fourier transformf̂ (ω) or −f̂ (−ω) for

ω ∈ (−�,�) is a piece ofT band-limited signal;
(ii) f ∈ BLγ with γ = 0 if and only if

∞∑
k=0

a2
k

λk
<∞.

Proof of (i). ‘If part’: If −f̂ (−ω) for ω ∈ (−�,�) is a piece ofT band-limited signal,
then there existsg ∈ L2[−T , T ] such that

f̂ (ω) = 1

2π

∫ T

−T
eisωg(s)ds ω ∈ (−�,�).

For anyδ > 0, let gδ = g. Then, f̂δ(ω) = f̂ (ω) for ω ∈ (−�,�). Let C = 1
2π ‖g‖(T ).

Then

‖f̂δ − f̂ ‖(�) = 06 δ
and

‖f̂δ‖(∞) = 1√
2π
‖gδ‖(T ) = 1√

2π
‖g‖(T ) = C.

Thusf ∈ BLγ for γ = 0.
‘Only if part’: If f ∈ BL0, then for everyδ > 0 there existsgδ ∈ L2[−T , T ] such that

‖f̂δ − f̂ ‖(�) 6 δ and ‖gδ‖(T ) 6 2πC

whereC is a constant and

f̂δ(ω) = 1

2π

∫ T

−T
gδ(s)e

isωds.
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Thus, the function family{f̂δ} is normal. In fact,

|f̂δ(z)| 6
√

2T

2π
e|z|T ‖gδ‖(T ) 6 C

√
2T eT |z| for all δ > 0 z ∈ C.

Therefore, for every sequence{δn} that tends to 0 whenn → ∞, there is a subsequence
{δnj } such that{f̂δnj } converges to aT band-limited signal̂h uniformly on compact sets of
C. On the other hand,∣∣∣∣ 1

2π

∫ �

−�
e−itωf̂δnj (ω)dω − f (t)

∣∣∣∣ 6
√

2π

2π
δnj .

Letting j →∞, we obtain

1

2π

∫ �

−�
e−itωĥ(ω)dω = f (t).

This provesĥ(ω) = f̂ (ω) for ω ∈ (−�,�), that isf is a piece of aT band-limited signal.

Proof of (ii). Let H1 = L2[−T , T ] and H2 = BL0. The inner product onH2 is the
usualL2(R) inner product. LetK be the integral operator given in (4.1). By part (i),
K(L2[−T , T ]) = BL0. By theorem 3, all finite linear combinations of the eigenfunctions
φk are inBL0. Thus, Closure(BL0) = BL and therefore,BL = Closure(R(K)), where the
closure is under the usualL2(R) norm. Also,

K∗f (t) =
∫ ∞
−∞

sin�(s − t)
π(s − t) f (s) ds for f ∈ BL0.

From (4.8) and (4.9),

un = µ2
nKK

∗un.

Hence, {µ2
n} are eigenvalues of the operatorKK∗ and {un} are the corresponding

eigenfunctions. Since

K∗φn(t) =
∫ ∞
−∞

sin�(s − t)
π(s − t) φn(s) ds = φn(t)

we have

KK∗φn = Kφn = λnφn.
Thus by the completeness of the sequence{φn} we have

λn = µ−2
n and φn = un.

By proposition 2,

f ∈ BL0 iff
∞∑
n=0

λ−1
n |(f, φn)|2 <∞ iff

∞∑
n=0

a2
n

λn
<∞.

This proves (ii). �
Combining theorems 1, 3 and 4, we have the following corollaries.

Corollary 1. For 06 γ < 1
2, if

f (t) =
∞∑
k=0

akφk(t) and
∞∑
k=0

a2
k

λ
1−2γ /3
k

<∞

then,

|fε,2ε(t)− f (t)| 6 Cε(1−2γ )/3 t ∈ R.
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Corollary 2. Let f be� band limited. If its Fourier transformf̂ (ω) for ω ∈ (−�,�) is a
piece of aT band-limited function, then

|fε,2ε(t)− f (t)| 6 Cε1/3 t ∈ R.

5. Remarks

In [14, 17], approximations of� band-limited signalsf are considered. These authors use
finite data off on [−T , T ] to recover the wholef on [−T , T ]. The optimal algorithm in
the worst case for the recovery has been found in [14, 17] as follows.

Let Om be an information operator which is a mappingOm : BL→ Cm,

Omf = (f (t1), f (t2), . . . , f (tm)).
An algorithm8 is a function-valued mapping onOmBL. The optimal algorithm usingOm
in the worst case takes the form:

8(Omf ) =
m∑
k=1

bk
sin�(· − tk)
· − tk

where the coefficientsb1, b2, . . . , bm are determined by the solution of the linear system
m∑
k=1

bk
sin�(tn − tk)

tn − tk = f (tn) n = 1, 2, . . . , m.

We can see that this is similar to the discretization of the MMNS in (3.1)–(3.3).
As we have already stated, a band-limited signal is the restriction of an entire function

to the real line. But it is more than this. The Paley–Wiener theorem (see [1]) gives a direct
characterization of band-limited signals; namely, a signal inL2(R) is 2π band limited if
and only if it is the restriction of an entire function and is of exponential order on the
real line. This provides a powerful property for extrapolation of band-limited signals that
distinguishes the problem within the realm of analytic continuation of analytic functions,
and makes finer and stable recovery results possible.

There is considerable literature on uniform and nonuniform sampling theorems for the
recovery of band limited and other classes of signals from a countable set of sample values
(see [2, 3, 12, 23, 37]), the simplest and most celebrated version being the Shannon–
Whittaker theorem, which asserts that aπ band-limited signal can be reconstructed via the
cardinal series

f (t) =
∞∑

n=−∞
f (n)

sinπ(t − n)
π(t − n) .

Various error estimates (truncation, jitter, amplitude, and aliasing errors) are also known.
The problem of signal extrapolation from an interval (which usually has a small length) is
markedly different from the reconstruction of the signalf via a sampling expansion theorem
(which utilizes values off on an appropriate infinite sequence with no accumulation point).

As we have shownBL0 is the range of the Hilbert–Schmidt compact linear operator
(4.1) onL2[−T , T ]. BL0 is nonclosed inL2[−T , T ]. Nashed and Wahba [21, 22] have
shown that the range of a Hilbert–Schmidt compact operatorK is a reproducing kernel
Hilbert space(RKHS)HQ with reproducing kernel

Q(t, s) =
∫ T

−T
K(t, u)K(s, u)du
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where K(t, u) is the Hilbert–Schmidt kernel. The inner product onHQ is given by
〈f1, f2〉Q = 〈K†f1,K

†f2〉 for f1, f2 in HQ, whereK† is the Hilbert space (Moore–Penrose)
generalized inverse. Equivalently,

〈f1, f2〉Q =
∫ T

−T
p1(s)p2(s) ds

wherepi is the element of the minimal norm which satisfiesKp = fi , corresponding tofi
in BL0 for i = 1, 2. We recall that a Hilbert spaceH of functionsf on an intervalJ is said
to be a RKHS if all the evaluation functionalsEt(f ) = f (t), f ∈ H, for each fixedt ∈ J,
are continuous. Then by the Riesz’s representation theorem, for eacht ∈ J, there exists a
unique element, call itQt , in H such thatf (t) = 〈f,Qt 〉, f ∈ H, where〈 , 〉 is the inner
product onH. Let Q(t, s) = 〈Qs,Qt 〉 for s, t in J; this is the reproducing kernel (RK) of
H, and the spaceH with RK Q(t, s) is denoted byHQ. The spaceL2(J) is not a RKHS.

The Paley–Wiener spaceBL of band-limited signals with band [−π, π ] is a RKHS with
RK

Q(t, s) = sinπ(t − s)
π(t − s) .

In [23] it is shown that there is a strong affinity between RK Hilbert spaces and sampling
theorems, and general sampling theorems were established for signals belonging to a RKHS
which is also a closed subspace of the Sobolev spaceH−1. The preceding remarks about
BL0 and the other related spaces being RKHS may suggest that a broader framework within
which the type of extrapolation results derived in this paper may also hold.
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