Inverse Problem&3 (1997) 1641-1661. Printed in the UK PIl: S0266-5611(97)83932-9

A method with error estimates for band-limited signal
extrapolation from inaccurate data

Xiang-Gen Xig and M Zuhair Nashegd

1 Department of Electrical Engineering, University of Delaware, Newark, DE 19716, USA
i Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA

Received 6 May 1997

Abstract. In this paper, we consider the problem of extrapolation of a band-limited signal
outside a fixed interval from its (approximate or contaminated) values in that interval. We
propose a new extrapolation method that estimates the error between the extrapolated and
true values, and which also resolves the ill-posedness of the problem. The method is called
a modified minimum norm solution (MMNS) method. Both the continuous MMNS and its
discretization are studied. The error estimates hold for some classes of band-limited signals,
when the maximum magnitude of the data error is known. These classes of band-limited signals
are also characterized.

1. Introduction

Let f be a finite energy signal, i.g% € L2(R). Its Fourier transform/ is defined by
f(@) =/ f(Oe dr. 1.1)

If there exists a positive numbe&k such thatf(w) = 0 when|w| > @, f is called2 band
limited. An © band-limited signalf can be represented by its inverse Fourier transform:

1 (9., ,
f@® = 2—[ f(w)e " dw. 1.2)
T J-Q

It is known (see for example [1]) that a band-limited sigifais the restriction to the real

line R of an entire function defined on the complex plade Therefore, in theoryf is
determined everywhere by its values on an interval no matter how small this interval is.
This motivates the following band-limited signal extrapolation problem.

How does one practically extrapolate & band-limited signalf outside an interval
[T, T] whenf(¢) is given fort € [—T, T] with a certain contamination error?

The above extrapolation problem is interesting not only in theory but also in many
applications, such as spectral estimation (Papoulis [25]) and limited-angle tomography
in medical image reconstruction (Natterer [24]), where only limited observation data are
available.

Since f is analytic, a trivial solution for the problem is to compute the derivatifés
at+ = 0 by using the values of in [-T, T] and then use the Taylor expansion. However,
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this method is extremely unstable due to the instability of the derivative computations.
Numerical differentiation is an ill-posed problem and the degree of ill-posedness (which can
be made precise using Sobolev negative norms) increases with the order of differentiation.
Therefore, researchers have been seeking other methods. Since the early 1970s there has
been considerable interest in this area, for example [4-8,11-17, 24-30, 32-36, 38-40]. Since
the problem itself is basically an inverse problem, it has been recognized that the existing
extrapolation methods are generally unstable in terms of inaccurate data. The extrapolated
values can change dramatically when the given data in an interval change slightly, see
for example [27]. There are also many modified algorithms that have been proposed to
improve the extrapolation performance. However, to the best of our knowledge there is no
extrapolation algorithm with which one is able to estimate the error between the extrapolated
and true values outside the given intervall], T] for any nontrivial class of2 band-limited
signals, when the given data are inaccurate.

In this paper, we propose a new extrapolation method for band-limited signals that we
call a modified minimum norm solutioMMNS) method. With the MMNS method we
are able to estimate the error between the extrapolated and true values for some nontrivial
classes of band-limited signals, when the maximum magnitude of the error of the given
inaccurate data in a certain interval is known. This paper is organized as follows. In
section 2 we study the MMNS method for continuous-time signals. In section 3 we study
the MMNS method for discrete-time signals, which is a discretization of the method in
section 2. In section 4 we present tractable characterizations of the classes of band-limited
signals studied in sections 2 and 3. In section 5 we make several remarks.

2. Band-limited signal extrapolation in the continuous-time domain

In this section, we study the MMNS method for continuous-time band-limited signals.
Without loss of generality, in what follows we assufe= 27 and7T = 1 although we
continue to use2 and 7' to emphasize where they appear. We also assfime f + n
where  is the error signal that is continuous in time apdr)| < € for ¢t € [-T, T},
and f.(¢) for t € [-T, T] are the given data. By normalization, we may assume that the
maximal error magnitude < 1.

We first introduce some notation. L&2[—D, D] denote the space of all signafsthat

satisfy
N D 1/2
||f||(D)=</D|f(t)|2dt> < 00

where D is a positive humber oso.

Let BL denote all2 band-limited signals. For > 0, let 3£, denote alk2 band-limited
signalsf € BL that satisfy the following condition.

For anys > 0, there exists a signgk € L2[—T, T] such that

N 1 (7 A
hw2 o [ awded (2.2)
T J-T
satisfies the following two properties:

If = fslly <8 (2.2)
and
1 fslloey < €877 (2.3)
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whereC is a constant that is independentsoandy, and f is the Fourier transform of .

The physical meaning of the above subspace of2dtland-limited signals is as follows.
For an Q band-limited signalf, its Fourier transformf is supported in £, ] and
f € LY—, Q). The correspondence between the spéceof all  band-limited signals
and the spacéd.?[-, ] of all finite L? norm signals defined on-2, Q] is one-to-one
and onto. Therefore, for a gener@l band-limited signalf its Fourier transformf may
not have any smoothness property. The subsgte contains all$2 band-limited signals
f with the following properties.

(i) The Fourier transformf can be approximated in the? sense by a family f;} of
T band-limited signals (entire functions of exponential order). This approximation holds
inside the frequency band df, i.e. the support£2, €] of f.

(i) The L? norms on the whole real line of the signals in the famiﬁ(} may not be
uniformly bounded, but the rate of tlikvergences not arbitrary. Rather the rate is related
to the rate of theconvergenceof {f5} in L[—Q, Q] to f ass — 0.

In this approximations framework, what is gained is the smoothness while what is lost
is the boundedness of the family & norms on the real line. This trade-off is similar
to the bandwidth and the timewidth trade-off [29,30]. More precise interpretation and
characterization of the above subspace will be given in section 4.

For the maximal error magnitudementioned at the beginning of this section and any
numberx > 0, let BT, denote the set of all signalse L?[—T, T] such that

1 (T sin2r(s —1)

The basic idea for this subspace is to find signals in a neighbourhood of the inaccurate data
signal f.(¢t) for r € [T, T] such that the Fourier transforms of these signals7aigand
limited.

For A > ¢, let g.;, be the unique element (the existence and unigueness will be shown
in lemma 2) inB7 ., that has the minimum norm:

llgeallcry = min{ligllry; g € BT ¢} (2.5)

Let

1 (7 sin2r(s —
far =5 [ O s (26)

which is called the MMNS of the continuous-time band-limited signal extrapolation problem.
We now have the following error analysis for the above MMNS.

Theorem 1. Let f. ». be defined by (2.6) with the constant= 2¢. If f € BL, for some
numbery with0 < y < 3, then

| feoe@®) — f(OI < CeP2 forall t e R 2.7
whereC is a constant independent efand y.

Before we prove theorem 1, we establish two lemmas. We first recall the following
known results from operator theory of ill-posed problems. HegtandH, be two Hilbert
spaces, an& be a bounded linear operator frdiy to H,. Let K* denote the adjoint of
the operatok and K be the generalized inverse &f (see [9, 19, 20]). LeR(K*) denote
the range of the operatdt™.

We recall that the (Moore—Penrose) generalized invekdeof the operatork is
characterized by the following extremal property. For anyn the domainD(K') =
R(K)+R(K)*, the elemenk g is the minimal norm least-squares solution of the operator
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equationK f = g. If R(K) is nonclosed, which is the case, for example, wikerns a
compact operator with infinite-dimensional range, then the opettois unbounded, so
the problem is ill-posed. The well known Tikhonov regularization uses the approximation

Xe = (K*K +al) 1K*g a>0
where[ is the identity operator. It is well known that

Iimoxa =K'g for g € D(KT).

Without any ‘smoothness’ assumption @& g, it is not possible in general to estimate the
rate of convergence of, to K g or to obtain an error estimate, — K g| for fixedo > 0.

In what follows we will use the following proposition (see, e.g., [10, 18]) which states that
if KTg € R(K*), a kind of smoothness condition, then an error estimate holds.

Proposition 1. If Kfg € R(K*), sayK'g = K*g* for someg* e H,, then
1K' = xoll < Varllg*]l-

Let us consider the operatdt—* from L2[—Q, Q] to L?[—T, T], a restriction of the
inverse Fourier transform (1.2), defined by:

o 1 LN ]
FHO =0 = 5 / f@etdy  rel-T.7) 2.8)

Then its adjoint(F~1)* is

1 [T -
[(FH*gl(w) = 5 /T g(s)e*ds we[-Q, Q]

From (2.8),(F~1f)(r) = 0 for almost alls € [—T, T] if and only if f(w) = O for
almost allo € [—Q, Q]. This implies that the null spaca&/(F~1) of the operatorF—!
is the zero element. This also implies that the spR¢eF—1)*) is dense inL’[—, Q]
since ClosuréR((F~1)*)) = N(F~H* = L?[—Q, Q). Thus we have proved the following
lemma.

Lemma 1. For any$ > 0, there existg; € L[—T, T] such that

If = Fslly <8

where
o 1 T )
fs(w) = o /J 8s(s)€°“ ds

andf is the Fourier transform off.

By lemma 1 and its implication in the time domain, it is clear that the3s€f ; defined
by (2.4) is not empty whei. > €. Since the seB7.; is closed and convex, we have
proved the following.

Lemma 2. For A > ¢, there is a unique elemegt ; in B7 ., such that

llgeallcry = min{ligllry - g € BT ¢}
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With the functiong. ;, as in lemma 2, define

1 (7 i
P I LY 29)
T J_T

Then the MMNS/. ; in (2.6) can also be represented as

1 & .
Jeat) = 72 f gé,x(a))e"””dw.
T J_

Q
With the signalf; in (2.1), define

Q
fot) = % f_ . fs(s)e™"ds. (2.10)
We are now ready to prove theorem 1.
Proof of theorem 1. When f € BL, for y > 0, by (2.1), (2.2) the signags with
8 = (2 //22)¢ satisfies

1 = il < 2
j— < —€
20
where f; is related togs via (2.1). In the time domain, by using the Cauchy—Schwarz
inequality and the above inequality we have
1 @ N ;
Lf () — fs(O] < Zn‘/ (f (@) — fs(@))e™" dw| < €
-Q

where

1 e .
O = — f (@) 0

1
@b f f 25()€°C " ds dw

sin2t(s —t)
27'[2/_T75—l s(s) ds

where the conventiof2 = 27 made at the beginning of this section is used. By the
assumption

[fe@) — f(D)] <€
we have
| fs(t) — fe()] < 2¢
According to (2.4), we have proved thgt is in B7 . 2. Hence, by lemma 2 we obtain

8e.2¢ L7y < 18 2n /253 (1)
Moreover, by (2.1) and (2.3), we have

1ge,2¢ 7y < 18 2n)vam)e lry < 2TC (2 /V2Q2) Ve
Since

|fe,2€(t)_fe(t)| <2€ re [_Ta T]
we have

| fe2e () — f()] < 3e te[-T,T]



1646 X-G Xia and M Z Nashed

For the signalf; in (2.10) and considering (2.2) in the time domain, we have

| f5(t) — ()] < @5 for t € R.
2
Therefore,
| fe.2¢ (1) — Ffs()] < 3¢ + \gjgé fort e [-T,T]. (2.11)

Fora > 0, let
Xo = (F ) F 4 aD)  F D (foe (1) = f5(0)).

By using proposition 1 withk = F~! ands = ¢, and (2.1), (2.2), we have
1ge.2e = f5 = xalli@) = 1K' (feze = f5) = %alli@)

< Va(llgezellery + llgsllry)
<2nCe™ 7V Ja,

whereC is a constant, ang. 2. — ﬁ; = K*(ge.2c — gs) from (2.1) and (2.9). On the other
hand,

17V2Q V28 TV/2Q V2Q\ €
[Xall@ < = 3c + §| = 3+ <
o 7 2 T 2
Thus,
_ A _ TV2Q V2Q\ €
I8e.2e — fsll@ < 27Ce™ o + - <3+ o ) o

Using (2.2) withs = ¢, we have

IGe2e — fll < 27Ce™ Ja +

T 282 V282
(3 + ) € + €.
b4 27 | «

In the time domain, using the Cauchy—Schwarz inequality, we obtain

[fe2e®) — f(D)| < éﬁ |:271C6_V\/&+ T;/TE <3+ m) € +{| fort e R.

T 21 o

Therefore, estimate (2.7) in theorem 1 can be proved by takiage?®+)/3 and using the
assumptiore < 1 made at the beginning of this section. (]

3. Discretization of the MMNS method

Since in practice we usually process discrete-time signals, it is very important to consider
the discretization of the MMNS method proposed in section 2. To do so, we need some
notation.

For any numbei with A > ¢ and positive integem, let le(Zm + 1) denote the set
of (2m + 1)-dimensional vectora = {a(k)} € C?"*1 such that

1 1 & sin2r (k-1
TP

=—m m m

<A for —m <n <m. (3.2)

- 1(2)
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Forx > ¢, let 2 = {z2 (k)} be the unique element (the existence and the uniqueness will
be shown in lemma 4) oM/, (2m + 1) such that

12,1l = min{[lall; @ = {a(k)} € MLZ(2m + 1)} (3.2)
where
A m 1/2
nw=<§jmmﬂ :
k=—m
Finally, let
v L1y Sinh(%—t)/\k a2
m()—ﬁ%k;m?@n( ). ( . )

Notice that, for a signaf € BL and any constants > ¢ > 0 and any positive integer
m, we can always construct the signal; in (2.6) and the signail’ in (3.3) from the
given dataf.(¢t) for + € [-T,T]. In other words, the MMNS¥, ; given in (2.6) and
its discretizationd* in (3.3) can be found for any € BL using its known values on a
segment.

In practice, it is usually difficult to get the MMN$., in (2.6). A practical way to
compute it is to use the discretization form that is formulatedijyin (3.3). We have the
following convergence of the discretizatioly, of the MMNS.

Theorem 2. For any constant with A > ¢, the discretizationt’. converges tg'. ; uniformly
on compact sets & whenm — oo.

It is interesting to notice that the convergence result in theorem 2 does not require any
additional condition for a band-limited signgl In order to get an error estimation for the
MMNS, an additional condition, i.ef € BL,, in theorem 1 is needed.

To prove theorem 2, we need several lemmas.

Lemma 3. For each fixed\g > ¢, there exists > 0 such that, whem > M andA > Aq,
the setMi2(2m + 1) defined in (3.1) is not empty arjt} || < C,,, whereC,, is some
positive constant and independentrofand A with A > Aq.

Proof. By lemma 1, fors = (A — €)/3, there existg; € L?[—1, 1] such that

If = Fsllan < —€)/3
where

A 1 ! .
fs(w) = o [188(S)ésw ds.
Thus,

< (A —e)/(BYm) for all t € R.

1 [ ,

E / fg(w)eiltw dCl) — f(t)
—2r

In other words,

1 2 —it 1 ! is
‘271/2”6 Zﬁlga(s)é dsdw — £ (1)

Since the space of continuous functions is densé3n-1, 1], there existsi; € C[—1, 1]
such that

<(A—e€)/3 for all ¢ € R. 3.4

llgs — hslly < (A —€)/3.



1648 X-G Xia and M Z Nashed

Thus,

1 2 ) 1 1 . 1 2 1 1
= o 2 5) — hs(s))€" <— | = — hy(s)|d
‘zn/_z,,e s /_1(85(?) 5())€ dsdw‘ - /_zﬂh/_1|ga(s> 5(s)] ds do

<V200—€)/(37) < (L —€)/3 for all € R.
By (3.4) we have

1 1t :
— / g _— hs(s)€dsdw — f. ()| < (A +¢€)/3 for all t € [-1, 1].
2 o 2T _1

That is,

1 [*sin2r(s —
oz [ = st - 2o

Sinceh; is continuous on-f1, 1], the following sum

1 1 ¢ sin2r(f —op) k
i S
272 m Z kit 5<m>

k=—m m

<(2h+¢€)/3 for all r € [-1, 1]. (3.5)

-1 N

converges uniformly to
1 [Ysin2t(s—1)
27T2 _1 s —1

for t € [-1, 1]. Therefore, for(» — €)/3, there exista¥ > 0 such that, whem > M, we
have

hs(s)ds

11 & sin2r (£ -1) k 1 [lsin2r(s—=2

it T N wmly ()= Y w9 d

hzmk;m %—% 6<m> 2n2 |, s—1 3(s) ds
<(A—¢€)/3 for |n| < m.

Combining this with (3.5), we obtain

11 & sin2r(k—n)y /g n
PR D ()-%C)

<A for all |n| < m.

Let a(k) = hg(%) for k| < m. Then,{a(k)} € le(Zm + 1). This proves that the set
MI2(2m + 1) is not empty whenn > M.
Moreover, the abové/ can be large enough such that, when- M,

1 m l
=S |a<k)|2</ hs(s)Pds + 1
m -1

k=—m

1
= / |h—e3(s) ds + 1
-1

< (lgo—oyallay + (A —€)/3)2 + 1.
Let(A —€)/3<1and
1/2
Cro = {(Ig00—cyallw + D2 + 112

Then lemma 3 is proved. O
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Similar to lemma 2, since the s@tllf(ZM+1) is closed and convex, we prove lemma 4.
Lemma 4. For everym and A with 1 > ¢, there exists a unique element
= {z,, ()} € MIZ@m +1)
such that
Iz, Il = min{llall : @ = {a(k)} € MIF(2m + 1)}.

Recall that a family of functions of a complex variable is callatbamal familyif every
sequence of the family contains a subsequence which converges uniformly on compact sets.
It is known that a family of functions that is uniformly bounded in any compact set is a
normal family. We use this result in the proof of the following lemma.

Lemma 5. For eachiq (> ¢€), the family of functlons\llm (t)}r>20.m defined in (3.3) is normal
whent is extended to the complex pla@ie

Proof. The functionsW/, in (3.3) can be rewritten as
A 11 (7 - ikw/m )
lIJ H=__" e—lrw eI w/m k d
s B L ACLE
1 2

_ = —itw - kw/m A
2 ) o © (27'[ m Z ¢ (k))

Thus,

m

- Z e—lkw/m }‘(k)'da)

k=—m

N e2rlzl 2n
Vh@I<

Tl om 4 1\ V2
< ( ) B

T

~

lemma 31 /2m + 1\ Y2
< = ( + ) G, F! for A > Ao zeC.
T

m
This proves that the familw,ﬁ},\%o,m is normal. [l

Define
(@) =5 Z &/ z) (k). (3.6)

k—fm

Lemma 6. For eachiq (> ¢€) the family{¢*
1 band limited.

(2)}iz20.m 1S NOrmal and its limit functions are

m

Proof. The proof of normality is similar to the proof of lemma 5 by using lemma 3.
By Fatou’s lemma and lemma 3, it is easy to prove that all limit functions of the family
{d% (D) }rsaom are in L?(R) when z is restricted to the real lin®. Therefore, by the
Paley—Wiener theorem (see [1]), lemma 6 is proved. O

Lemma 7. Let g, be as defined in (2.5). For a fixed let 2(A) = |lgeallwy- Then the
functioni (1) is continuous fon > ¢.



1650 X-G Xia and M Z Nashed

Proof. LetAgandi; be any two positive numbers such that> A; > €. Foranyx > Aj,
define

1 1
ger@) = 5 / g, (s) ds.
T J-1

Then

[8ea()l = o o

This implies that the family{ g, ; (w)},>5, iS normal. Similar to lemma 6, its limit functions
are 1 band limited. Let_ze,k0 be one of its limit functions. Lek(n) — Ag and suppose
that the sequencg. )} converges tcﬁe,,\o uniformly on compact sets df. Then, there

existsh, ;, € L?[—1, 1] such that

1 [t V2 V2
*/ €°“gc 3 (s)ds| < e‘w‘gnge,k”(l) < gl for A > Ay
-1

_ 1 rt
hsy,\o(a)) = Z\/ e""“heﬁ,\o(s)ds.
-1

By the definition of f ;,) we have

1 &
’271 / €8s (@)dw — fo ()| = | feam () — fe@®)] < A(n) for t € [-1, 1].
—2r

Let n — oo in the above inequality,

1 2 —itw 1 ! isw
‘271 [%e Zﬁlhé,ko(s)é dods — f.(1)| < Ao forr e [-1,1].
Thus, i, ;, € BT ¢,,. Therefore,
Ihesoll@y = 18enoll)- (3.7
On the other hand, for ang > 0,

B B
f he 1o (@) ?do> = lim / |8 20 (@) |?dw
_ n—>oo | _p

B

00
< I|mn—>oo/ [8e.1n) (@) [“do = I|m71—>oo||ge,k(n)||(oo)

oo
1. 2 1 2
= g“mn—mo”gs,x(n)”(l) < lege,xoll(ly

Therefore,

- 1
e ol 00y < EH&,AOH(D-
In other words,
7ol < 8ol
By (3.7) and lemma 2, we have proved that, = g..,,- Therefore, we have proved

lim h(x) = h(ro). (3.8)

A=A
Now we want to prove that
lim h(A) = (o). (3.9

A=Ay
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Let A; be any positive with O< 11 < A¢. Let {¥*(n)} be any sequence of numbers with
A < A(n) < A(n+ 1) < Ag that converges tag. Define

A —A
(s = (1— M) gein(s) + %ge W) forse[-1,1]. (3.10)
Define
A 1 o —itw 1 ! isw
h, () = P /;Zﬂe <2_71 /;lhn(s)e' ds)da)
Then
- Lsin2r(s — 1)
|ha(t) — fe(t)| ‘ZTZ ?hn(s) ds — fe(t)
A(n) — 1 [lsin2r(s —
< (- o [ e
A 1 in2r
f;)_ Ml s f S'”sfst D gesals)ds — £

An) — A(n)
< ( ho — ) )»o—)»(n)

This implies thath, € BT ¢y
From (3.10) we have

An) — A1 A(n) — A
hy 1-— 4+ —= .
Il < ( o — i llge.n: My e lge.n0ll )
Letting n — oo we obtain

M, oollZ2n ll 1) < N18en0ll1)-
Since we have proved thaf, € BT .y,

lgermll@w < Nhnll-
This proves that

iMool genim @) < 18e.x0ll1)-
On the other hand, the following is clear:

lge.rm Iy = llgenoll-
Thus,
M llgermllw = l1geroll
n—oo
that is, (3.9) is proved. This proves lemma 7. O

We are now ready to prove theorem 2.
Proof of theorem 2. By (3.3) and (3.6) we have

A 1 o A —itw
WA (1) = Z/z O ()" do.

If we can prove that every limit function of the sequerdé } is f. ;, theorem 2 is proved.
Assumeh, ; is a limit function of the sequencl*}. Without loss of generality, we may
assume the sequent®’ } converges tdi ;. Since the family{ W} for a fixed is normal
by lemma 5, the convergence is uniform on compact set§.oBy lemma 6, the family



1652 X-G Xia and M Z Nashed

{¢*} is also normal for a fixed. We may assume that the sequefgg} converges tdAze,A
uniformly on compact sets o and

/’_l _ i 2 i 7itwd
ea(t) = o hep(w)€ w.
-2

By Lemma 6, there exists, , € L?[—1, 1] such that

N 1 .
he,A(w) = Z /_1 elswhg’)‘(s)ds.
Taking the limit asm — oo in

(Y n

() n () <r e

and using the continuity of. , (r) and f. () for t € [-1, 1], we obtain
lhes() = feI <2 1 e[-11]

This proves thafi. , € BT . ,. Thus,

Ihesllw = llgesllw- (3.11)

We next want to prove the reverse inequality.

For A > ¢, chooseu such thath > p > €. For thisu, we haveg. , € BT ;. Using
the same argument as in the proof of lemma 3,(for- )/3 there existg, , € C[—1, 1]
such that

. A—p
”ge,u - ge,,u”(l) < T

Thus, if we let

- (t)—lfl sin2r(s — 1) _ ()d
8en\l) = 272 | 4 P 8e,n(S)US

then,

= V2i—p
|g€,/L(t) - feu(t)| < ——F— fort e [—1, 1]
T 3
Therefore, there exist& > 0 such that whem > M we have

m H k _ n
il Z SIhZ;r(_aﬂ m)gﬁﬂ(l{)_ﬂ(ﬂ)‘< 20+ 1 i

2n2m m m 3

By (3.1), this implies thag. , = {ge,u(%)} € /\/llf(Zm + 1). Therefore,

~ A
Ge.ll = NIzl
Thus

o 1 . 1
H A2 H ~ 2 ~ 2
Ilmm%% 2, 1I° < Ilmm%% Ge, 1 l” = 118e,rlly)-

Therefore,
A=

. (3.12)

1/2
(o 1 5.2
“mm%oo%”zm” < Ngeplly +
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On the other hand, for ang > 0,

B R B
[ st = i [ 16}
_B m—oo J_p

<limye [ 160 o

—mTm

@6 o 1 . ikw/m _ A 1 - —ikw/m
= lim,,_ = E gke/m oy | | =— E g ke/mzi (k) ] d
OO/ (27rm B Zy( )) (an J— anl )) N

—mm ——m
=lim /m ;Izk (k) |>dw
" ) (2m)2m2
. 1 m
S 70 P — * (k)|
S D A

k=—m

Therefore,
N 1. 1 &
2 H A 2
el < ghmmm%;m |z} (k) 2.
Since
el = 2 lhe sl
we have
- . 1
L [N L PREAG]
k=—m
By (3.12),
- A—pu
lherlla < lgeulla + =5

Letting u — A, by the continuity ofa (1) on (e, co) in lemma 7, we have

el < lgerlla-
By (3.11), we have proved that
el = lgesllw-
Sinceh, ; € BT.,, by lemma 2, we have
hes(s) = gea(s) for s € [—1, 1], almost surely.

This proves thatV} converges tof.;, asm — oc. O

4. Band-limited signal spaces3.L,,

The error estimate result in theorem 1 is for band-limited signals in the spaCgs The
conditions in (2.1)—(2.3) defining these spaces are rather abstract. In this section, we study
their properties and simplifications. To do so, let us first review the prolate spheroidal
wavefunctions (see [25, 29, 30]).

Let K be the following operator

TsinQ( —t

(Kf)(0) = / fmde  ferd-r.71. (4.1)

_r 7wt —1)
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It is clear that the operatdt defined onL?[—T, T] is self-adjoint and compact. Lef and
My k=0,1,2, ..., be the eigenfunctions and the corresponding eigenvalues of the operator
K, respectively, such that, k =0, 1, 2, ..., form an orthogonal basis fdr?[—T, T] with

T
/T ¢ ()¢ (1) dt = A (j — k)

whered(n) = 1 whenn = 0 andé(n) = 0 otherwise. Moreover, we have

1>i>A1>--->0 and A — 0 ask — oo. (4.2)
From (4.1),
1 (T sinQ( -
b (t) = — f SN =)y ydr re[-T.T]  k=012... (4.3)
MJ_r 7wt —71)

Although the above eigenfunctiogg are only defined on the interval-[l’, T'], they can be
easily extended to the whole real lifieby lettingz take an arbitrary real value in formula
(4.3). By doing so, it was proved in [29, 30] that the extended eigenfuncfipier t € R
have the following orthonormality:

/ ¢ (1) dr = 8(j — k).

These extended eigenfunctiopsare called th@rolate spheroidal wavefunctions [29, 30].
It was also proved in [29, 30] that these prolate spheroidal wavefunetigiis= 0, 1, 2, .. .,
form an orthonormal basis for the band-limited signal spacBL. Thus, anyf € BL can
be expanded as

fO =) ap(t)y teR (4.4)
k=0
where
o0 1 T
akZ/ fO@e()dt = )T/ F(O)i(r) drt (4.5)
—00 k J-T
and
1f 17y =Y af (4.6)
k=0
and
£y = afh. 4.7)
k=0

We now have the following result.

Theorem 3. Let f be anQ2 band-limited function and have the expansion (4.4), (4.5). If

00 2
a
k
E T3 <X for somey, 0< y <
k=0 A

then f € BL,.

Nl
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For A > 0, let D, be the truncation operator ai?(R): for i € L?(R),

h(t) t €[—A, A]

(Dah)(t) = { 0 otherwise.

By (4.4) and (4.5), lettingF denote the Fourier transform, we obtain

Let

Then

and

and

Let

Then

and

Let

[ee]

f@) =Ff@) =) aFei(w)

k=0

arDo F Dy (t) [ Ax

M

~
Il
o

E

o0
a
Dq E FDrg(1).
k=0 "k

>

n n
A Ay
fo=) axF¢=Dg )y o FDroy.
k=0 k=0 "k

fn = Xn: ak¢k
k=0

o
2 2
1= oy = D af

k=n+1

||fAn_fA||(29) =2 Z a,f

k=n+1

f= DQF<DT 3 Z’;qsk).

n
ai
&n =21 Dr E )T(Pk
k=0 "k

A 1
fnZDQEan
2 "~ ay 2 "~ af

Ignllery = > S5 19liEr) = > 5
k=0 *k k=0 "k
2

2_ % —

bk—m k—0,1,2,....
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Then by the assumption

o0
A
B= Z b? < 00
k=0
we have

n
2 2, —2y/3
lgallZry =Y b2
k=0

and

o0
2 2 1-2y/3
1fe = FliZgy =27 Y b 27,
k=n+1

By (4.2), for anys > 0, there existsV such that

PR fork>N+1
and

AR for k < N.
Then

A N o0
Ify — flif < 27 Z b?8 < 27 B
k=N+1

and

N

_ B _

lgnliZ, < > b8 T4R < BS 57
k=0

ForO<y < % there exists a constant > 0 such that

8 llgnliZr < C.

Let

2 1

fyzEms = EFgN'
Then

fv = Dngm

I fyzzms = Fll@ < V2Bxs
and

Y oA y 1
(V2B73) 1 ammallo = (V2B78) " lgwlay

< BY22m) V2872 gn oy
<

This proves thatf satisfies (2.1)—(2.3).

v12C12(2m)r—1/2 forO<y <

1
5-
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Before going to the next result, we recall a result on operator equations. Suppoke that
is a compact linear operator from Hilbert spaée to Hilbert spaceHl,. Let 912 > 92? >
be the sequence of eigenvalues of the oper&tdK, and vy, vy, ... be the associated
orthonormal eigenfunction sequence. ket= 61 and

u, = u,Kv,. (4.8)
Then{u,} is an orthonormal sequence iy and
Uy = u,K*u,. (4.9)

We call the sequencéu,, v,; u,} a singular systenfor the operatorK. Then, Picard’s
theorem can be stated as follows (for details, see, for example [10, 20]).

Proposition 2. Let K : H; — H, be a compact linear operator with singular system
{u,, v,; u,}. In order that the equatiok z = g has a solution, it is necessary and sufficient
that g € Ker(K*)* (= Closurér(K)) and

oo
> u2l(g. ua)l? < 00
n=0

where(, ) is the inner product or.
We now have the following result.

Theorem 4. Assume thaf is Q band limited and with expansion (4.4), (4.5). Then:
(i) f € BL, with y = 0 if and only if its Fourier transformf(w) or — f(—w) for
w € (-, Q) is a piece ofl band-limited signal;
(i) f € BL, withy = 0if and only if

Proof of (i). ‘If part’: If —f(—w) for w € (—2, Q) is a piece ofT' band-limited signal,
then there existg € L2[—T, T] such that

~ 1 T
flw) = 7/ é'“g(s)ds we (—2,Q).
2 -T
For anys > 0, letg; = g. Then, fs(w) = f(w) for @ € (-2, Q). Let C = X lgllr).
Then
Ifs = fll@y =0<s
and

N 1 1
Il fsll o0y = E”&S”(T) = Eﬂgﬂm =C.

Thus f € BL, for y =0.
‘Only if part’: If f e BLo, then for everys > 0 there existg; € L?[—T, T] such that

Ifs — Fllay <8 and lgsllr) < 2nC

whereC is a constant and

o 1 r !
fs(w) = P /_T gs(s)€*“ds.
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Thus, the function family{ /s} is normal. In fact,

V2T
15| < g5l ry < CV2TE" ! forall § > 0 zeC.
7'[

Therefore, for every sequengs,} that tends to 0 whem — oo, there is a subsequence
{8,;} such that{fg } converges to & band-limited signak uniformly on compact sets of
C. On the other hand,

e*“ﬁww»wu—fo)szfgi&,

‘ 2 21

Letting j — oo, we obtain
Q2 A A
= e "h(w)dw = f(1).
2 -Q
This provesi(w) = f(w) for w € (—Q, Q), that is f is a piece of & band-limited signal.
Proof of (ii). Let Hy = L?’[—T,T] and H, = BLo,. The inner product o, is the
usual L2(R) inner product. Letk be the integral operator given in (4.1). By part (i),
K(L?[-T, T]) = BLo. By theorem 3, all finite linear combinations of the eigenfunctions
¢r are inBLg. Thus, Closuré3Lg) = BL and thereforeBL = ClosuréR(K)), where the
closure is under the usu@f(R) norm. Also,

K* (1) = /Oo %f( yds  for f € BLo.

From (4.8) and (4.9),
= /,LEKK*L{”.

Hence, {2} are eigenvalues of the operatdfK* and {u,} are the corresponding
eigenfunctions. Since

Q
Wmm=/ ﬁkﬁjlmom—@m

we have
KK ¢y = Kpp = 2.

Thus by the completeness of the sequefig we have
=2 and ¢, =u,

By proposition 2,

0 o 2
i -1 2 ; a,
f e BLy iff HE:O)\H [(f, du)|® < o0 iff ,;:0)\7 < 00.
This proves (ii). O

Combining theorems 1, 3 and 4, we have the following corollaries.

Corollary 1. For0< y < 3, if

F@O =" api(t) and Z e 23 <
k=0

=0 A
then,
| fe2e(t) — ()] < CeX=2/3 t eR.
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Corollary 2. Let f be Q2 band limited. If its Fourier transfornf(a)) forwe (—Q2,Q)is a
piece of aT'" band-limited function, then

|fe,2€(t)_f(t)| <C€1/3 teR.

5. Remarks

In [14, 17], approximations of2 band-limited signalsf are considered. These authors use
finite data of f on [T, T] to recover the wholef on [T, T]. The optimal algorithm in
the worst case for the recovery has been found in [14,17] as follows.

Let 0,, be an information operator which is a mappi@g, : BL — C™,

Onf = (f(t), f(12), ..., f(tw)).

An algorithm @ is a function-valued mapping of,,BL. The optimal algorithm using@,,
in the worst case takes the form:

OO f) =Y b1
k=1

Iy
where the coefficients,, b, ..., b, are determined by the solution of the linear system
2. sinQ(t, —
Z (’ —f(t,, n=12....m.
l n

We can see that this is similar to the discretization of the MMNS in (3.1)—(3.3).

As we have already stated, a band-limited signal is the restriction of an entire function
to the real line. But it is more than this. The Paley—Wiener theorem (see [1]) gives a direct
characterization of band-limited signals; namely, a signaL#(R) is 2r band limited if
and only if it is the restriction of an entire function and is of exponential order on the
real line. This provides a powerful property for extrapolation of band-limited signals that
distinguishes the problem within the realm of analytic continuation of analytic functions,
and makes finer and stable recovery results possible.

There is considerable literature on uniform and nonuniform sampling theorems for the
recovery of band limited and other classes of signals from a countable set of sample values
(see [2, 3, 12, 23, 37]), the simplest and most celebrated version being the Shannon—
Whittaker theorem, which asserts that éband-limited signal can be reconstructed via the
cardinal series

fo =Y fon2nreen,

B w(t —n)

Various error estimates (truncation, jitter, amplitude, and aliasing errors) are also known.
The problem of signal extrapolation from an interval (which usually has a small length) is
markedly different from the reconstruction of the sigifalia a sampling expansion theorem
(which utilizes values off on an appropriate infinite sequence with no accumulation point).

As we have showrBL is the range of the Hilbert—Schmidt compact linear operator
(4.1) on L?[—T, T]. BLo is nonclosed inL?[—T, T]. Nashed and Wahba [21, 22] have
shown that the range of a Hilbert—-Schmidt compact oper&tds a reproducing kernel
Hilbert space(RKHS) H, with reproducing kernel

T
Q(t,s):/ K@, u)K (s, u)du

T
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where K (¢, u) is the Hilbert-Schmidt kernel. The inner product &ty is given by
(f1, f2)0 = (KT f1, KT fo) for f1, foin Hp, whereK T is the Hilbert space (Moore—Penrose)
generalized inverse. Equivalently,

T
(f1, 2o = /T p1(s)p2(s) ds

where p; is the element of the minimal norm which satisfi€p = f;, corresponding to;
in BLo for i =1, 2. We recall that a Hilbert spadé of functions f on an intervall is said
to be a RKHS if all the evaluation functionals (f) = f(¢), f € H, for each fixedr € J,
are continuous. Then by the Riesz’s representation theorem, forreadh there exists a
unique element, call iQ,, in H such thatf(t) = (f, Q,), f € H, where(,) is the inner
product onH. Let Q(t, s) = (Qy, Q,) for s, ¢ in J; this is the reproducing kernel (RK) of
H, and the spac#l with RK Q(z, s) is denoted byH,. The spacd.?(]) is not a RKHS.
The Paley—Wiener spadgl of band-limited signals with band{r, =] is a RKHS with
RK

sinz(t — s)

w(t—s)
In [23] it is shown that there is a strong affinity between RK Hilbert spaces and sampling
theorems, and general sampling theorems were established for signals belonging to a RKHS
which is also a closed subspace of the Sobolev spiide The preceding remarks about

BLy and the other related spaces being RKHS may suggest that a broader framework within
which the type of extrapolation results derived in this paper may also hold.

0, s) =
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