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Abstract

In this correspondence, a new and systematic design of cyclotomic lattices with full diver-
sity is proposed by using some algebraic number theory. This design provides infinitely many
full diversity cyclotomic lattices for a given lattice size. Based on the packing theory and the
concrete form of the design, optimal cyclotomic lattices are presented by minimizing the mean
transmission signal power for a given minimum (diversity) product (or equivalently maximiz-
ing the minimum product for a given mean transmission signal power). The newly proposed
cyclotomic lattices can be applied to both space-time code designs for multi-antenna systems
and linear precode design for signal space diversity in single antenna systems over fast Rayleigh
fading channels. Although there are some cyclotomic lattices/space-time codes existed in the
literature, most of them are not optimal.
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1 Introduction

Space-time block code designs have recently attracted considerable attentions, see for example
[5]-[37]. There have been several kinds of space-time block code designs, for example, orthogonal
space-time block code designs [12]-[23], unitary space-time code designs [24]-[29], algebraic space-
time code designs [35]-[39], and lattice based diagonal space-time code designs using algebraic
number theory [1]-[5]. Among these space-time code designs, some of them are linear, such as
orthogonal space-time block codes [12]-[23] and lattice based diagonal space-time block codes using
algebraic tools [1]-[5], where the linearity is in terms of the information symbols and provides certain
fast decoding algorithms, such as the sphere decoding, see for example [30]-[34]. Orthogonal space-
time block codes satisfy not only the linearity but also the orthogonality and therefore possesses an
even faster maximum-likelihood (ML) decoding [12, 13]. However, their rates are limited [18]. This
correspondence lies in the direction of systematic cyclotomic lattices and therefore linear lattice-
based diagonal space-time block code designs using algebraic number theory studied in [1]-[5], which
are not unitary and different from unitary diagonal space-time block codes proposed in [24]-[26],

and also different from the diagonal codes proposed in [8].
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Diagonal space-time block codes using algebraic number theory proposed in [5] were motivated
from the designs of full diversity multi-dimensional signal constellations for resisting both Rayleigh
fading and Gaussian additive noises proposed in [1, 2, 3]. These codes are built upon lattices
[yi,- -yt = G[xy,--- ,xp,]%, where L; is the number of transmit antennas, 7 stands for the
transpose, x; represent complex-valued information symbols and G is a generating matrix and y;
are placed as diagonal elements in a diagonal space-time code. To resist both fading and additive
noise, both good diversity product and good Euclidean distance of the codewords [y1,--- ,yz,]! are
required, and G is a unitary matrix in [2, 4]. In [2], the construction of G over Z[(4] and Z[(3] was
provided with unitary matrix G. In [4], a systematic unitary cyclotomic lattice code (G is unitary
matrix) design scheme over a general number rings was proposed by using Fourier transform with
Diophantine approximation theory. And the optimal unitary cyclotomic lattices are also provided
in [4]. The unitariness of the generating matrix G in [2, 4] is used to maintain the Euclidean distance
and the mean power of the transmission signals the same as that of the information symbols. To
resist fading as commonly used in space-time coding, good diversity product is usually imposed,
and some algebraic construction of G over Z[(4] = Z[j] with j = /—1 (the entries of G are integrals
over Z[(4]) is proposed in [3] for information symbols x; in Z[(4], i.e., QAM on the square lattice,
such as QPSK and square 16-QAM. The case when generating matrix G is real and takes the
forms of Hadamard transform is studied in [3, 5]. In [7], a different space-time code design of full
diversity is proposed by also using cyclotomic field extensions without much analysis of the diversity
product property and it is essentially equivalent to a kind of diagonal space-time code designs. In
[9], a D-BLAST lattice code structure is proposed. In each layer of the D-BLAST lattice code,
components of a more general high dimensional lattice is used, where, however, no new lattice
designs is proposed while the unitary cyclotomic lattices in [2] are adopted in the D-BLAST lattice
codes.

There are three issues that may affect the code performance in the above lattice based diagonal
space-time code design, namely, (i) where the information symbols x; belong to; (ii) where the
elements of the generating matrix G belong to; and (iii) whether the generating matrix G is unitary.
In this correspondence, we focus on the criterion of maximizing the diversity product and consider
these three issues together in a general way: information symbols x; may not necessarily be in Z[(4],
elements of generating matrix G may not necessarily be integrals of Z[(4], and generating matrix G
may not necessarily be unitary. Information symbols x; and elements of generating matrix G are
from general cyclotomic field extensions. We call such diagonal space-time block codes cyclotomic
space-time codes. We propose a systematic construction of full diversity cyclotomic lattices and
apply them to design space-time codes of full diversity for a general number of transmit antennas,
and for a fixed number of transmit antennas, there are infinitely many cyclotomic space-time
codes/lattices. Furthermore, we obtain and list the optimal ones among these cyclotomic space-
time codes/lattices, where the optimality is in the sense that, for a fixed mean transmission signal

power, its diversity product is maximized, or for a fixed diversity product, its mean transmission



signal power is minimized. It turns out that most of the optimal cyclotomic space-time codes can
not be obtained by using information symbols x; in Z[(4], or by using generating matrix G with
elements being integrals over Z[(4], or by using unitary generating matrices G. With our newly
proposed optimal cyclotomic space-time codes, we present some new design examples of optimal
cyclotomic space-time codes that have the best known diversity products of diagonal space-time
codes. What we want to emphasize here is that the full diversity cyclotomic lattices we propose
in this correspondence are mathematically concrete and systematic and therefore provide us the
convenience to study the optimality. This is different from the existing lattice-based code designs
in the literature where general algebraic numbers are used and it is hard to systematiclly formulate
all general algebraic numbers and therefore difficult to study the optimality unless it is specified to
a particular cyclotomic ring/field, such as Z[j], and unitary generating matrices. Another remark is
that the cyclotomic lattices we propose in this correspondence can also be applied to linear precode
designs for achieving signal space diversity for single antenna systems over fast Rayleigh fading
channels as studied in [1, 2, 3].

This correspondence is organized as follows. In Section 2, we describe the problem in more
details and introduce the necessary notations and concepts about lattices. In Section 3, we introduce
a systematic design of full diversity cyclotomic lattices and diagonal space-time codes. Due to the
non-unitariness of a generating matrix (G, in Section 4, we first study the relationships between the
generating matrix and its corresponding lattice, the signal mean power, and the diversity product,
and then convert the criterion on maximizing diversity product to a criterion on generating matrices
when the diversity product is fixed. And finally, in Section 4, we present the optimal cyclotomic
lattices. In Section 5, some optimal cyclotomic space-time code designs are given based on the
proposed optimal cyclotomic lattices studied in Section 4. In Section 6, we show some numerical
simulation results.

The following notations are used throughout this correspondence: capital English letters, such
as, K and (G, represent matrices and bold small English letters, such as x and y, represent complex
symbols (or numbers or points) on two dimensional real lattices, small English letters, such as z, y
and z, represent real symbols (or numbers or points) and

L;: number of transmit antennas
natural numbers
: ring of integers
. field of rational numbers

field of real numbers
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field of complex numbers

¢(n): Euler totient function of positive integer n
Cm = exp (7%)

Z[(m): ring generated by Z and (,,

K and G: real and complex generating matrices for real and complex lattices, respectively



(K): n dimensional real lattice of real generating matrix K
(G

Ay
I (G):
Q((m): number field generated by the rational field Q and (,,

n n dimensional complex lattice of complex generating matrix G

1 cos(
0 sin(
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A¢,, = Ao(K¢,,): two dimensional real lattice with generating matrix K¢, = [

[E : F|: the extension degree of field E over field F.

2 Complex Lattices and Problem Description

As mentioned in Introduction, we are interested in diagonal space-time block codes formed as
follows. Let L; be the number of transmit antennas. Let x;, 1 < ¢ < Ly, be information symbols

taking from a certain constellation. Let G be an L; x L; matrix and

[yla"' ath]T:G[Xla"' 7XLt]T' (1)

The diagonal space-time code €2 consists of L; x L; matrices of the form diag(y,---,yr,). We
are interested in such a diagonal space-time code €2 that (i) it has the full rank property, i.e., any
difference matrix of any two distinct matrices in © has full rank; and (ii) its following diversity

product is as large as possible:
Ly
= . miI} ‘Yi _ ei‘Q (2)
dlag(YI,-.-,th)idlag(el,...’eLt)EQ H 3

where the transmission signal mean power of y; is fixed. The main goal of this correspondence is
to properly determine an information signal constellation of x; and a generating matrix G for a
diagonal space-time code 2 with the above properties. To do so, we first introduce some concepts

and properties on real and complex lattices.

2.1 Real and Complex Lattices

In this subsection, we first define real and complex lattices, and see some existing examples, and
then formulate the problems we are interested, and finally present some properties of complex

lattices that are used in the later sections for cyclotomic space-time code designs.

2.1.1 Definitions

We first define a real lattice.

Definition 1 An n-dimensional real lattice Ay, (K) is a subset in R":

il Al
Ap(K) = : =K | : z€Z for1<i<n)p,

Tn Zn

where 7 is the ring of all integers and K is an nxn real matriz of full rank and called the generating

matriz of the real lattice Ay, (K) and det(A,(K)) 2 | det (K)|.



Clearly, A, (K) is a subgroup of R” with component-wise addition. When n = 2, every point
[z1,29]"7 in a two dimensional real lattice Ao(K) belongs to R? and therefore can be thought
of as a complex number x = x; + jzo in the complex plane C. In this correspondence, we do
not distinguish a two dimensional real point [z1,29]" € R? and a complex number or point x =
x1 + jxo € C otherwise it is specified. To distinguish it from general two dimensional real lattices,
for ¢, = exp(j%”) we use A¢, to denote the two dimensional real lattice with the generating matrix
1 cos(%X) ] _ [ 1 Re(m) ] 3)
i 0 Im(Cn) |’

where Re and Im stand for the real and imaginary parts of a complex number, respectively. Thus,
A¢,, = Ao(K¢,,). This two dimensional real lattice is the base for signal constellations of cyclotomic

space-time codes studied later. It is easy to check that
ACm - Z[Cm]v AC4 = Z[C‘l] = Z[7]7 and AC3 = ACG = Z[Cg] = Z[Cﬁ]a (4)

and A¢, is the square lattice.

A complex lattice defined below is a lattice based on a two dimensional real lattice.

Definition 2 An n-dimensional complex lattice T, (G) over a two dimensional real lattice Ao (K)
is a subset of C":
Y1 X1
Fn(G): =G X16A2(K)7 fOTlﬁiSn ) (5)
Yn Xn
where G is an n X n complex matriz of full rank and called the generating matriz of the complex
lattice T, (G). The above complex lattice is called a full diversity lattice if it satisfies

n

[Tivil>o0

i=1
for any non-zero vector [x1,--+ ,x,]7 #[0,--+,0]7 in (Az(K))".

In Definition 2, points x; from a two dimensional real lattice have been treated as complex
numbers explained previously and therefore y; are also complex numbers. On the other hand, if we
treat all complex elements in matrix G and x; and y; as points in the two dimensional real space
and two dimensional real lattices, respectively, the above n dimensional complex lattice can be also

represented as a 2n dimensional real lattice as we shall see in more details later in Section 2.3.

2.1.2 Examples

With the above complex lattice definition, some recently proposed diagonal space-time codes in the
literature can be formulated as complex lattices as listed in the following examples that motivate
us to further generalize and improve these existing ones by considering general cyclotomic lattices

as we shall see in Section 3.



Example 1. Diagonal Algebraic Space-Time Block Codes — DAST Block Codes [5, 3]
For L; = 29, the DAST block code of size |21 is obtained from [y1,--- ,y,]} = My, [x1,--- ,x1,]"
where x; € [Q-QAM, i.e., a QAM on the square lattice Z[(4], and My, is an L; x L; real matrix

)

and is generated in an iterative way as in the Hadamard matrix, [3],

1 2
My, = | b
It .
M3, Mg,

With this form of a real generating matrix My, and an information signal constellation on the

square lattice, it is found in [3] that the optimal generating matrices for L; = 2 and L; = 4 are,

respectively,
M, 2 [ _”‘b Z ] , for a = 0.5257,b = 0.8507,
and
a b c d
M, 2 :i’ f‘d _ad g . for a=0.2012,b = 0.3255,¢ = —0.4857,d = —0.7859.
dz —c —=b a

When L, = 3, the following form of matrices instead of the above Hadamard form was proposed
in [3] for x; in QAM on the square lattice:

a b ¢ -|
14+ A —A
MgA{ b ¢ (J,J,for a:ﬁ, = \a,c =

—c —a —b

where A is a parameter. By using computer search, they found that the optimal A for the space-time
diagonal code is A = —2.24698.

The above optimality is in the sense of maximizing the diversity product but restricted in either
real Hadamard-form generating matrices for L; = 2 and 4 or real generating matrices for L; = 3
and moreover the information signal constellations are on the square lattice in Z[(4] (or A¢,).

Example 2. Good Codes for Fading Channels as well as Gaussian Channels [2, 3]

In [2, 3], algebraic number theory is used to generate codes for both Gaussian channels and
fading channels. These codes can also be thought of as a kind of complex lattice codes.

First of all, the best complex lattices I'o(D4) over A¢,, I's(Es) over Ay, and I'y(FEg) over A,
of dimensions 2, 3, and 4, respectively, (see for example [45]), for Gaussian channels were used in
[2], where

:|7 for ¢2:1+7a
2

0

0

0
EGZ |- ¢3 -|7 for (153:7\/5’
|_ 0 ¢3J
1 0 0 0
Eg = } %4 ;)4 8 . for ¢y =1+
1 ¢4 ¢4 o3



To resist fading, the above complex lattices were rotated in [2] to have the good diversity
product property, i.e., non-zero diversity product (or full diversity) corresponding to the concept

of space-time coding, as follows:

A 1 92 - LT
Gay = [ 1 —6, ]D4, for 6y = exp (JZ)’
1 —0; 03 .
A : ‘ 2 V35 —1
Gsp= |1 —b3 —(1+9)03 | Es, for 63 =exp <33> ;Y= jT
1 %03 —(1+7%)63
and
0, 02 63
A —0, 07 -0

N
0 62 —j6 Eg, for 6, =exp <7§) .
—jbs —6F jOj

—_ =

The codes proposed in [2] are the complex lattices I'y(Gay) over A¢,, I'3(G3y) over A¢,, and I'4(G4y)
over Ag,.

Example 3. Rotated Codes Based on QAM on the Square Lattice [3, 2]

For considering only fading channels, the diversity product can be focused. In this case, by
deleting matrices Dy and Eg from the ones Gy; and G4p in Example 2, respectively, complex
lattices I'y(G2) and I's(G4) over Ag,, ie., QAM on the square lattice, for L; = 2 and 4 can be

obtained with the following generating matrices:

A 1 92 - LT
Gy = 1 —6, ] , for 6y =exp (JZ)’
and
1 6, 62 03
all -6, 07 -6} . ¥
Gy = Lo, -2 —jo} | for 94—exp<]8).
1

—jfy —0F 0]
Since all entries of matrices Dy and Eg are in Z[j], it is clear that the complex lattice points
of I'y(Gay) and I'y(G4y) in Example 2 are subsets of the complex lattices I'y(G2) and I'4(G4) in
Example 3, respectively, i.e., I')(G;y) C I'j(Gy) for | = 2 and 4.

2.2 Problems of Interest

We can see that, to form a space-time code as stated in the beginning of this section, we select a
set of points in a complex lattice. From the definition of complex lattices, a complex lattice I';,(G)
over Ag(K) is determined by a generating matrix G and a base 2 dimensional real lattice Ag(K).
The question we are interested here is how can we generally choose the generating matrices
G and K to achieve: (i) full diversity complex lattices and space-time codes; (ii) the optimal
diversity products in the family, in a systematic way. In the later sections, we propose to form
space-time codes from complex lattices with generating matrices G and K over general cyclotomic

field extensions. To do so, let us study some properties on the relationship between n dimensional



complex lattices and 2n dimensional real lattices. The reason for studying the relationship is
because we need to estimate the mean power of complex lattice points [y, --- ,y,]? used as space-
time codewords, which can be done if we convert it to an 2n dimensional real lattice and use some

existing results on real lattices, such as the packing densities [45] as we shall see later.

2.3 Some Useful Properties of Real and Complex Lattices

Let us first see a relationship between an n dimensional complex lattice and a 2n dimensional real

lattice. Let G be an n X n complex matrix,

gia 912 - Gin
g21 G922 - G92n
gn1 9n,2 " Ynn

with |det (G)| > 0, and {x1,x2,...,x,} be n points on a two dimensional real lattice Aq(K) with

generating matrix K. Let

Yn Xn

Then, [y1, ..., yn]T is a point on the n dimensional complex lattice I';,(G) over Ay(K).
We now rewrite y; with its real part yp, and imaginary part yy,, as y; = yr, + jyr,, and entries

giy of G as g;; = gr,, + jgr,,- Then, (7) can be rewritten as

YR,y TR, K 21,1
Yy T K 21,2
=g | =0 L (8)
YR, TR, K Zn,1
Y1, xy, 2nx2n Zn,2

where z; 1,20 € Z with

|:'/I;i,1:|:K|:Zi,1:|’ (9)
Z;2 2,2

and G is a 2n x 2n real matrix, which is from the real and imaginary parts of G as follows

9R1y —9nh1 7 Y9Rin 9L
911 9R1 1 9L, 9Ri
A . . . . .
g2 (10)
an,l _g[n,l e G’Rn,n _g[n,n
g[n,l an,l T a’n,n an,n

Let Gk 2 G -diag(K,--- , K). Following Definition 1, in order to show that G is a real generating
matrix of an 2n dimensional real lattice, we only need to show it has full rank, i.e., |det (Gx)| > 0.

Since K is the real generating matrix of 2 dimensional real lattice Ay(K), |det(K)| > 0. Thus, we



only need to show that |det(G)| > 0, which is given by the following proposition. Therefore, the

n dimensional complex lattice I';,(G) over Ay(K) is represented as an 2n dimensional real lattice
Aon(Gi).

Proposition 1 Let G be an n X n complex matriz defined in (6) and G be the 2n x 2n real matrix
defined in (10). Then, |det (G)| = |det (G)|?.

Proof. For i =1,...,n, by adding the product of the 2ith row of G with j = 1/—1 to the (2i — 1)th

row of G in (10), matrix G becomes

911 J9i1 c Gim J9in
9n, Y9YrRin " Y9hn YRin
Gi=1] @ S (11)
Ini J9na 0 Gnn JYnn
91,1 Y9YR.1 " YGlum YRun

For i = 1,...,n, by adding the product of the (2i — 1)th column of G; to the 2ith column of G; with

—7, matrix G; becomes

gip 0 - gipn O
9n. 911 0 Ynh. Yin
Go=| :+ 1 i, (12)
g 0 - gnm O
9l Yna 0 lun Ynm

3

where g7, are the complex conjugates of g; ;. Next, by permuting the rows and the columns of Gs,

matrix Gs can be converted to

gi,1 gio - 0 0

92,1 g22 v 0 0 G .
9In1p Y9Inap 7 Yn—1n—-1 Yn—1n

91,1 91, 5 T g:,nfl g;,n

where Im(G) is the imaginary part of matrix G and G* is the complex conjugate of matrix G.
Notice that, the elementary operations we implemented on G to get Gs have all determinants 1 and
therefore, | det(G)| = | det(G3)|. Since det(G3) = | det(G)|?, we have concluded the proof.  q.e.d.

Proposition 1 tells us that an n dimensional complex lattice ', (G) over A9(K) can be equiva-
lently represented as a 2n dimensional real lattice Ag, (G ). Furthermore, the determinants of their

generating matrices have the following relationship:
| det(Gx)| = | det(G)[? - [det(K)|" = | det(G)|? - | det(As(K))|", (14)

which is used later to determine the compactness of a complex lattice for a fixed minimum product

(or diversity product).



3 Systematic Full Diversity Cyclotomic Lattices

For two positive integers n and m, let N = mn and

_ V)
" g(m)’

where ¢(N) and ¢(m) are the Euler totient functions' of N and m, respectively, there are total L;

(15)

distinct integers n;, 1 < i < Ly, with 0 = ny < ng < --- < nr, <n —1 such that 1 +n;m and N
are co-prime for any 1 < i < L; (see for example pg. 75 of [43]). With these L; integers, we define

2 L
QN CN C N
14+nam C2(1+n2m) L Li(14nam)
A SN SN SN
Gm,n = ‘ : . : ) (16)
1+ng,m 2(1+ny,m) L¢(14ng,m)
CN CN o CN Lyx Ly

where (y = exp(j%”). It is not hard to see that matrix G, , has full rank since it is a Vandermonde
matrix and C}\j’"”m — ]lv+"lm # 0 for 1 <i# 1< L; This means that matrix G, , is eligible to be
a generating matrix of a complex lattice as we defined in Section 2.1. We now define cyclotomic

lattices.

Definition 3 An L; dimensional complex lattice T'1,, (G n) over A¢,. is called a cyclotomic lattice,
where G,y is defined in (16) and A¢,, is the two dimensional real lattice with the generating matriz

K¢, defined in (3). Its minimum product® dwin(Tr,(Gmn)) is defined by

L
A .
Amin Lz, (G = min Yil - 17
mm( t( m,n)) [0,"',"',U}T7£[y17'”7th}T€FLt(Gm,n) ];[ 2 ( )
From this definition, a lattice point (or vector) [y1,--- ,yr,]7 on a cyclotomic lattice can be
generated by
[y17 e 7th]T = Gm,n[xlu o 7XLt]T (18)

where x; € A¢,, C Z[(n]- The generating matrix in (16) can be also written as

Grngn = ding(Cn, C8™" - Gy ™) G, (19)
where
1 (N T C]%[tfl
. 1) (140
Gm’né 1ot C](vt )(1+nam) o0
N

'The Euler totient function (or Euler function) ¢(N) of N is the number of positive numbers that are less than N
and co-prime with N. In fact, it can be expressed as ¢(N) = ¢(p}')p(ps?) - d(prr) if N = p{'py?---pi~ for some
distinct primes p;. In particular, if p is a prime, ¢(p*) = p* — p* !, see for example [44]. It also implies that L; is
always an integer.

’In [5], it is called minimum product diversity. The reason why we use minimum product is because we want to
distinguish it from the diversity product of the associated space-time code with this lattice as we shall see later. In
[3], it is called product distance.

10



Thus, the complex lattice points y; and y; of I'r,, (G, ) and FLt(ém,n)a respectively, are related
by

i S I TG O (21)

Vi, ¥2, ¥ = [Cny, Gy Gy Vi,

Due to the fact that all elements (% in (21) have unit norm, the complex lattice I'z,(Gm.n)
and the complex lattice FLt(Gm,n) have the same minimum product, i.e., dmin(T'r,(Gmn)) =
dmin(th(Gm,n)). Since the relationship (21) of the lattice points of the two complex lattices
does not depend on the real lattice A¢, , these two complex lattices are equivalent in terms of the
properties, such as diversity product and mean signal energy, that we are interested in a space-time
code as we shall study later. Therefore, for the notational convenience, we use G/, , throughout
this correspondence otherwise it is specified.

Note that the entries of the generating matrix G,,, in (16) are all integrals over Z[(,,), i.e.,
roots of monic polynomials® with coefficients in Z[(,,].

Another representation for Gy, p, in (16) is

e Cim . Cnfftnz
Gm,n = : - - : diag(CNu C]Q\la Ty ]%[t) (22)
ZLt CsnLt o CanLt

Lt X Lt

From the above representation and since 0 < n; < n, one can clearly see that the generating matrix
Gm,n in (16) is unitary, i.e., the n-point DFT matrix, if and only if L; = n.

We next define diagonal cyclotomic space-time codes.

Definition 4 A diagonal cyclotomic space-time code Q for L; transmit antennas is defined by
Q = {diag(y1,--- ,yr,)} wherey; for 1 <i < L; are defined as follows:
]T

[Y17 L YL = Gm,n[X17 ot 7XLt]T (23)

where G p, is defined in (16), [x1, - ,xr,|T € 8 C (Z[{m))t, and S is a signal constellation for

information symbols.

To fully understand the structure of cyclotomic lattice (16), we need some results on algebraic
number theory, see for example [40]-[44], which also provides the motivation for us to define the
above cyclotomic lattices and codes. From the algebraic number theory, it is known that field Q(¢n)
is an extension of field Q(¢,,, ) and field Q((,, ) is also an extension of field Q of all rational numbers:
Q C Q(¢m) € Q¢N)- An automorphism o of field Q({x) that fixes subfield Q((,,) is a one-to-one
and onto mapping from Q((x) to itself such that o(a + b) = o(a) + o(b) and o(ab) = o(a)o(b) for
any a,b € Q({n) and o(a) = a for any a € Q((pm).

*Monic means the coefficient of the highest order term in a polynomial is 1.

11



Theorem 1 All the L; automorphisms of field Q(Cn), 0, 1 <1 < Ly, that fiz subfield Q((,,) can
be represented by

oi(Cn) = (™, for 1< < Ly, (24)

where Ly is given in (15), and n;, 1 < i < Ly, are the integers that satisfy 0 =ny < ng < -+ <

ng, <n—1and 1 +n;m and N are co-prime for 1 <i < Ly.

A proof of this theorem is in Appendix A. One can see that the integers appeared in the
representations of the automorphisms in Theorem 1 are precisely the ones used in the construction
of the above cyclotomic lattices. From the representations of the automorphisms o; in (24), the
element at the ith row and the /th column in the generating matrix G, ,, in (16) of the cyclotomic

lattices can be represented as ai(d\,). Thus, the generating matrix Gy, , in (16) can be rewritten

o1((n)  o1(CR) a1 (Ch)
o oa((n)  o2(CR) a2 (CNY) (25)
on(Cn) oG - or(ch)

where 0;, 1 < i < Ly, are all of the distinct automorphisms of Q({y) that fix Q((p, ).

As we can see from Appendix that, in fact, these automorphisms {o; : 1 < i < L;} form the
quotient group (called Galois group) Q(¢n)/Q((m) and L; is the dimension of Q((y) viewed as a
vector space over its subfield Q((,,). L; is also called the extension degree of Q({y) over Q((p,)
that is denoted by [Q(¢n) : Q(¢m )], 1€, [Q(CN) : Q(¢m)] = Li. Because Q(¢x) can be generated
by (n over Q((,,) and the order of the minimum polynomial of ( over Q((,,) is Ly (see pg. 22 in
[44]), we have

Li—1

Lt
S xilh = v Y xipaCh A0 0 [0, 0] £ [ xz ]t € (Q(Ga)™, (26)
=1 1=0

which is also used in the proof of the following theorem. Property (26) can also be seen by viewing
Q(¢w) as a vector space over Q((m) with (%, 1 < i < Ly, as basis elements. This part has the
analogy with the finite field theory over the binary field used in the error correction coding theory,
for example, the Galois field G(2™) over the binary Galois field G(2). The above arguments imply
why the matrix dimension L; and the elements of the generating matrix G, , are used in (16),
which will become even clearer after the proof of the following full diversity property of a cyclotomic
space-time code.

As we can see from the definition of the generating matrix Gy, , in (16), it is unique when m
and n are fixed. However, if only L, is fixed, there are infinitely many possible integers m and m

and n can both vary.

Theorem 2 A cyclotomic lattice I'r, (G ) over A¢,, has full diversity and o diagonal cyclotomic

space-time code has full diversity.
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Proof: We only need to prove that a diagonal cyclotomic space-time code has full diversity.

Let Cy = diag(y1,---,yr,) # Co = diag(ey,--- ,er,) € Q be two different codewords. Thus, we

need to show [T, lyi —ei| > 0. Let [x1,--- ,xz,]7, [ug, - ,ur,]” € (Z[¢n])"* such that

[YI, v ’th]T = Gm,n[xla T 7XLt]T and [ela T aeLt]T = Gm,n[ula T auLt]T'
Since G has full rank, [x1,---,xr,]7 # [wg, - ,ug,]7. Let [vi,---,vp,] = [x1,- ,xp,]7 —
[wi,-ug]” and [wi,-o wi, ] = Gmplvi, oo, ve,]. Then, w; = y; —e; and [vi,-- v, ] #
[0,---,0]T. So, we need to show H{:tl |wi| > 0.

From the generation of a cyclotomic space-time codeword in (23) and the properties and rep-

resentations of the automorphisms o; in Theorem 1, we have w; = 0;((), 1 <i < L;, where
Ly
l
C = Z vlCN 7é 07
=1

since [vi,---,vg,]T # [0,---,0]7 and (26). Thus, Hf:tl |wi| = HZL:tl |oi(¢)]. Since all o; are
automorphisms, ;(¢) # 0 when ( # 0, we have proved the result. q-e.d.

When m = 4, a cyclotomic lattice I'r,(G4,,) over A¢, is called a Gaussian cyclotomic lattice,
after the name of Gaussian integers Z[j| = Z[(4). When m = 3 or m = 6, a cyclotomic lattice
', (Gmn) over Ag is called an Eisenstein cyclotomic lattice, after the name of Eisenstein integers
Z|¢3] = Z[(e). For Gaussian cyclotomic lattices and Eisenstein cyclotomic lattices, it is stated in [2]
that the minimum products (related to algebraic norms) are 1 and it was proved in [41, 40]. Since
this result plays an important role in the optimal cyclotomic lattice/code designs as we shall see in

Subsections 4.1 and 4.2, for the completeness, we list it as a proposition.

Proposition 2 The minimum products of Gaussian cyclotomic lattices and Fisenstein cyclotomic

lattices are 1.

This result is used in the proof of Theorem 3 in Subsection 4.1. Although in a cyclotomic space-
time code the information signal constellation S can be any subset of the product space (Z[¢,])"* of
the cyclotomic ring Z[(,,], S is chosen from the product space (A¢,, )%t of the lattice A¢,, C Z[(] as
we discuss the optimality of the diagonal cyclotomic space-time codes in the next sections. When

Lt all the codeword vectors [y, -+ ,yr,]? are on the cyclotomic lattice

S is chosen from (A¢,)
I'7,(Grn) over A¢  as defined in Definition 3. Notice that A¢, = Z[(,] for m = 3,4,6 as indicated
in (4).

From Definition 4 of a cyclotomic space-time code, one can see that, for a fixed L; in (15),
there are infinitely many options of integer m and thus infinitely many options of cyclotomic
number ring Z[(,,] or lattice A¢, and also infinitely many options of the generating matrix G,
in (16). Then, a natural question arises: which one is optimall’ The optimality here is in the
sense that, for a fixed signal mean power of y;, the diversity product of a cyclotomic space-time

code is maximized among all different integers m, or equivalently, for a fixed diversity product,

the signal mean power of y; is minimized among all different integers m. To investigate the above

13



optimality, in Subsection 4.1 we study the optimality of the minimum products of cyclotomic lattices
by considering how this optimality relates to the complex lattice generating matrices G, , and the
real lattice generating matrices K, in (3). Based on the theory developed in Subsection 4.1, we
present optimal cyclotomic lattices in Subsection 4.2.

From the above definitions, it is not hard to see that the two generating matrices in Example

3 in Section 2.1.2 are two special cases of L; = 2 and 4 with m = 4 here:
Gy = G4o and Gy = Gy,

and the cyclotomic lattices or codes ['a(G) and Ty(Gy) over Z[Cy] = A, are ['9(Ga2) (equivalent
to I'y(Ga2)) and F4(é4,4) (equivalent to I'4(G4,4)) over Z[(4] = A¢,, respectively, which are not
the optimal ones for 2 and 4 transmit antennas as we shall see in Section 5. In fact, in Section 5,
we find that the cyclotomic lattices or codes I'y(Gg2) and I'4(Gg5) over Z[(s] = A¢, for 2 and 4
transmit antennas are optimal and strictly better than I'o(G9) and I'y(G4), respectively. Although
the entries of G2 and G5 are integrals over Z[(g], they are not integrals over Z[j] = Z[(4] while
the entries of Gy and G4 are integrals over Z[j] = Z[(4]. In fact, as we shall see in Section 5 that
the complex lattices I'z, (G4,,) over A¢, are not optimal in most cases.

Since the codes proposed in Examples 1 and 2 are not only for fading channels but also for
Gaussian channels, their product diversities are not as good as others. Some detailed calculations

are shown later.

4 Optimal Cyclotomic Lattices

In this section, we study the optimality of cyclotomic lattices proposed in the preceding section.

We first investugate the optimality criterion.

4.1 Criterion for Cyclotomic Lattice Designs

As described in Section 3, for a fixed L; there are infinitely many cyclotomic lattices I'z, (G n)
over A¢, —of full diversity for various m and n. In order to study which of them is better, we want
to compare their mean signal powers when their diversity products or minimum products are the
same. Before studying cyclotomic space-time codes, we study cyclotomic lattices by connecting
their corresponding real lattice packing density and their signal mean power with their generating

matrices.

4.1.1 Packing Density, Mean Signal Power, and Generating Matrix

For the compactness of a real lattice, the packing density concept has been introduced in for example
[45] and for more details, we refer the reader to [45]. Let A, be an n-dimensional real lattice. Its

sphere packing density is defined by
Vap"

~ det(An)12
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where V}, is the volume of the n-dimensional ball with radius 1 and p is the half minimal distance

between the lattice points called the packing radius. Its center density ¢ is defined by

= = det(d,) 2,

see pg. 10 and pg. 13 of [45]. It is mentioned on pg. 13 in [45] that the center density § of a
real lattice A, is the number of points of the lattice A, in every p" number of unit volumes, i.e.,
in average every p" number of unit volumes (V},) of R" include p™(det(A,)) /2 lattice points on

lattice A,. Therefore, in average there are det(A,)"/?

lattice points of lattice A, in every unit
volume of R". This implies that, the less of the value det(A,) is, the more points of A, are included
in the unit ball of R”. In other words, if we want to select a set S C A,, of lattice points of a fixed
size, i.e., |S| is fixed, such that the mean signal power of the signal points in S is minimized, then,
the less of the value det(A,,) is or equivalently the less of the absolute value of the determinant of
its generating matrix is, the smaller the mean signal power of the signal points in § is. This is

the base for the following criterion of justifying that one cyclotomic lattice is better than the other

cyclotomic lattice when their minimum products are the same.

4.1.2 Cyclotomic Lattice Design Criterion

In this subsection, we first present the design criterion for a cyclotomic lattice and then present
some properties on the criterion. From the discussions in Section 2.3, any n dimensional complex
lattice can be converted to a 2n dimensional real lattice and their corresponding signal powers are
exactly the same. For a cyclotomic lattice I'z, (G ) over A¢, , the determinant of its corresponding

2L; dimensional real lattice generating matrix Gg is
| det(Gm,n)|2 - det(KCm)‘Lt- (27)

With the argument of Subsection 4.1.1 and (27) we are ready to present a criterion to choose a

cyclotomic lattice.

Definition 5 Let 'y, (G, ny) and Tp,(Gmyn,) be two Ly dimensional cyclotomic lattices over
A¢,,, and A, . respectively. We say cyclotomic lattice ', (Gminy) is better than cyclotomic

lattice I'r,, (Gmy.ny), written as Ur, (Goyny) < Tr (G one ), if
| det(Gimy )| - | det(Ag,, )| “/? < | det(Grmgmny)| - | det(Ac,, )[“/2,
when their minimum products are the same, i.e., dmin(I'r, (Gmin,)) = dmin(U'z, (G ne))-

One can clearly see that the above definition not only applies to cyclotomic lattices but also
applies to general complex lattices defined in Section 2. With the above definition, we immediately

have the following lemma by normalizing cyclotomic lattices.
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Lemma 1 Let Iy, (G, n,) and Ur,(Gmyn,) be two Ly dimensional cyclotomic lattices over A¢,,.
and A, with minimum products dmin(U'r, (Gmy n,)) and dmin(U'r, (Gmy n,)), respectively.  Then,
L1, (Gminy) is better than T, (G o) if

dmin(FLt (Gml,nl )) > dmin(FLt (sz,nz)) )
|det (A, )] ™/? [det (G ny)] et (Agny)] ™72 [det (Giagny)]

Proof: The main idea to prove this lemma is to first normalize these two cyclotomic lattices
such that their minimum products are the same and then compare the compactness (or average
power) of the two normalized lattices.

The two 2L; dimensional real lattice generating matrices can be written as
Gk, = Gidiag (Kgmi’... ,Kcmi> ,

where 2L; dimensional real matrix §; corresponds to the L; dimensional complex matrix G, ,, for

1 =1 and 2. Their determinants satisfy

‘det (chmi)‘ — |det (G, ;)| |det (A", fori=1,2.

We now normalize the complex lattices I', (G, n;) by normalizing their generating matrices Gy, p,
as follows:
Gmi,ni = (dmin(rLt(Gmi,ni)))il/Lt Gmin;, fori=1,2

Then, the minimum products of the normalized cyclotomic lattices I'r, (G, n;) are both 1. On the

other hand, for s = 1 and 2, the new determinants satisfy

det (GKCmi )

Thus, if

2

det (ACmi) ‘Lt .

= |det (Gm; ;)

7 [det (G, )|

det (Acmi) ‘Lt - Amin(T'r, (1G

min:))

Arin (T 1, (Gry my)) > Amin (L L, (Gma )
‘det (Ale) ‘Lt/Q | det(Gmy ny)| ‘det <A<m2> ‘Lt/Z | det(Grmyms)|

)

then we have

‘det (g’Kle )‘ < ‘det (GKch) ‘ . (28)

This proves that the normalized cyclotomic lattice Iy, (G, ., ) is better than I'r, (G ,) in terms
of the compactness. Since the normalized lattice I'r,, (G, »,;) and its original lattice I'z,, (G, n;) only
differ by a scalar, their performances are the same. Thus, I'y,, (G, n,) is better than 'z, (G iy s ).
Therefore, Lemma 1 is proved. q.e.d.

We next present an important property between Eisenstein lattices and other lattices, which is

used in Subsection 4.2 for finding optimal cyclotomic lattices.

Theorem 3 Let m; = 3 or 6. Let I't, (G, ny) be an Ly > 2 dimensional Eisenstein cyclotomic
lattice and T',,(Gmyn,) be another Ly dimensional cyclotomic lattice over A, . If |det (G, )| <

|det (G ms ), then lattice U'r, (G, ny) is better than lattice 'z, (G n,)-
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Proof: Since A¢, = Ay, we only need to prove the case of m; = 6.
When my = 1 or my = 2, matrix G, ,, can not be used to generate an L; dimensional complex
lattice. Therefore, we only need to consider mg > 3.

det (Aq,, )
By using Lemma 1, this theorem is proved.

For mg = 3 or my = 6, = |det (A¢,)|, and A¢, and Ay, are the Eisenstein lattice.
For mo = 4, both minimum products of the Gaussian cyclotomic lattice and the Eisenstein
lattice are diin (U1, (Gen,)) = dmin(U'r,(Gan,)) = 1, and |det (Ag)| < |det (A¢,)|. From Lemma
1, cyclotomic lattice I'z, (G pn,) is better than cyclotomic lattice I'z, (G4 pn,) when |det (Ggp,)| <
|det (G4,n,)|. This proves the theorem.
For my =5, because 1 € A¢,, , we let [y, YLt = Gy, [1,0,--+,0]1 it is easy to check
that

Thus, the minimum product dp,, (I'r, (G5,n,)) < 1. On the other hand,

2 2
'det (A¢, )| = sin (%) > sin (%) = |det (Ag)| -

From Lemma 1, this theorem is proved.

We now consider the case when my > 6. It is clear that 1 — (,, € A¢,, . Let

[}’17 o 7th]T - GTTLQ,nz [1 - szaou o 70]T'

Then, the minimum product has to satisfy

L L . 7T
dmin(FLt(sz,nz)) < ‘yl ' "th| = CNC]2V ]%[t ‘1 - sz| f= ‘1 - sz‘ f= 2Lt SlnLt(m_2)'

Li/2

Since can be rep-

det (ACM) ‘: sin(27/my), the ratio of dy,in (I'r, (Grnyon,)) and ‘det (A§m2>

resented as

’ L)2 ci L
dm’LTL(FLt(GTTLQ;n;Q)) < /3 sin (ﬂ[/m2) = (2 tan(ﬂ/mQ))Lt/Q <1 whenmy>T7. (29)

‘det (Aﬁmz) " sin”*/2 (7 /my) cos™t/2(m /my)

dmin(FL (Gb‘,n )) 1 dmin(rL (Gm n: ))
t Lt/12 = TE >1> t th;Q when mgy > 7.
|det (Ag,)| (@) ‘det (Ac )
my

This proves the theorem by using Lemma 1. qe.d.

rom Theorem 3, one can see that, to compare a cyclotomic lattice over with 'z, (Gg ) over
F Th 3, that, t p yclotomic latti A¢,, with 'z, (Gg,
Ag, or with 'z, (G3,,) over Ag,, it is sufficient to compare the absolute values of their generating

matrix determinants and the two dimensional real lattices A¢, can be ignored.
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4.2 Optimal Cyclotomic Lattices

For a fixed Ly = ¢(mn)/p(m), from Theorem 1 we know that there exist infinitely many cyclotomic
lattices for infinitely many integers m and n that have full diversity. In this subsection, we present
optimal cyclotomic lattices for various numbers L; of transmit antennas among these infinitely

many cyclotomic lattices.

Lemma 2 For any two integers n = p}" - - -pl”(ﬁ1 . qi"’, m=pi' - -pflv’]‘/l . -vzh, then
¢(mn) 1 T
— . n ,
where p1,--+ Pl q1, " s qQr, V1, , Uy are distinct primes and ng = q? e q,ic’“. Thus, ged(m,n) is a

¢(mn)
factor of R

This lemma is a direct consequence of the definition and property of Euler totient function in
Footnote 2 and will be used in the proof of the following theorm in Appendix B. We now present

optimal cyclotomic lattice designs for different numbers of transmit antennas.

Theorem 4 For L; < 32, the optimal L; dimensional cyclotomic lattices I'p,(Gpm.p) over A¢,, with

generating matrices Gy, n, defined in (16) are listed in Table 1.

Table 1 Optimal Cyclotomic Lattices for Ly Transmit Antennas
Ly (m,n) in Gmn \det(;i\r;:§\rLLtt/g?c:;;?2m,n)\
2 | (3,4),(4,3),(6.2) 7
3 | (3.3),(3.6).(6.3) ERETE
4| (3,5),(3,10),(6,5) -
6 | (3,7),(3,14),(6,7) .
8 | (3,20),(4,15), (6,10) T
9 | (3,9).(3,18),(6,9) R
10 | (3,11),(3,22), (6, 11) TTeEEToT
12 | (3,15), (3,30), (6, 15) TR T
16 | (3,40), (4, 30), (6, 20) .
18 | (3,21),(3,42), (6,21) eI
20 | (3,25), (3, 50), (6, 25) B —
22 | (3,23),(3,46), (6,23) TTBToT
24 | (3,35), (3,70), (6, 35) TEToT
27 | (3,27), (3,54), (6, 27) 705"
28 | (3,29), (3, 58), (6, 29) TS
30 | (3,33), (3, 66), (6,33) i
32| (3,80), (4, 60), (6, 40) e

The proof of Theorem 4 is in Appendix B. From Theorem 4 we can see that:

(i) All the optimal cyclotomic lattices can be achieved by Eisenstein cyclotomic latices;
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(ii) The optimal cyclotomic lattice can not be achieved by Gaussian lattice except L; = 2,8, 16, 32;
(iii) The L; = 4 dimensional optimal cyclotomic lattice can not be achieved by Gaussian lattice;

(iv) Since as we explained in Section 3, the generating matrix G, ,, is unitary if and only if L; = n,

most of the optimal generating matrices G, , are not unitary.

We want to make another remark here. When the number of transmit antennas is a prime, i.e.,
Ly = p, if we let m = pmg and n = p with ged(p, mg) = 1, or n = 2p with ged(2p, mg) = 1, then it

is not hard to show that )
¢p(mn) _p°—p _ »
¢p(m)  p—1

Thus, the corresponding G, ,, in (16) can be used as a generating matrix to generate full diversity

L=

cyclotomic lattices (or space-time codes). However, which one is optimal remains open.

4.3 Comparison with Existing Lattices

Now let us compare our proposed optimal cyclotomic lattices with some existing ones based on our
result in Lemma 1.

For the complex lattices I's(My) and I'4(My) over A¢, in Example 1 in in [3, 5], |det (My)| =
1, the minimum product dp,;,(F2(Msy)) = ?, and |det (My)| = 1 and the minimum product
dynin(T4(M4)) = g5. Thus,

dmin(C2(Mg)) V5 d dpin(Ta(My)) 1

|det (A¢,) det (Ma)| 5 det (Ac,)[? [det (My)| 40’

For the complex lattices I'y(Gay) and I'4(G4y) over A¢, in Example 2 in [2, 3], |det (Gay)| =
2v/3, the minimum product dpin(F2(G2f)) = 1, and |det (G4f)| = 64 and the minimum product
dmin(T4(Gay)) = 1. Thus,

dmm(FQ(GQf)) . 1 d dmzn(r4(G4f)) . i

|det (A¢,) det (Gaf)| 23 |det (Ac,)[*|det (Gay)] 64

For the complex lattices I'y(G2) and I'y(G4) over A¢, in Example 3 in [2, 3], |det (G2)| =
2, the minimum product d,;,(I'2(G2)) = 1, and |det (G4)] = 16 and the minimum product
dmin(T4(G4)) = 1. Thus,

dmin(T2(G2))
et (Ag,) det (Go)]

dmin(T'4(G4)) 1

and = —.

det (A¢,)[” [det (G4)] 10

DO | =

Notice that Gy = 6472 and G4 = G’4,4 and they are equivalent to G4 2 and (44, respectively, which
are not optimal.

From Theorem 4 we know that cyclotomic lattice I'y(Gg2) over Ay = Z[(s] and cyclotomic
lattice I'a(Ga,3) over A¢, = Z[j] are two optimal cyclotomic lattices for 2 transmit antennas, and
cyclotomic lattices I'y(G35) and ['y(Ge5) over Ae, = A¢, = Z[(3] = Z[(g] are two optimal cyclotomic
lattices for 4 transmit antennas. Furthermore, [det(Ag)| = [det(Ag,)| = @, | det(Gs2)| = 2,
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|det(Gag)| = V3, |det(Gs5)| = |det(Ggs)| = 11.1803, and dinin(I'2(Ge2)) = dmin(D2(Ga3)) =
Amin(U4(G35)) = dmin(I'4(Gs5)) = 1. Thus,

dmin(T'2(Gs2)) _ dmin(T2(G43)) _ 1 S 1
|det (ACG) det (GG’Q)‘ \det (AQ) det (G4’3)‘ \/§ 2’
and
dmin(T4(G35)) B dmin(F4(Ge,5)) B 4 1

= = > —.
|det (Ag,)[*[det (Ga5)|  |det (Ag,)|* |det (Ge5)] 3 11.1803 ~ 16
This shows that the optimal cyclotomic lattices we present here are better than the existing exam-

ples in the literature.

5 Diagonal Cyclotomic Space-Time Code Designs

By using the cyclotomic lattices proposed in the last section and the structures studied in [2] and [5],
we can generate some new diagonal space-time codes and linear precodes for fast fading channels.
To design a rate R cyclotomic space-time code for L; transmitters is to find a subset Q of some L,

dimensional cyclotomic lattice I'r,, (Gyy ) such that it can achieve good performance.

5.1 Design Schemes

To design a cyclotomic space-time code Q of a certain size ||, we first select an optimal L;
dimensional cyclotomic lattice by using the criterion developed in Section 4. After a cyclotomic
lattice I'z,, (G ) s selected, we select || points on the lattice with the smallest total signal energy.
The theory developed in Sections 3 have ensured that such a space-time code has full diversity and a
good diversity product. Let us formulate it in details below. Assume cyclotomic lattice I'z, (G, )
over A, is selected. Let y = [y1, - ,yr,)", diag(y)=diag(y1,- - ,yr.), x = [x1,-+ ,x1,]" €
(A¢,.)™, and y = G pnx. The goal of designing a cyclotomic code € of size |Q| here is to select

O = {diag(y,) : ¥, = Gmaxis X; # X € (Ag,)™ 1< A1 <0} (30)
such that
12|
Z ||Zl||2 is minimized. (31)
i—1

Since the vectors y, are on a lattice, the mean of all the codewords may not be zero, i.e.,

1€

A 1
ANy 20
H QMZ;X@% ’

which may waste the transmission signal power. Therefore, we need to shift the selected space-time

code to the origin to form the final diagonal space-time code

Q = {diag(y, —p): 1<i<[Q}. (32)
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There are at least two approaches to solve this problem depending on how the information
symbols x are selected and binary information bits are mapped to space-time codewords. Notice
that x = [xq,--- ,x7,]” and each component x; can be thought of as either a two dimensional real

lattice point on A¢, or equivalently a complex number as explained in Section 2.

Method I: Component-wise Independent Selection — A, -QAM

In this case, the space-time code size has to have the form of || = 2F"t where R is the throughput
in bits per second per Hz (bits/s/Hz) and the components x; in x are independently selected from
2R_QAM located on the two dimensional lattice A¢,,, such as the conventional QAM on the square
lattice if m = 4 and QAM on the equilateral triangular lattice if m = 3 or 6. This method is
described as follows.

Select 2%-QAM signal constellation S on the lattice A¢,, such that its total energy is minimized:

S={xit Xi #x €A((m), 1 <i#1<2%} and min > x|
XESCA(m
This method is called A¢, -QAM for convenience and in case A¢, = Z[(y,), it is called Z[(,,]-QAM.
With this method, binary information bits are first mapped to complex symbols x; € §, 1 <

1 < L;. Then, these symbols x; are encoded into diagonal space-time codewords as described in

(30)-(32) for € and €.

Method II: Joint Component Selection — A¢ -Joint

In this case, since the components x; € A¢, of x are jointly considered, we should be able to
minimize the codeword vector y energy as described in (30)-(31) by selecting the optimal [
distinct vectors x? € (A, )™ for 1 <4 <|Q|. Then, let S = {x?: 1 <i<|Q|}.

With this method, the encoding can be done as follows. Each log,(|€?|) bits of binary information
are mapped to a vector, say x{ , in §. Then, this vector x{ is used to generate a diagonal space-time
code diag(X;.’O — j1), where

1 12|
= Gunx;, and p= 0] ;X;.

o

Y

g

5.2 Some Design Examples of Optimal Cyclotomic Space-Time Codes

Based on the optimal cyclotomic lattices found in the previous section, we can design optimal
cyclotomic space-time codes as described in Section 5.1. We now present a few examples based on
the optimal cyclotomic lattices for L; = 2 and L; = 4 in Section 4 and the two methods, Method I,
i.e., the “A; -QAM” method, and Method 11, i.e., the “A¢ -Joint” method, introduced in Section
5.1. The energies of space-time codewords are normalized in the following way: for L; transmit
antennas and a space-time code of rate R bits/s/Hz, the total energy of 22t*# diagonal matrices

(or codewords) is normalized into 2%, We then compare these codes with the existing ones in
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[2, 3]. For the cyclotomic lattices Gy and G4 in Example 3 [3, 2], which correspond to the non-
optimal G492 and G44 in the family presented in this correspondence as we explained before, we
also use Method I and Method II to design the optimal cyclotomic space-time codes. The diversity
products for these codes are listed in Table 2 and Table 3. One can clearly see the improvement of
the optimal cyclotomic space-time codes presented in this correspondence over the existing ones in

the literature.

Table 2 Diversity Products of Diagonal Codes for Two Transmit Antennas

Bit Rates Space-Time Codes
(bitS/S/HZ) MQ—Z[?]—QAM GQ—Z[]]—QAM GQ—Z[j]—JOth G6,2'A(6'QAM GG’Q—ACG—JOint
T T T 1 1
2 77 ) ) ) )
3 T T T T T
5.5231 5 1.6562 13125 1125
1 1 T 1 1 T
11 10 9.5703 8.75 8.2266

Table 3 Diversity Products of Diagonal Codes for Four Transmit Antennas

Bit Rates Space-Time Codes
tS/S/HZ) M4—Z[j]—QAM G4—Z[j]—QAM G4—Z[j]—JOint G6,5‘A(6‘QAM G6,5—A§6—Joint
T i T T 1

2 &40 756 756 28 T04.08

3 1 1 1 1 1
1000 400 323.2265 297.5625 170,514

1 1 1 - 1 S —
4000 1600 1305.9 1225 681.8418

6 Simulation Results

In this section, we present some simulation results for 4 transmit and 2 receive antennas. Similar
to that in [5], the codeword is normalized such that the mean power of codewords at all transmit

The additive white Gaussian noise at each receive antenna has a variance o2 =

antennas is 1.
1/SNR= L, /(2SNR) per real dimension, where L, is the number of receive antennas and SNR is
the signal to noise ratio at each receive antenna. The channel is assumed quasi-static Rayleigh
fading. Two kinds of diagonal cyclotomic space-time codes are compared: the non-optimal one but
the best in the existing literature, i.e., G4 in [3, 5], and the optimal one, i.e., G 5 found in Section
4 and listed in Table 2. The simulation results of codeword error probability for three different bit
rates R, R = 2, 3, and 4, are shown in Fig. 1, Fig. 2, and Fig. 3, respectively, where “-QAM”
and “-Joint” correspond to the two different diagonal cyclotomic space-time code design methods,
Method I and Method II, respectively, in Section 5. For rate R = 2 case in Fig. 1, the code
G4-QAM and Gy4-Joint are the same and so only G4-QAM is shown. The reason why the codeword
error probability is provided is that the Gray mapping for Method 11, i.e., “-Joint” is not available.
In these figures, the DAST codes in [5, 3] are also compared. One can clearly see the performance
improvement of the optimal cyclotomic codes over the non-optimal ones in the literature, which

has illustrated the theoretical results obtained in Subsection 5.2.
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7 Conclusions

In this correspondence, a systematic and full diversity cyclotomic lattice design has been proposed.
The newly proposed full diversity cyclotomic lattices have a concrete form and infinitely many
members for a fixed lattice dimention. Due to the concrete form of the cyclotomic lattice generating
matrices, we have presented the optimal cyclotomic lattices based on the packing density theory,
where the optimality is in the sense of minimizing the mean transmission signal power for a fixed
minimum (diversity) product or equivalently maximizing the minimum product for a fixed mean
transmission signal power. It is found that (i) the square lattice Z[j] based designs are not optimal
in most cases and (ii) the optimal generating matrices are not unitary in most cases. The cyclotomic
lattices have immediate applications in the designs of diagonal space-time block codes for multiple
antennas and linear precodes for achieving signal space diversity for single antenna systems over
fast Rayleigh fading channels.

Diagonal codes have applications not only as space-time codes themselves but also in quasi-
orthogonal space-time code designs as recently observed in [20], where it is shown that, for a fixed
quasi-orthogonal design, the diversity product of a quasi-orthogonal space-time code equivalently
depends on the diversity product of a diagonal space-time code. Although the optimality on the
cyclotomic lattices has been studied for various numbers of transmit antennas, it is still open for
several numbers of transmit antennas, such as L; = 5. As explained in Section 2, an L; dimensional
complex lattice can be converted to a 2L; dimensional real lattice. In contrast, a 2L; dimensional
real vector on an 2L; dimensional real lattice can be used to form an L; dimensional complex vector
by grouping each two consecutive real components into a complex number and the signal energy
does not change in the conversion. In other words, any 2L; dimensional real lattice can also be used
to design a complex-valued diagonal space-time code. The difference is that these L; dimensional
complex vectors may not necessarily form a complex lattice and in case they form a complex lattice,
then it is equivalent to a complex lattice studied in Section 2. Therefore, the complex lattice design
is a special case of the above real lattice design. We believe that the ultimate goal of the lattice
based diagonal space-time code design is to design optimal 2L; x 2L; real generating matrix K
such that the 2L; dimensional real lattice has the maximal minimum product when the mean
signal power is fixed. As a final remark, optimal cyclotomic lattices for more general number, L,

transmit antennas have been recently obtained in [46, 47].

Appendix A: Proof of Theorem 1

Before we prove Theorem 1, we need some results on algebraic number fields.

Let F be a field and F[z]| denote the polynomial ring over F, i.e., all polynomials with coefficients
in F. Let f(z) € Flz]. A splitting field of f(x) is a field extension E of [F such that polynomial f(z)
splits in [, i.e., f(z) can be factorized into order 1 polynomials of coefficients in E, but it does not

split in any proper subfield of E. For more details about a split field, see for example [42]. E is
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called the splitting field of f(z) over F.

Let F C E be two fields and assume that E is a splitting field of a polynomial over F. Galois group
Gal(E/F) denotes the quotient group of F in E, i.e., E/F, and consists of all the automorphisms of
E that fix F.

We now cite three results (Propositions) from algebraic number fields, which are used to prove

Theorem 1.

Proposition 3 (pg. 36, [42]) If E is the splitting field of a polynomial f(x) € Flz] over F, then
|Gal(E/F)| = [E : F], i.e., the extension degree of E over F.

Proposition 4 (pg. 75, [43]) If K is the splitting field of x™ — 1 over Q, then [K : Q] = ¢(n)
and Gal(K/Q) = {n; : 1 < n; < n — 1 and ged(n;,n) = 1}. Moreover, if w is a primitive n'?
root of unity in K, then Gal(K/Q) = {o; : gcd(i,n) =1, 1 <i <n— 1}, where o; is determined by

oi(w) = W'

An example of K in Proposition 4 is K = Q(¢,). In Proposition 4, ged stands for the greatest

common advisor and gcd(a,b) = 1 means a and b are co-prime.

Proposition 5 (pg. 37, [42]) Let F C B C E be three fields and B be the splitting field of some
polynomial f(x) € Flx] over F and E be the splitting field of another polynomial g(z) € Flz] over F.
Then, Gal(E/B) is a normal subgroup of Gal(E/F), and the quotient group Gal(E/F),/Gal(E/B) =
Gal(B/TF).

We are now ready to prove Theorem 1. To use Proposition 5, let F = Q, B = Q((n), E =
Q(Gmn), flx) =2™ — 1, and g(x) = ™" — 1. Then, it is easy to check that Q((,,) is the splitting
field of f(x) = 2™ — 1 over Q and Q((;ny ) is the splitting field of g(z) = ™" — 1 over Q. From

Proposition 3, we have

Gal(QCmn)/Q)| = [QCmn) : A = ¢(mn) and |Gal(Q(¢m)/Q)| = [QCm) : QA = d(m).
Using the results in Proposition 4 and Proposition 5, we have
Gal(Q(Cmn)/Q) = {0 : ged(i,mn) = 1,1 < i <mn — 1},
Gal(Q(¢m)/Q) = {0 : ged(i,m) =1, 1 <i <m — 1},
and Gal(Q(Cmn)/Q(¢rn)) is the coset of Gal(Q((,,)/Q) in Gal(Q((myn)/Q). Therefore,
Gal(Q(Gmn)/QCm)) = {o14mn; : ged(1 + mn;g, mn) =1,0 <n; <n—1},

which can be seen from the fact that 014, is in the coset of o1 € Gal(Q((,,)/Q) in Gal(Q(¢mn )/Q)).
This means that there are L; = %?:nn)) automorphisms o; of Q((my) that fix Q(¢,, ), and all of them

T+n;m

have the property o;(¢(n) = Cy , where N = mn. q-e.d.
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Appendix B: Proof of Theorem 4

Case of L; =2

For two transmit antennas, we have the following Theorem.

Theorem 5 For two transmit antennas, I'a(Gza) over A¢,, I'a(Ge2) over A¢y, and T'o(Ga3) over
A¢

., are the optimal cyclotomic lattices with

dmin(T2(G3.4)) dmin(T'2(Gs,2)) dmin(T2(Ga3)) V3

|det (Ag,) det (Gaq)|  |det (Ag,)det (Gga)|  |det (Ag,)det (Gaz)| 3
where

_ _ | G2 C122] —[ G2 ¢ ]
G3,4—G6,2—[C12 2 | Gla3 = Cr2€s (1G5 |-

Proof: From (3),

L e PR i RV R O PR

It is easy to check
|det (Ga,4)| |det (A, )| = [det (Ge.2)| [det (Ag,)| = [det (Ga)| |det (A¢,)| = V3.
From Proposition 2, we know
Armin(T2(G3.4)) = dmin(T2(G62)) = dmin(T2(Ga3)) = 1.

Thus,
Amin(T2(G34))  dmin(T2(Ge2))  dmin(T2(Gag)) V3

|det (AC%) det (G‘;’4)| B |det (ACG) det (GG’Q)‘ B |det (A<4) det (G4’3)‘ - 3 '

This implies that 'y (G3.4) over A¢,, I'a(Ge2) over A¢,, and I'y(Gy4,3) over A¢, are the same according
to the criterion in Section 4.2.
We next prove that they are optimal among cyclotomic lattices I'y (G4, ) for any integers m

and n with d)(z()?:;) = 2. Since L; = 2, there are two integers ny and n9 in the generating matrix

Gm,n in (16). Since ny = 0, to determine G, ,. we only need to determine the integer no with

0 < ng < n such that 1 4+ nom and mn are co-prime.

Let m and n be integers and N = mn such that % = 2. There are two different cases:

Naw

ged(m,n) =1 and ged(m,n) > 1.

Case 1. ged(m,n) =1

In this case, m and n are co-prime and ¢(N) = ¢(mn) = ¢(m)p(n). Thus, we have % =

Z

¢(n) = 2. Therefore, there are only three subcases for values n: n =3, n =4, or n = 6.
Subcase 1.1. ged(m,n) =1, n = 4 In this subcase, m is an odd number. In order to find the

form of the generating matrix G, , in (16), we need to find the integer ny in the range from 1 to
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n —1 = 3 such that 1+ nym and 4m are co-prime. Since m is odd, ny has to be even and therefore,

ny has to be 2, i.e., ng = 2. This implies that the generating matrix Gy, 4 in (16) is

(v X :[1 1HgN0]
() G oallo &

It is not hard to see that |det (G, 4)| = 2. By using the result in Theorem 3, we know that I'y(G'3 4)

Gm4:

3

over Ac, is the optimal cyclotomic lattice in this class.

Subcase 1.2. ged(m,n) =1, n=3

In this subcase, m can not be divided by 3 and the integer ny in G, ,, has only two possibilities
of ng =1 or ng = 2. Since m can not be divided by 3, m has only two different forms, m = 3mg+1
and m = 3mg + 2 for integers my.

(i) Consider the case when m = 3mg + 1. If ng = 2, then 1 4+ nom = 1+ 2m = 3 4+ 3my that is
not co-prime with mn = 3m. This proves that no =1 when m = 3mg + 1.

(ii) Consider the case when m = 3mg + 2. If ng =1, 1 + ngm = 1 + m = 3mg + 3 that is not

co-prime with mn = 3m. This proves that ny = 2 when m = 3my 4+ 2. Go back to the generating

(v (x :[1 1HCN0]
14+nam C]2V(1+n2m) n9 219 0 CIQV .

SN 3 3

matrix Gy, 3:

Gm?:

o

Since m > 3 and ged(m, 3) = 1, we have m > 4. we next prove that I'y(G4,3) over A¢, is the optimal
among the cyclotomic lattices in class I'y(Gn3) over A¢, for m > 4. Since 1 and (,;, belong to

A¢,, C Z[(m], points x =1 — (,,, and —x are on lattice A, C Z[(m]. Thus,

[ ] o |[ 5]
Vo ]1V+n2m C]2\7(1+n2m) _x

is a point on the cyclotomic lattice I'y (G, 3) over A, . Therefore, the minimum product dy,in (I'2 (G 3))

satisfies
Ain(T2(Gm,3)) < %17 (1 = Cam) (1 — C5%Cam) -

Let
_ P — Gam) (1 — 657 Gam)|
det (Ag,,)] ’

Since |x| = 2sin(7/m) and |det(A,,)| = sin(27/m), we have

f(m)

f(m) = 2tan(m/m) [(1 = C3m) (1 = (3™ Cam)| -
By the discussions in (i) and (ii), we have

2tan(m/m) [(1 — (3m) (1 — (3C3m)| i m=3mg+1, my>1,
flm) = ! e
2tan(m/m) |(1 = Cam) (1 — (3¢am)| ifm=3mg+2, mo>1.

It is easy to check that

dmin (FQ (Gm,3))
|det (A, )]

dimin(T2(Ga3))
|det (A¢, )|

< fim)<f(5)<09<1= for m > 5.
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From Theorem 3, the optimality of cyclotomic lattice I'y(G4,3) over A, also holds in this case.
Subcase 1.3. ged(m,n) =1, n =206
This subcase is similar to Subcase 1.1 when n = 4.
Case 2. ged(m,n) > 1
From Lemma 2 we know
GN) _ ¢lmn)
¢(m)  ¢(m)

Thus, we have ged(m,n) = 2. We next want to show n = 2. In fact, if n = 2ng for ng > 1 and ng

2= > ged(m,n) > 1.

is even, then n = 2"n{ with » > 2 and nj > 1. From Lemma 2, it is not hard to see

If n = 2ng for ng > 1 and ng is odd, then ng > 3 and ged(m,ng) = 1 due to ged(m,n) = 2.

From Lemma 2, it is not hard to see

¢(mn)
¢(m)

which is because ¢(ng) > 1 when ny > 2. This contradicts with the assumption of L; = 2 and

= 2¢(n0) > 2,

therefore proves n = 2.
Since ged(m, 2) = 2, m has to be even. Since n = 2, the two integers n; and ng in Gy, 2 in (16)

have to be ny = 0 and ny = 1. Thus,

S IS RS N I I T S IOV
m,2 11V+m C]Q\](1+m) 1 —1 0 C]QV .
In this case, |det (G, 2)| = 2 for any even m. By Theorem 3, we know that the best cyclotomic

lattice in this class is I'o(Ge,2) over A¢, = Z[(s]. Furthermore, since | det(Ac,)| > | det(A, )], lattice
['2(Ge2) over Agy is strictly better than I'o(Gap2) over A¢, that is the same as Gy in Example 3.
q.e.d.

Case of [; = 3

In this subsection, we present the optimal cyclotomic lattices for three transmit antennas, i.e.,

L, =3.

Theorem 6 For three transmit antennas, I'3(G36) over Ay, I'3(Ge3) over Agy, and I'3(G33) over
A¢, are the optimal cyclotomic lattices with

dmin(T'3(G3,6)) _ dmin(T'3(Gs,3)) _ dmin(T'3(G3,3)) _ 1
et (Agy) /% det ()| [det (Ago)[*"[det (Go)] et () P [det (Gl (y2)"  5.1963

3

where
1 1 1 Gis 0 0 1 1 1 g 0 0
Gss=Gez= | G ¢ G 0 (g 0 |, Gaa=| G G G 0 ¢ 0
G G @ 0 0 ¢ G G @ 0 0 ¢



Proof. It is easy to check that I';(G36) over Ay, = Z[(3], I'3(Ge3) over A¢, = Z[(g], and
I'3(G3,3) over Ag, are cyclotomic lattices with |det (G36)| = |det (Gg3)| = |det (G3)| = 5.1963.
Thus, they are the same according to the criterion in Section 4.2. We next prove that they are the
optimal cyclotomic lattices for L; = 3.

Since L; = 3, there are three integers ni,ny and ng in the generating matrix Gy, ,, in (16). We
next determine these integers for different possible m and n.

We first consider integer n. Let m and n be two positive integers with N = mn such that

% = L; = 3. We claim ged(m,n) > 1. In fact, if ged(m,n) = 1, then
$(N)
3= —-==0(n).

But there does not exist any positive integer n such that ¢(n) = 3. Since, from Lemma 2, gcd(m, n)
is a factor of L; = 3, we have proved that ged(m,n) = 3. Thus, n = 3ng and m = 3mg and my and
ng are co-prime. We next show n =3 or n = 6.

We now claim that ng can not be divided by 3. In fact, if ng can be divided by 3, then we let
ng = 3"kg and r > 1 and ged(kg,3) = 1. Since ged(mg,ng) = 1, we have ged(myg,3) = 1. Thus,
from Lemma 2, we have

p(mn)  ¢(3" " mok) _ gl

¢(n) — H(3mo)

which implies » = 0 and contradicts with the assumption. The above property also implies that

P(ko) = 3,

ng = ko and ¢(ng) = ¢(kg) = 1, Therefore, we have proved that there are only two possibilities for
integer n: either ng = 1, i.e., n =3, or ng = 2, i.e., n = 6.
Case 1. n=3

In this case, ny =0, ng =1, and ny = 2 in (16) and the generating matrix Gy, 3 is A¢,, is:

(n 2&21 ) 3(%?1 ) 1 1 1 (v 0 0
Gms=| (™ ™ G ™ l=|G & ¢ 0 ¢y 0
C11V+2m C12v(1+2m) C}‘iv(1+2m) C% %1 r? 0 0 C?V

Thus, all the determinants |det (G, 3)| = 5.1962 are the same for different integers m = 3my.
From Theorem 3, we know that the best cyclotomic lattice in this class is I'3(Gg3) over A, or
I'3(G3,3) over A¢,. This proves the theorem.

Case 2. n =26

In this case, ng = 2. Since ged(mg, ng) = 1, mg has to be odd. We next determine integers n;
fori =1,2,3 and 0 = ny < no < ng < 5 such that 1 + n;m and mn are co-prime for i = 1,2, 3.
Since m is an odd number, 1 + m, 1 4+ 3m and 1 4+ 5m are even numbers and therefore have a

common factor 2 with mn = 6m. Thus, n; can not be 1,3, or 5. This proves that ny =0, ny = 2,
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and n3 = 4 and the generating matrix G, 3 is

(N X
Gm,ﬁ _ ]1\7+2m C]2\7(1+2m 1+2m
I C]1\7+4m C]2\7(1+4m) CN1+4m
111 (v 00 1 1 1 (v 00
—d g @0 g ol=lagalloa o
L &6 G ¢ 0 0 ¢ G G o@ 0 0 ¢

From Theorem 3, the best cyclotomic lattice in class I's(G6) over A¢, is I'3(G36) over Ag.

q.e.d.
It is not hard to see that G536, G 3 and G333 are all unitary.
Case of L; =4
For four transmit antennas, we have the following Theorem.

Theorem 7 For four transmit antennas, I's(G35) over A¢,, T'4(G310) over A¢,, and I'y(Gg5) over

A¢s are the optimal cyclotomic lattices with

dmin(T4(G35)) _ dmin(T'4(G3,10)) _ dmin(T'4(Gs5)) _ 4
det (A,)|*[det (Gs5)]  |det (Ac,)” [det (Gs10)|  |det (Ag,)|” |det (Ggp)| 3 x 11.1803

where
1 1 1 1 ¢z 0 0 O 1 1 1 1 |{¢p O 0 O
G |GGG a0 o 0l L G Ed G0 G0 0
TG G ¢ o 0 ¢ oo T TG G @ G0 0 ¢y 0
5 G G2 GoILo 0 0 Gy 3¢ @GPl 0 0 ¢

Proof. It is easy to check that I'y(G35) over A¢,, ['4(G3,10) over Ac,, and I'4(Ge 5) over A, are
three 4 dimensional cyclotomic lattices and have the same packing densities and the same minimum
products. In the following, we compare them with other 4 dimensional cyclotomic lattices.

To determine a Gy, 5, in (16), we need to determine the 4 integers n; and integers m and n. Let
m and n be integers with N = mn and % = L; = 4. There are two different cases: ged(m,n) =1
and ged(m,n) > 1.

Case 1. gced(m,n) =1

In this case, S(N)

m = ¢(n) = 4,
and therefore, there are only four cases for integer n: n =95, n =8, n =10, and n = 12.
Subcase 1.1. ged(m,n) =1 and n=75

In this case,
1 Cin gnl glnl CN 0 0 0
CgLQ C2n2 gnz glnz 0 C]QV 0 0

Gms = 3 3 1 3
3 C2n3 ‘gn;; ‘(Zn;; 0 0 CN (31 b
n n N n
C54 C 4 3 4 ; 4 0 0 0 CN
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and 0 = ny < ng < n3z < nyg < 4. Since matrix

ni 2n1 3n1 4nq
55 55 55 55

ny 2ns  ~3ng  +4ng
5 5 5 5
ns 2ns 3ns 4ns
55 >5 >5 >5
ng 2n4 3n4 4ng
55 >5 >5 >5

is a Vandermonde matrix of entry variables (.7 = 1,...,4 that take four different values from 5

j2km
5

does not change the absolute value of the determinant |det (G, 5)| = 11.1803. Therefore, from The-

equally spaced points exp ( ) ,k =0, ...,4 on the unit circle. The different choices of (n1,n9,ns3, n4)
orem 3, the optimal cyclotomic lattices in the class G, 5 are I'y(G35) and I'4(Gs5) over Ag,.
Subcase 1.2. ged(m,n) =1 and n =38
In this subcase, m has to be an odd number. Thus, the four integers m; in (16) have to be

ny =0,n9 = 2,n3 =4,n4 = 6 so that 1 + n;m and 8m are co-prime. Thus,

o 2(1%2 ) 3(5& ) 4(1415\5 ) 1111 (v 0 0 0

1+2m m m m
Gm 8= N+ C]2\[(1+4m) C]3\[(1+4m) C{4\f(1+4m) = Cgl Cé; Cl% Clgﬁ 0 C]2V (?), 0
TG Gy Y ¢ Gs Cs Gs~ Gs 0 0 ¢y 0
cLom 2046m) S46m) A0+6m) || o8 o2 gt @t ][ o0 0 ¢h

and their determinant absolute values are the same: |det (G, g)] = 16 > 11.1803 = |det (G5)|-
From Theorem 3, the optimal cyclotomic lattice can not be in this class.

Subcase 1.3. ged(m,n) =1 and n = 10

In this case, m has to be odd and similar to the previous case, n; have to be even. Thus,
0 =mn;1 < ny <nz <nyg <8 have to take four of the 5 integers {0,2,4,6,8}, or 0 =nf =% <nfj =
< ny =% <njy="% <4 have to take four of the 5 integers {0,1,2,3,4} Also, the generating

matrix
! 2n’ 3n’ 4n/!
n1 ~2n1  ~3n1  ~4ni a1 1 1 1
10 10 10 10 CN 0 0 0 C5I 5 , 5 , 5 , CN 0 0 0
ny ~2ns  3nz  ~4no 0 CQ 0 0 ny  L2nh  .3n, 4ng 0 CQ 0 0
G 0= 510 ~12[] ~13U ‘}10 SN 5 _ ‘5/ >5 , 55 , ~i, SN 5
m,lU 71  n3 n3 n3 n3 d - n 2n 3n n 3
10510 10 10 0 0 Cy 91 5° G5 G5 0 Gy ? 0 0 (x 91
na na ong nag i ! ! !
510 610 6510 610 00 0 ¢y C;M 3"4 3"4 ;1714 0 0 0 ¢y

Then, it is back to Subcase 1.1.

Subcase 1.4. ged(m,n) =1 and n =12

In this subcase, m is an odd number, and m can not be divided by 3. The four integers
n;,i =1,....4, in (16) are even number, i.e., n; = 2n! for some integers n;. Then, ny < ny < n) €
{1,2.3,4,5}. Let m = 3mgy + my for m;y =1 or m; = 2. Thus, 1 + 2nim = 6n;mo + 1 + 2nim;. If
my = 1, then 1 4 2n/m can be divided by 3 when n} =1 or n; = 4. If m; = 2, then 1+ 2n;m can

be divided by 3 if n; = 2 or n} = 5. Since 1 + n;m has to be co-prime with n = 12 and therefore

can not be divided by 3, we have
(ny,nh,ny) = (2,3,5), when m; =1

and

(ny,ns,ny) = (1,3,4), when my = 2.
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On the other hand,

2 3 4
(N Cn Cn Cn 1 1 1 1 N 00 0
C1+2n hm C 2(142n%m) C3(1—{—2nfzm) C4(1+2nf2m) nhy  .2nb  3nh dn, 9
G o N N 1%~ Se 6 6 0 ¢y 0 0
m,12= 1—|—2n3 CN1—|—27L3 C 3(1+2n5m) C 4(142n4m) |— ézg gng gng gn?) 0 0 C]?{f 0
C1+2n4m ¢ 2(142n)m C 3(1+2n,m) ¢ 4(142n/ym) ‘ (A ‘ 2n! ‘ 3n)y ‘ ang 110 0 O C?V
N N N 6 6 6 6

From the above analysis, the two possibilities of integers n; for m; = 1 and m; = 2 correspond
to the four points {1,@}?2, ‘(?3,4}?4} and its rotated version on the unit circle and therefore don’t

change the absolute value of the Vandermonde matrix in the above G, 12. Thus,
|det (Gm,lg)‘ =12 > 11.1803 = \det (G6,5)| .

From Theorem 3, class I'4(G,y,,12) over A¢, does not include the optimal one.
Case 2. ged(m,n) > 1
In this subcase, because
4= ¢) > ged(m,n),
¢(m)

we have ged(m,n) < 4 and ged(m,n) is a factor of 4 from Lemma 2. Thus, the common prime

factor of m and n can only be 2. Let n = 2"ng, where ng is an odd number. From Lemma 2,
4= 2 = 97 g(ng).

Therefore, we have two cases:
(i) r =1 and ¢(ng) = 2, i.e., ng = 3,n = 6,m = 2my,
(ii) r = 2 and ¢(ng) =1, i.e., ng = 1,n = 4, m = 2my.
Subcase 2.1. n =4

In this case, the four integers n; in Gy, 4 in (16) are 0,1, 2,3 and

(N 2%121 | 3(@;?1 ) 4(4;141 | 1 1 1 1 ][y 0 0 0
G_}V“”CN’”CN’”CN’“_QCZCE;‘ 0 ¢§ 0 0
m,4= C1+2m CN1+2m C?V(I_I—Qm) C;4\](1+2m) - 4% 21 Cff LEE 0 0 C?\[ 0

SN S S

‘ ]1\r+3m CN1+‘im C]‘iv(1+‘im) C;4v(l+3m) 21’1 CE Cf}) iQ 0 0 0 C?\f

Therefore, for all m, the determinant absolute values are the same
|det (Gip.a)| = 16 > 11.1083 = |det (G 5)] -

From Theorem 3, class ['y(Gp 4) over Ay, does not include the optimal one.

Subcase 2.2. n =16

In this subcase, the four integers n; satisfy that, 1 + n;m and N = mn are co-primes, and
ny,ng,ng,ng € {0,1,2,3,4,5}. Since the only prime common factor of m and 6 is 2, integer m can
not be divided by 3. Let m = 3mg 4+ my, mi; = 1 or m; = 2. Similar to the proof in Subcase 1.4, if

we take nq = 0, we know that,
(no,n3,ng) = (2,3,5), when my; =1
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and

(no,n3,ng) = (1,3,4), when m; = 2.

On the other hand, the generating matrix is

2
(N Cn X Cn 1 1 1 17y 0 0 0
1tnam C2(1+n2m C 3(1+nam) ¢ 4(14nam) ni 201 ~3n1 Adng ‘0 2 g 0
G |5 N N _| S Se 6 6 v
m,6— 14nsm ~2(1+n3zm) (1+n3m) (14+nsm) [— CTZQ 2n2 3ng 4ng 0 0 CS 0
N CN C CN >6 g 63 (31 SN .
2(1 (1 (1 n3 n n3 n:
C]lv+n4m CN( +nam) C (1+nam) CN +nqm) CG 3 C6 3 Co 3 ¢ 2 0O 0 0 CN

Similar to the proof of Subcase 1.4, for all m, the absolute values of the determinants of Gy, 6

are the same:

|det (Gm,6)| =12 > 11.1803 = |det (G675)‘ .

From Theorem 3, this class ['y(Gy,,6) over A¢,, does not include the optimal one.
By summarizing all the above cases, we have proved that I'y(G35) and I'y(Gg5) over Ag, are
the optimal cyclotomic lattices for 4 transmit antennas.
q.e.d.

It is easy to check that matrices G35, (G310, and Gg 5 are not unitary.

Cases of L, =6,8,9

In this subsection, we present the optimal cyclotomic lattices for six, eight and nine transmit
antennas, i.e., L; = 6,8,9 without proofs. Their proofs are similar to the ones in Sections 5.1-5.3
by using the same techniques. We also list optimal cyclotomic lattices for some other numbers of

transmit antennas.

Theorem 8 For siz transmit antennas, I'¢(G3,7) over A¢,, T'e(G3,14) over A¢,, and I'¢(Ge,7) over

A¢s are the optimal cyclotomic lattices with

dmin(Ue(G3,7)) _ dmin(U(G3,14)) _ dmin (U (Ge,7)) _ 8
det (A¢,)|? [det (Ga7)|  |det (Ag,)|” [det (Gaa)|  |det (Ag,)|? |det (Go7)|  3v/3 x 129.64

where

n;(1—1) .
Gs7 = (Gzz)GXf;,Gzz_C’ Y¢hi,mi = 0,m9 = 1,n3 = 3,4 = 4,n5 = 5,n6 = 6,

nzll

G311 = Go7 = (Ai)gy g5 i) = C42,n1 =0,n2 =2,n3 =3,n4 =4,n5 =5,n6 = 6.

Theorem 9 For eight transmit antennas, I's(Gz20) over A¢,, I's(Ga5) over A¢,, and I's(Gg,10)

over A¢, are the optimal cyclotomic lattices with

dimin(Us(G3,20)) _ dmin(I's(G4,15)) _ dmin(U's(Gs,10)) 1
|det (Ag,)| [*det (Ga20)|  |det (Ag,)|* [det (Gaas)|  |det (Ag,)|* [det (Geg)] 1125

where

G320 = G6,10 = (i1)gy g5
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with
A = CQné(lil)Cfl}[]a (77,1, n2,N3,N4,M5,16, 17, Tbg) = (07 27 47 67 107 127 147 16)7
and
G4,15 = (ai,l)gxgu

with

a;) = Cﬁé(lfl)féo, (n1,n2,n3,n4,n5,n6,n7,n8) = (0,3,4,7,9,10,12,13).

Theorem 10 For nine transmit antennas, I'g(G39) over A¢,, T'o(G318) over A¢,, and I'g(Gg9)

over A¢, are the optimal cyclotomic lattices with

dmin (L9 (G3,9)) _ dimin(To(G3,18)) _ dmin(Lo(Ge ) _ 16 x V2
|det (Ag,)|”? |det (Ga9)|  |det (Ag,)|”? |det (Gaas)|  |det (Ag,)|”/? |det (Geo)] 9 x V/3 x 19683
where,
G39 = (ait)gygs Qi) = ngiil)(lil)éhéﬂ
and

i—1)(1—1
Gsis = Go9 = (Ail)gyg, il = ngz ) )Cé4-
Proofs are similar to before.

Other Cases in Theorem 4 can be similarly proved.
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Symbol Error Rates for Tx=4, Bit Rate R=2
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Figure 1: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 2

bits/s/Hz.

Symbol Error Rates for Tx=4, Bit Rate R=3
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Figure 2: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 3

bits/s/Hz.
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Symbol Error Rates for Tx=4, Bit Rate R=4
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Figure 3: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 4

bits/s/Hz.
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