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Diagonal space-time block codes using algebraic number theory proposed in [5] were motivatedfrom the designs of full diversity multi-dimensional signal constellations for resisting both Rayleighfading and Gaussian additive noises proposed in [1, 2, 3]. These codes are built upon lattices[y1; � � � ;yLt ]T = G[x1; � � � ;xLt ]T , where Lt is the number of transmit antennas, T stands for thetranspose, xi represent complex-valued information symbols and G is a generating matrix and yiare placed as diagonal elements in a diagonal space-time code. To resist both fading and additivenoise, both good diversity product and good Euclidean distance of the codewords [y1; � � � ;yLt ]T arerequired, and G is a unitary matrix in [2, 4]. In [2], the construction of G over Z[�4] and Z[�3] wasprovided with unitary matrix G: In [4], a systematic unitary cyclotomic lattice code (G is unitarymatrix) design scheme over a general number rings was proposed by using Fourier transform withDiophantine approximation theory. And the optimal unitary cyclotomic lattices are also providedin [4]. The unitariness of the generating matrixG in [2, 4] is used to maintain the Euclidean distanceand the mean power of the transmission signals the same as that of the information symbols. Toresist fading as commonly used in space-time coding, good diversity product is usually imposed,and some algebraic construction of G over Z[�4] = Z[j] with j = p�1 (the entries of G are integralsover Z[�4]) is proposed in [3] for information symbols xi in Z[�4], i.e., QAM on the square lattice,such as QPSK and square 16-QAM. The case when generating matrix G is real and takes theforms of Hadamard transform is studied in [3, 5]. In [7], a di�erent space-time code design of fulldiversity is proposed by also using cyclotomic �eld extensions without much analysis of the diversityproduct property and it is essentially equivalent to a kind of diagonal space-time code designs. In[9], a D-BLAST lattice code structure is proposed. In each layer of the D-BLAST lattice code,components of a more general high dimensional lattice is used, where, however, no new latticedesigns is proposed while the unitary cyclotomic lattices in [2] are adopted in the D-BLAST latticecodes.There are three issues that may a�ect the code performance in the above lattice based diagonalspace-time code design, namely, (i) where the information symbols xi belong to; (ii) where theelements of the generating matrix G belong to; and (iii) whether the generating matrix G is unitary.In this correspondence, we focus on the criterion of maximizing the diversity product and considerthese three issues together in a general way: information symbols xi may not necessarily be in Z[�4],elements of generating matrix G may not necessarily be integrals of Z[�4], and generating matrix Gmay not necessarily be unitary. Information symbols xi and elements of generating matrix G arefrom general cyclotomic �eld extensions. We call such diagonal space-time block codes cyclotomicspace-time codes. We propose a systematic construction of full diversity cyclotomic lattices andapply them to design space-time codes of full diversity for a general number of transmit antennas,and for a �xed number of transmit antennas, there are in�nitely many cyclotomic space-timecodes/lattices. Furthermore, we obtain and list the optimal ones among these cyclotomic space-time codes/lattices, where the optimality is in the sense that, for a �xed mean transmission signalpower, its diversity product is maximized, or for a �xed diversity product, its mean transmission2



signal power is minimized. It turns out that most of the optimal cyclotomic space-time codes cannot be obtained by using information symbols xi in Z[�4], or by using generating matrix G withelements being integrals over Z[�4], or by using unitary generating matrices G. With our newlyproposed optimal cyclotomic space-time codes, we present some new design examples of optimalcyclotomic space-time codes that have the best known diversity products of diagonal space-timecodes. What we want to emphasize here is that the full diversity cyclotomic lattices we proposein this correspondence are mathematically concrete and systematic and therefore provide us theconvenience to study the optimality. This is di�erent from the existing lattice-based code designsin the literature where general algebraic numbers are used and it is hard to systematiclly formulateall general algebraic numbers and therefore di�cult to study the optimality unless it is speci�ed toa particular cyclotomic ring/�eld, such as Z[j], and unitary generating matrices. Another remark isthat the cyclotomic lattices we propose in this correspondence can also be applied to linear precodedesigns for achieving signal space diversity for single antenna systems over fast Rayleigh fadingchannels as studied in [1, 2, 3].This correspondence is organized as follows. In Section 2, we describe the problem in moredetails and introduce the necessary notations and concepts about lattices. In Section 3, we introducea systematic design of full diversity cyclotomic lattices and diagonal space-time codes. Due to thenon-unitariness of a generating matrix G, in Section 4, we �rst study the relationships between thegenerating matrix and its corresponding lattice, the signal mean power, and the diversity product,and then convert the criterion on maximizing diversity product to a criterion on generating matriceswhen the diversity product is �xed. And �nally, in Section 4, we present the optimal cyclotomiclattices. In Section 5, some optimal cyclotomic space-time code designs are given based on theproposed optimal cyclotomic lattices studied in Section 4. In Section 6, we show some numericalsimulation results.The following notations are used throughout this correspondence: capital English letters, suchas, K and G, represent matrices and bold small English letters, such as x and y, represent complexsymbols (or numbers or points) on two dimensional real lattices, small English letters, such as x, yand z, represent real symbols (or numbers or points) andLt: number of transmit antennasN: natural numbersZ: ring of integersQ : �eld of rational numbersR: �eld of real numbersC : �eld of complex numbers�(n): Euler totient function of positive integer n�m = exp �j 2�m �Z[�m]: ring generated by Z and �mK and G: real and complex generating matrices for real and complex lattices, respectively3



�n(K): n dimensional real lattice of real generating matrix K�n(G): n dimensional complex lattice of complex generating matrix GQ(�m ): number �eld generated by the rational �eld Q and �m��m = �2(K�m): two dimensional real lattice with generating matrix K�m = � 1 cos(2�m )0 sin(2�m ) �[E : F]: the extension degree of �eld E over �eld F.2 Complex Lattices and Problem DescriptionAs mentioned in Introduction, we are interested in diagonal space-time block codes formed asfollows. Let Lt be the number of transmit antennas. Let xi, 1 � i � Lt, be information symbolstaking from a certain constellation. Let G be an Lt � Lt matrix and[y1; � � � ;yLt ]T = G[x1; � � � ;xLt ]T : (1)The diagonal space-time code 
 consists of Lt � Lt matrices of the form diag(y1; � � � ;yLt). Weare interested in such a diagonal space-time code 
 that (i) it has the full rank property, i.e., anydi�erence matrix of any two distinct matrices in 
 has full rank; and (ii) its following diversityproduct is as large as possible:� = mindiag(y1;��� ;yLt) 6=diag(e1;��� ;eLt )2
 LtYi=1 jyi � eij2; (2)where the transmission signal mean power of yi is �xed. The main goal of this correspondence isto properly determine an information signal constellation of xi and a generating matrix G for adiagonal space-time code 
 with the above properties. To do so, we �rst introduce some conceptsand properties on real and complex lattices.2.1 Real and Complex LatticesIn this subsection, we �rst de�ne real and complex lattices, and see some existing examples, andthen formulate the problems we are interested, and �nally present some properties of complexlattices that are used in the later sections for cyclotomic space-time code designs.2.1.1 De�nitionsWe �rst de�ne a real lattice.De�nition 1 An n-dimensional real lattice �n(K) is a subset in Rn :�n(K) = 8><>:264 x1...xn 375 = K 264 z1...zn 375 ������� zi 2 Z for 1 � i � n9>=>; ;where Z is the ring of all integers and K is an n�n real matrix of full rank and called the generatingmatrix of the real lattice �n(K) and det(�n(K)) �= jdet (K)j.4



Clearly, �n(K) is a subgroup of Rn with component-wise addition. When n = 2, every point[x1; x2]T in a two dimensional real lattice �2(K) belongs to R2 and therefore can be thoughtof as a complex number x = x1 + jx2 in the complex plane C . In this correspondence, we donot distinguish a two dimensional real point [x1; x2]T 2 R2 and a complex number or point x =x1 + jx2 2 C otherwise it is speci�ed. To distinguish it from general two dimensional real lattices,for �m = exp(j 2�m ) we use ��m to denote the two dimensional real lattice with the generating matrixK�m = � 1 cos(2�m )0 sin(2�m ) � = � 1 Re(�m)0 Im(�m) � ; (3)where Re and Im stand for the real and imaginary parts of a complex number, respectively. Thus,��m = �2(K�m). This two dimensional real lattice is the base for signal constellations of cyclotomicspace-time codes studied later. It is easy to check that��m � Z[�m]; ��4 = Z[�4] = Z[j]; and ��3 = ��6 = Z[�3] = Z[�6]; (4)and ��4 is the square lattice.A complex lattice de�ned below is a lattice based on a two dimensional real lattice.De�nition 2 An n-dimensional complex lattice �n(G) over a two dimensional real lattice �2(K)is a subset of C n :�n(G) = 8><>:264 y1...yn 375 = G264 x1...xn 375 ������� xi 2 �2(K); for 1 � i � n9>=>; ; (5)where G is an n � n complex matrix of full rank and called the generating matrix of the complexlattice �n(G). The above complex lattice is called a full diversity lattice if it satis�esnYi=1 jyij > 0for any non-zero vector [x1; � � � ;xn]T 6= [0; � � � ; 0]T in (�2(K))n.In De�nition 2, points xi from a two dimensional real lattice have been treated as complexnumbers explained previously and therefore yi are also complex numbers. On the other hand, if wetreat all complex elements in matrix G and xi and yi as points in the two dimensional real spaceand two dimensional real lattices, respectively, the above n dimensional complex lattice can be alsorepresented as a 2n dimensional real lattice as we shall see in more details later in Section 2.3.2.1.2 ExamplesWith the above complex lattice de�nition, some recently proposed diagonal space-time codes in theliterature can be formulated as complex lattices as listed in the following examples that motivateus to further generalize and improve these existing ones by considering general cyclotomic latticesas we shall see in Section 3. 5



Example 1. Diagonal Algebraic Space-Time Block Codes { DAST Block Codes [5, 3]For Lt = 2q, the DAST block code of size j
jLt is obtained from [y1; � � � ;yLt ]T =MLt [x1; � � � ;xLt ]T ,where xl 2 j
j-QAM, i.e., a QAM on the square lattice Z[�4], and MLt is an Lt � Lt real matrixand is generated in an iterative way as in the Hadamard matrix, [3],MLt = " M1Lt=2 �M2Lt=2M2Lt=2 M1Lt=2 # :With this form of a real generating matrix MLt and an information signal constellation on thesquare lattice, it is found in [3] that the optimal generating matrices for Lt = 2 and Lt = 4 are,respectively, M2 �= � a b�b a � ; for a = 0:5257; b = 0:8507;and M4 �= 2664 a b c d�b a �d c�c �d a bd �c �b a 3775 ; for a = 0:2012; b = 0:3255; c = �0:4857; d = �0:7859:When Lt = 3, the following form of matrices instead of the above Hadamard form was proposedin [3] for xi in QAM on the square lattice:M3 �= 24 a b cb c a�c �a �b 35 ; for a = 1 + �1 + �+ �2 ; b = �a; c = ��1 + �a;where � is a parameter. By using computer search, they found that the optimal � for the space-timediagonal code is � = �2:24698.The above optimality is in the sense of maximizing the diversity product but restricted in eitherreal Hadamard-form generating matrices for Lt = 2 and 4 or real generating matrices for Lt = 3and moreover the information signal constellations are on the square lattice in Z[�4] (or ��4).Example 2. Good Codes for Fading Channels as well as Gaussian Channels [2, 3]In [2, 3], algebraic number theory is used to generate codes for both Gaussian channels andfading channels. These codes can also be thought of as a kind of complex lattice codes.First of all, the best complex lattices �2(D4) over ��4 , �3(E6) over ��6 , and �4(E8) over ��4 ,of dimensions 2, 3, and 4, respectively, (see for example [45]), for Gaussian channels were used in[2], where D4 = � 1 01 �2 � ; for �2 = 1 + j;E6 = 24 1 0 01 �3 01 0 �3 35 ; for �3 = jp3;E8 = 2664 1 0 0 01 �4 0 01 0 �4 01 �4 �4 �24 3775 ; for �4 = 1 + j:6



To resist fading, the above complex lattices were rotated in [2] to have the good diversityproduct property, i.e., non-zero diversity product (or full diversity) corresponding to the conceptof space-time coding, as follows:G2f �= � 1 �21 ��2 �D4; for �2 = exp�j �4� ;G3f �= 24 1 ��3 �231 �
�3 �(1 + 
)�231 �
2�3 �(1 + 
2)�23 35E6; for �3 = exp�j 2�9 � ; 
 = p3j � 12 ;and G4f �= 2664 1 �4 �24 �341 ��4 �24 ��341 j�4 ��24 �j�341 �j�4 ��24 j�34 3775E8; for �4 = exp�j �8� :The codes proposed in [2] are the complex lattices �2(G2f ) over ��4 , �3(G3f ) over ��3 , and �4(G4f )over ��4 .Example 3. Rotated Codes Based on QAM on the Square Lattice [3, 2]For considering only fading channels, the diversity product can be focused. In this case, bydeleting matrices D4 and E8 from the ones G2f and G4f in Example 2, respectively, complexlattices �2(G2) and �4(G4) over ��4 , i.e., QAM on the square lattice, for Lt = 2 and 4 can beobtained with the following generating matrices:G2 �= � 1 �21 ��2 � ; for �2 = exp�j �4� ;and G4 �= 2664 1 �4 �24 �341 ��4 �24 ��341 j�4 ��24 �j�341 �j�4 ��24 j�34 3775 ; for �4 = exp�j �8� :Since all entries of matrices D4 and E8 are in Z[j], it is clear that the complex lattice pointsof �2(G2f ) and �4(G4f ) in Example 2 are subsets of the complex lattices �2(G2) and �4(G4) inExample 3, respectively, i.e., �l(Glf ) � �l(Gl) for l = 2 and 4.2.2 Problems of InterestWe can see that, to form a space-time code as stated in the beginning of this section, we select aset of points in a complex lattice. From the de�nition of complex lattices, a complex lattice �n(G)over �2(K) is determined by a generating matrix G and a base 2 dimensional real lattice �2(K).The question we are interested here is how can we generally choose the generating matricesG and K to achieve: (i) full diversity complex lattices and space-time codes; (ii) the optimaldiversity products in the family, in a systematic way. In the later sections, we propose to formspace-time codes from complex lattices with generating matrices G and K over general cyclotomic�eld extensions. To do so, let us study some properties on the relationship between n dimensional7



complex lattices and 2n dimensional real lattices. The reason for studying the relationship isbecause we need to estimate the mean power of complex lattice points [y1; � � � ;yn]T used as space-time codewords, which can be done if we convert it to an 2n dimensional real lattice and use someexisting results on real lattices, such as the packing densities [45] as we shall see later.2.3 Some Useful Properties of Real and Complex LatticesLet us �rst see a relationship between an n dimensional complex lattice and a 2n dimensional reallattice. Let G be an n� n complex matrix,G = 26664 g1;1 g1;2 � � � g1;ng2;1 g2;2 � � � g2;n... ... . . . ...gn;1 gn;2 � � � gn;n 37775 ; (6)with jdet (G)j > 0, and fx1;x2; :::;xng be n points on a two dimensional real lattice �2(K) withgenerating matrix K. Let 264 y1...yn 375 = G264 x1...xn 375 : (7)Then, [y1; :::;yn]T is a point on the n dimensional complex lattice �n(G) over �2(K).We now rewrite yi with its real part yRi and imaginary part yIi , as yi = yRi + jyIi , and entriesgi;l of G as gi;l = gRi;l + jgIi;l . Then, (7) can be rewritten as2666664 yR1yI1...yRnyIn
3777775 = G 2666664 xR1xI1...xRnxIn

3777775 = G 26664 K K . . . K 377752n�2n
2666664 z1;1z1;2...zn;1zn;2

3777775 ; (8)where zi;1; zi;2 2 Z with � xi;1xi;2 � = K � zi;1zi;2 � ; (9)and G is a 2n� 2n real matrix, which is from the real and imaginary parts of G as followsG �= 2666664 gR1;1 �gI1;1 � � � gR1;n �gI1;ngI1;1 gR1;1 � � � gI1;n gR1;n... ... . . . ... ...gRn;1 �gIn;1 � � � aRn;n �gIn;ngIn;1 gRn;1 � � � aIn;n gRn;n
3777775 : (10)Let GK �= G � diag(K; � � � ;K). Following De�nition 1, in order to show that GK is a real generatingmatrix of an 2n dimensional real lattice, we only need to show it has full rank, i.e., jdet (GK)j > 0.Since K is the real generating matrix of 2 dimensional real lattice �2(K), jdet(K)j > 0. Thus, we8



only need to show that jdet(G)j > 0, which is given by the following proposition. Therefore, then dimensional complex lattice �n(G) over �2(K) is represented as an 2n dimensional real lattice�2n(GK).Proposition 1 Let G be an n� n complex matrix de�ned in (6) and G be the 2n� 2n real matrixde�ned in (10). Then, jdet (G)j = jdet (G)j2.Proof. For i = 1; :::; n, by adding the product of the 2ith row of G with j = p�1 to the (2i� 1)throw of G in (10), matrix G becomesG1 = 2666664 g1;1 jg1;1 � � � g1;n jg1;ngI1;1 gR1;1 � � � gI1;n gR1;n... ... . . . ... ...gn;1 jgn;1 � � � gn;n jgn;ngIn;1 gRn;1 � � � gIn;n gRn;n
3777775 : (11)For i = 1; :::; n, by adding the product of the (2i� 1)th column of G1 to the 2ith column of G1 with�j, matrix G1 becomes G2 = 2666664 g1;1 0 � � � g1;n 0gI1;1 g�1;1 � � � gI1;n g�1;n... ... . . . ... ...gn;1 0 � � � gn;n 0gIn;1 g�n;1 � � � gIn;n g�n;n
3777775 ; (12)where g�i;l are the complex conjugates of gi;l. Next, by permuting the rows and the columns of G2,matrix G2 can be converted toG3 = 2666664 g1;1 g1;2 � � � 0 0g2;1 g2;2 � � � 0 0... ... . . . ... ...gIn�1;1 gIn�1;2 � � � g�n�1;n�1 g�n�1;ngIn;1 gIn;2 � � � g�n;n�1 g�n;n

3777775 = � G 0Im(G) G� � ; (13)where Im(G) is the imaginary part of matrix G and G� is the complex conjugate of matrix G.Notice that, the elementary operations we implemented on G to get G3 have all determinants 1 andtherefore, jdet(G)j = jdet(G3)j. Since det(G3) = jdet(G)j2, we have concluded the proof. q.e.d.Proposition 1 tells us that an n dimensional complex lattice �n(G) over �2(K) can be equiva-lently represented as a 2n dimensional real lattice �2n(GK). Furthermore, the determinants of theirgenerating matrices have the following relationship:jdet(GK)j = jdet(G)j2 � jdet(K)jn = jdet(G)j2 � jdet(�2(K))jn; (14)which is used later to determine the compactness of a complex lattice for a �xed minimum product(or diversity product). 9



3 Systematic Full Diversity Cyclotomic LatticesFor two positive integers n and m, let N = mn andLt = �(N)�(m) ; (15)where �(N) and �(m) are the Euler totient functions1 of N and m, respectively, there are total Ltdistinct integers ni, 1 � i � Lt, with 0 = n1 < n2 < � � � < nLt � n � 1 such that 1 + nim and Nare co-prime for any 1 � i � Lt (see for example pg. 75 of [43]). With these Lt integers, we de�neGm;n �= 266664 �N �2N � � � �LtN�1+n2mN �2(1+n2m)N � � � �Lt(1+n2m)N... ... . . . ...�1+nLtmN �2(1+nLtm)N � � � �Lt(1+nLtm)N
377775Lt�Lt ; (16)where �N = exp(j 2�N ). It is not hard to see that matrix Gm;n has full rank since it is a Vandermondematrix and �1+nimN � �1+nlmN 6= 0 for 1 � i 6= l � Lt. This means that matrix Gm;n is eligible to bea generating matrix of a complex lattice as we de�ned in Section 2.1. We now de�ne cyclotomiclattices.De�nition 3 An Lt dimensional complex lattice �Lt(Gm;n) over ��m is called a cyclotomic lattice,where Gm;n is de�ned in (16) and ��m is the two dimensional real lattice with the generating matrixK�m de�ned in (3). Its minimum product2 dmin(�Lt(Gm;n)) is de�ned bydmin(�Lt(Gm;n)) �= min[0;��� ;��� ;0]T 6=[y1;��� ;yLt ]T2�Lt(Gm;n) ����� LtYi=1yi����� : (17)From this de�nition, a lattice point (or vector) [y1; � � � ;yLt ]T on a cyclotomic lattice can begenerated by [y1; � � � ;yLt ]T = Gm;n[x1; � � � ;xLt ]T (18)where xi 2 ��m � Z[�m]. The generating matrix in (16) can be also written asGm;n = diag(�N ; �1+n2mN ; � � � ; �1+nLtmN )Ĝm;n; (19)where Ĝm;n �= 266664 1 �N � � � �Lt�1N1 �1+n2mN � � � �(Lt�1)(1+n2m)N... ... . . . ...1 �1+nLtmN � � � �(Lt�1)(1+nLtm)N
377775Lt�Lt : (20)1The Euler totient function (or Euler function) �(N) of N is the number of positive numbers that are less than Nand co-prime with N . In fact, it can be expressed as �(N) = �(pa11 )�(pa22 ) � � � �(parr ) if N = pa11 pa22 � � � parr for somedistinct primes pi. In particular, if p is a prime, �(pa) = pa � pa�1, see for example [44]. It also implies that Lt isalways an integer.2In [5], it is called minimum product diversity. The reason why we use minimum product is because we want todistinguish it from the diversity product of the associated space-time code with this lattice as we shall see later. In[3], it is called product distance. 10



Thus, the complex lattice points yi and ŷi of �Lt(Gm;n) and �Lt(Ĝm;n), respectively, are relatedby [y1;y2; � � � ;yLt ]T = [�N ŷ1; �1+n1mN ŷ2; � � � ; �1+nLtmN ŷLt ]T : (21)Due to the fact that all elements �iN in (21) have unit norm, the complex lattice �Lt(Gm;n)and the complex lattice �Lt(Ĝm;n) have the same minimum product, i.e., dmin(�Lt(Gm;n)) =dmin(�̂Lt(Gm;n)). Since the relationship (21) of the lattice points of the two complex latticesdoes not depend on the real lattice ��m , these two complex lattices are equivalent in terms of theproperties, such as diversity product and mean signal energy, that we are interested in a space-timecode as we shall study later. Therefore, for the notational convenience, we use Gm;n throughoutthis correspondence otherwise it is speci�ed.Note that the entries of the generating matrix Gm;n in (16) are all integrals over Z[�m], i.e.,roots of monic polynomials3 with coe�cients in Z[�m].Another representation for Gm;n in (16) isGm;n = 26664 1 1 � � � 1�n2n �2n2n � � � �Ltn2n... ... . . . ...�nLtn �2nLtn � � � �LtnLtn 37775Lt�Lt � diag(�N ; �2N ; � � � ; �LtN ): (22)From the above representation and since 0 � ni < n, one can clearly see that the generating matrixGm;n in (16) is unitary, i.e., the n-point DFT matrix, if and only if Lt = n.We next de�ne diagonal cyclotomic space-time codes.De�nition 4 A diagonal cyclotomic space-time code 
 for Lt transmit antennas is de�ned by
 = fdiag(y1; � � � ;yLt)g where yi for 1 � i � Lt are de�ned as follows:[y1; � � � ;yLt ]T = Gm;n[x1; � � � ;xLt ]T (23)where Gm;n is de�ned in (16), [x1; � � � ;xLt ]T 2 S � (Z[�m])Lt , and S is a signal constellation forinformation symbols.To fully understand the structure of cyclotomic lattice (16), we need some results on algebraicnumber theory, see for example [40]-[44], which also provides the motivation for us to de�ne theabove cyclotomic lattices and codes. From the algebraic number theory, it is known that �eld Q(�N )is an extension of �eld Q(�m ) and �eld Q(�m) is also an extension of �eld Q of all rational numbers:Q � Q(�m ) � Q(�N ). An automorphism � of �eld Q(�N ) that �xes sub�eld Q(�m) is a one-to-oneand onto mapping from Q(�N ) to itself such that �(a+ b) = �(a) + �(b) and �(ab) = �(a)�(b) forany a; b 2 Q(�N ) and �(a) = a for any a 2 Q(�m ).3Monic means the coe�cient of the highest order term in a polynomial is 1.11



Theorem 1 All the Lt automorphisms of �eld Q(�N ), �i, 1 � i � Lt, that �x sub�eld Q(�m) canbe represented by �i(�N ) = �1+nimN ; for 1 � i � Lt; (24)where Lt is given in (15), and ni, 1 � i � Lt, are the integers that satisfy 0 = n1 < n2 < � � � <nLt � n� 1 and 1 + nim and N are co-prime for 1 � i � Lt.A proof of this theorem is in Appendix A. One can see that the integers appeared in therepresentations of the automorphisms in Theorem 1 are precisely the ones used in the constructionof the above cyclotomic lattices. From the representations of the automorphisms �i in (24), theelement at the ith row and the lth column in the generating matrix Gm;n in (16) of the cyclotomiclattices can be represented as �i(� lN ). Thus, the generating matrix Gm;n in (16) can be rewrittenas Gm;n = 26664 �1(�N ) �1(�2N ) � � � �1(�LtN )�2(�N ) �2(�2N ) � � � �2(�LtN )... ... . . . ...�Lt(�N ) �Lt(�2N ) � � � �Lt(�LtN ) 37775 ; (25)where �i, 1 � i � Lt, are all of the distinct automorphisms of Q(�N ) that �x Q(�m ).As we can see from Appendix that, in fact, these automorphisms f�i : 1 � i � Ltg form thequotient group (called Galois group) Q(�N )=Q(�m ) and Lt is the dimension of Q(�N ) viewed as avector space over its sub�eld Q(�m). Lt is also called the extension degree of Q(�N ) over Q(�m )that is denoted by [Q(�N ) : Q(�m)], i.e., [Q(�N ) : Q(�m)] = Lt. Because Q(�N ) can be generatedby �N over Q(�m) and the order of the minimum polynomial of �N over Q(�m) is Lt (see pg. 22 in[44]), we haveLtXi=1 xi�iN = �N Lt�1Xi=0 xi+1�iN 6= 0 if [0; � � � ; 0]T 6= [x1; � � � ;xLt ]T 2 (Q(�m))Lt ; (26)which is also used in the proof of the following theorem. Property (26) can also be seen by viewingQ(�N ) as a vector space over Q(�m ) with �iN , 1 � i � Lt, as basis elements. This part has theanalogy with the �nite �eld theory over the binary �eld used in the error correction coding theory,for example, the Galois �eld G (2m) over the binary Galois �eld G (2). The above arguments implywhy the matrix dimension Lt and the elements of the generating matrix Gm;n are used in (16),which will become even clearer after the proof of the following full diversity property of a cyclotomicspace-time code.As we can see from the de�nition of the generating matrix Gm;n in (16), it is unique when mand n are �xed. However, if only Lt is �xed, there are in�nitely many possible integers m and mand n can both vary.Theorem 2 A cyclotomic lattice �Lt(Gm;n) over ��m has full diversity and a diagonal cyclotomicspace-time code has full diversity. 12



Proof: We only need to prove that a diagonal cyclotomic space-time code has full diversity.Let C1 = diag(y1; � � � ;yLt) 6= C2 = diag(e1; � � � ; eLt) 2 
 be two di�erent codewords. Thus, weneed to show QLti=1 jyi � eij > 0. Let [x1; � � � ;xLt ]T ; [u1; � � � ;uLt ]T 2 (Z[�m])Lt such that[y1; � � � ;yLt ]T = Gm;n[x1; � � � ;xLt ]T and [e1; � � � ; eLt ]T = Gm;n[u1; � � � ;uLt ]T :Since Gm;n has full rank, [x1; � � � ;xLt ]T 6= [u1; � � � ;uLt ]T . Let [v1; � � � ;vLt ] = [x1; � � � ;xLt ]T �[u1; � � � ;uLt ]T and [w1; � � � ;wLt ] = Gm;n[v1; � � � ;vLt ]. Then, wi = yi � ei and [v1; � � � ;vLt ]T 6=[0; � � � ; 0]T . So, we need to show QLti=1 jwij > 0.From the generation of a cyclotomic space-time codeword in (23) and the properties and rep-resentations of the automorphisms �i in Theorem 1, we have wi = �i(�), 1 � i � Lt, where� = LtXl=1 vl� lN 6= 0;since [v1; � � � ;vLt ]T 6= [0; � � � ; 0]T and (26). Thus, QLti=1 jwij = QLti=1 j�i(�)j. Since all �i areautomorphisms, �i(�) 6= 0 when � 6= 0, we have proved the result. q.e.d.When m = 4, a cyclotomic lattice �Lt(G4;n) over ��4 is called a Gaussian cyclotomic lattice,after the name of Gaussian integers Z[j] = Z[�4]. When m = 3 or m = 6, a cyclotomic lattice�Lt(Gm;n) over ��m is called an Eisenstein cyclotomic lattice, after the name of Eisenstein integersZ[�3] = Z[�6]. For Gaussian cyclotomic lattices and Eisenstein cyclotomic lattices, it is stated in [2]that the minimum products (related to algebraic norms) are 1 and it was proved in [41, 40]. Sincethis result plays an important role in the optimal cyclotomic lattice/code designs as we shall see inSubsections 4.1 and 4.2, for the completeness, we list it as a proposition.Proposition 2 The minimum products of Gaussian cyclotomic lattices and Eisenstein cyclotomiclattices are 1.This result is used in the proof of Theorem 3 in Subsection 4.1. Although in a cyclotomic space-time code the information signal constellation S can be any subset of the product space (Z[�m])Lt ofthe cyclotomic ring Z[�m], S is chosen from the product space (��m)Lt of the lattice ��m � Z[�m] aswe discuss the optimality of the diagonal cyclotomic space-time codes in the next sections. WhenS is chosen from (��m)Lt , all the codeword vectors [y1; � � � ;yLt ]T are on the cyclotomic lattice�Lt(Gm;n) over ��m as de�ned in De�nition 3. Notice that ��m = Z[�m] for m = 3; 4; 6 as indicatedin (4).From De�nition 4 of a cyclotomic space-time code, one can see that, for a �xed Lt in (15),there are in�nitely many options of integer m and thus in�nitely many options of cyclotomicnumber ring Z[�m] or lattice ��m and also in�nitely many options of the generating matrix Gm;nin (16). Then, a natural question arises: which one is optimal? The optimality here is in thesense that, for a �xed signal mean power of yi, the diversity product of a cyclotomic space-timecode is maximized among all di�erent integers m, or equivalently, for a �xed diversity product,the signal mean power of yi is minimized among all di�erent integers m. To investigate the above13



optimality, in Subsection 4.1 we study the optimality of the minimum products of cyclotomic latticesby considering how this optimality relates to the complex lattice generating matrices Gm;n and thereal lattice generating matrices K�m in (3). Based on the theory developed in Subsection 4.1, wepresent optimal cyclotomic lattices in Subsection 4.2.From the above de�nitions, it is not hard to see that the two generating matrices in Example3 in Section 2.1.2 are two special cases of Lt = 2 and 4 with m = 4 here:G2 = Ĝ4;2 and G4 = Ĝ4;4;and the cyclotomic lattices or codes �2(G2) and �4(G4) over Z[�4] = ��4 are �2(Ĝ4;2) (equivalentto �2(G4;2)) and �4(Ĝ4;4) (equivalent to �4(G4;4)) over Z[�4] = ��4 , respectively, which are notthe optimal ones for 2 and 4 transmit antennas as we shall see in Section 5. In fact, in Section 5,we �nd that the cyclotomic lattices or codes �2(G6;2) and �4(G6;5) over Z[�6] = ��6 for 2 and 4transmit antennas are optimal and strictly better than �2(G2) and �4(G4), respectively. Althoughthe entries of G6;2 and G6;5 are integrals over Z[�6], they are not integrals over Z[j] = Z[�4] whilethe entries of G2 and G4 are integrals over Z[j] = Z[�4]. In fact, as we shall see in Section 5 thatthe complex lattices �Lt(G4;n) over ��4 are not optimal in most cases.Since the codes proposed in Examples 1 and 2 are not only for fading channels but also forGaussian channels, their product diversities are not as good as others. Some detailed calculationsare shown later.4 Optimal Cyclotomic LatticesIn this section, we study the optimality of cyclotomic lattices proposed in the preceding section.We �rst investugate the optimality criterion.4.1 Criterion for Cyclotomic Lattice DesignsAs described in Section 3, for a �xed Lt there are in�nitely many cyclotomic lattices �Lt(Gm;n)over ��m of full diversity for various m and n. In order to study which of them is better, we wantto compare their mean signal powers when their diversity products or minimum products are thesame. Before studying cyclotomic space-time codes, we study cyclotomic lattices by connectingtheir corresponding real lattice packing density and their signal mean power with their generatingmatrices.4.1.1 Packing Density, Mean Signal Power, and Generating MatrixFor the compactness of a real lattice, the packing density concept has been introduced in for example[45] and for more details, we refer the reader to [45]. Let �n be an n-dimensional real lattice. Itssphere packing density is de�ned by � = Vn�ndet(�n)1=2 ;14



where Vn is the volume of the n-dimensional ball with radius 1 and � is the half minimal distancebetween the lattice points called the packing radius. Its center density � is de�ned by� = �Vn = �n(det(�n))�1=2;see pg. 10 and pg. 13 of [45]. It is mentioned on pg. 13 in [45] that the center density � of areal lattice �n is the number of points of the lattice �n in every �n number of unit volumes, i.e.,in average every �n number of unit volumes (Vn) of Rn include �n(det(�n))�1=2 lattice points onlattice �n. Therefore, in average there are det(�n)�1=2 lattice points of lattice �n in every unitvolume of Rn . This implies that, the less of the value det(�n) is, the more points of �n are includedin the unit ball of Rn . In other words, if we want to select a set S � �n of lattice points of a �xedsize, i.e., jSj is �xed, such that the mean signal power of the signal points in S is minimized, then,the less of the value det(�n) is or equivalently the less of the absolute value of the determinant ofits generating matrix is, the smaller the mean signal power of the signal points in S is. This isthe base for the following criterion of justifying that one cyclotomic lattice is better than the othercyclotomic lattice when their minimum products are the same.4.1.2 Cyclotomic Lattice Design CriterionIn this subsection, we �rst present the design criterion for a cyclotomic lattice and then presentsome properties on the criterion. From the discussions in Section 2.3, any n dimensional complexlattice can be converted to a 2n dimensional real lattice and their corresponding signal powers areexactly the same. For a cyclotomic lattice �Lt(Gm;n) over ��m , the determinant of its corresponding2Lt dimensional real lattice generating matrix GK isjdet(Gm;n)j2 � jdet(K�m)jLt : (27)With the argument of Subsection 4.1.1 and (27) we are ready to present a criterion to choose acyclotomic lattice.De�nition 5 Let �Lt(Gm1;n1) and �Lt(Gm2;n2) be two Lt dimensional cyclotomic lattices over��m1 and ��m2 , respectively. We say cyclotomic lattice �Lt(Gm1;n1) is better than cyclotomiclattice �Lt(Gm2;n2), written as �Lt(Gm1;n1) � �Lt(Gm2;n2), ifjdet(Gm1;n1)j � jdet(��m1 )jLt=2 � jdet(Gm2;n2)j � jdet(��m2 )jLt=2;when their minimum products are the same, i.e., dmin(�Lt(Gm1;n1)) = dmin(�Lt(Gm2;n2)).One can clearly see that the above de�nition not only applies to cyclotomic lattices but alsoapplies to general complex lattices de�ned in Section 2. With the above de�nition, we immediatelyhave the following lemma by normalizing cyclotomic lattices.
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Lemma 1 Let �Lt(Gm1;n1) and �Lt(Gm2;n2) be two Lt dimensional cyclotomic lattices over ��m1and ��m2 with minimum products dmin(�Lt(Gm1;n1)) and dmin(�Lt(Gm2;n2)), respectively. Then,�Lt(Gm1;n1) is better than �Lt(Gm2;n2) ifdmin(�Lt(Gm1;n1))jdet (�m1)jLt=2 jdet (Gm1;n1)j � dmin(�Lt(Gm2;n2))jdet (�m2)jLt=2 jdet (Gm2;n2)j :Proof: The main idea to prove this lemma is to �rst normalize these two cyclotomic latticessuch that their minimum products are the same and then compare the compactness (or averagepower) of the two normalized lattices.The two 2Lt dimensional real lattice generating matrices can be written asGK�mi = Gidiag �K�mi ; � � � ;K�mi� ;where 2Lt dimensional real matrix Gi corresponds to the Lt dimensional complex matrix Gmi;ni fori = 1 and 2. Their determinants satisfy���det�GK�mi ���� = jdet (Gmi;ni)j2 jdet (�mi)jLt ; for i = 1; 2:We now normalize the complex lattices �Lt(Gmi;ni) by normalizing their generating matrices Gmi;nias follows: �Gmi;ni = (dmin(�Lt(Gmi;ni)))�1=LtGmi;ni ; for i = 1; 2:Then, the minimum products of the normalized cyclotomic lattices �Lt( �Gmi;ni) are both 1. On theother hand, for i = 1 and 2, the new determinants satisfy���det� �GK�mi ���� = ��det � �Gmi;ni���2 ���det���mi����Lt = 1dmin(�Lt(Gmi;ni))2 jdet (Gmi;ni)j2 ���det���mi����Lt :Thus, if dmin(�Lt(Gm1;n1))���det���m1����Lt=2 jdet(Gm1;n1)j � dmin(�Lt(Gm2;n2))���det���m2����Lt=2 jdet(Gm2;n2)j ;then we have ���det� �GK�m1 ���� � ���det� �GK�m2 ���� : (28)This proves that the normalized cyclotomic lattice �Lt( �Gm1;n1) is better than �Lt( �Gm2;n2) in termsof the compactness. Since the normalized lattice �Lt( �Gmi;ni) and its original lattice �Lt(Gmi;ni) onlydi�er by a scalar, their performances are the same. Thus, �Lt(Gm1;n1) is better than �Lt(Gm2;n2).Therefore, Lemma 1 is proved. q.e.d.We next present an important property between Eisenstein lattices and other lattices, which isused in Subsection 4.2 for �nding optimal cyclotomic lattices.Theorem 3 Let m1 = 3 or 6. Let �Lt(Gm1;n1) be an Lt � 2 dimensional Eisenstein cyclotomiclattice and �Lt(Gm2;n2) be another Lt dimensional cyclotomic lattice over ��m2 . If jdet (Gm1;n1)j �jdet (Gm2;n2)j, then lattice �Lt(Gm1;n1) is better than lattice �Lt(Gm2;n2).16



Proof: Since ��3 = ��6 , we only need to prove the case of m1 = 6.When m2 = 1 or m2 = 2, matrix Gm2;n2 can not be used to generate an Lt dimensional complexlattice. Therefore, we only need to consider m2 � 3.For m2 = 3 or m2 = 6, ���det���m2���� = jdet (��3)j, and ��3 and ��6 are the Eisenstein lattice.By using Lemma 1, this theorem is proved.For m2 = 4, both minimum products of the Gaussian cyclotomic lattice and the Eisensteinlattice are dmin(�Lt(G6;n1)) = dmin(�Lt(G4;n2)) = 1, and jdet (��6)j < jdet (��4)j. From Lemma1, cyclotomic lattice �Lt(G6;n1) is better than cyclotomic lattice �Lt(G4;n2) when jdet (G6;n1)j �jdet (G4;n2)j. This proves the theorem.For m2 = 5, because 1 2 ��m2 , we let [y1; � � � ;yLt ]T = Gm2;n2 [1; 0; � � � ; 0]T , it is easy to checkthat ����� LtYi=1yi����� = 1:Thus, the minimum product dmin(�Lt(G5;n2)) � 1. On the other hand,jdet (��5)j = sin�2�5 � > sin�2�6 � = jdet (��6)j :From Lemma 1, this theorem is proved.We now consider the case when m2 > 6. It is clear that 1� �m2 2 ��m2 . Let[y1; � � � ;yLt ]T = Gm2;n2 [1� �m2 ; 0; � � � ; 0]T :Then, the minimum product has to satisfydmin(�Lt(Gm2;n2)) � jy1 � � �yLt j = ����N�2N � � � �LtN ��� j1� �m2 jLt = j1� �m2 jLt = 2Lt sinLt( �m2 ):Since ���det���m2����= sin(2�=m2), the ratio of dmin(�Lt(Gm2;n2)) and ���det���m2����Lt=2 can be rep-resented asdmin(�Lt(Gm2;n2))���det���m2����Lt=2 � 2Lt=2 sinLt(�=m2)sinLt=2(�=m2) cosLt=2(�=m2) = (2 tan(�=m2))Lt=2 < 1 when m2 � 7: (29)dmin(�Lt(G6;n1))jdet (��6)jLt=2 = 1�p32 �Lt=2 > 1 > dmin(�Lt(Gm2;n2))���det���m2����Lt=2 when m2 � 7:This proves the theorem by using Lemma 1. q.e.d.From Theorem 3, one can see that, to compare a cyclotomic lattice over ��m with �Lt(G6;n) over��6 , or with �Lt(G3;n) over ��3 , it is su�cient to compare the absolute values of their generatingmatrix determinants and the two dimensional real lattices ��m can be ignored.
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4.2 Optimal Cyclotomic LatticesFor a �xed Lt = �(mn)=�(m), from Theorem 1 we know that there exist in�nitely many cyclotomiclattices for in�nitely many integers m and n that have full diversity. In this subsection, we presentoptimal cyclotomic lattices for various numbers Lt of transmit antennas among these in�nitelymany cyclotomic lattices.Lemma 2 For any two integers n = pr11 � � � prll qi11 � � � qikk , m = pe11 � � � pell vt11 � � � vthh , then�(mn)�(m) = pr11 � � � prll �(n0);where p1; � � � ; pl; q1; � � � ; qk; v1; � � � ; vh are distinct primes and n0 = qi11 � � � qikk . Thus, gcd(m;n) is afactor of �(mn)�(m) .This lemma is a direct consequence of the de�nition and property of Euler totient function inFootnote 2 and will be used in the proof of the following theorm in Appendix B. We now presentoptimal cyclotomic lattice designs for di�erent numbers of transmit antennas.Theorem 4 For Lt � 32, the optimal Lt dimensional cyclotomic lattices �Lt(Gm;n) over ��m withgenerating matrices Gm;n de�ned in (16) are listed in Table 1.Table 1 Optimal Cyclotomic Lattices for Lt Transmit AntennasLt (m;n) in Gm;n dmin(�Lt (Gm;n))j det(��m )jLt=2jdet(Gm;n)j2 (3; 4); (4; 3); (6; 2) 1p33 (3; 3); (3; 6); (6; 3) 14:18784 (3; 5); (3; 10); (6; 5) 18:38526 (3; 7); (3; 14); (6; 7) 184:20378 (3; 20); (4; 15); (6; 10) 11:125�1039 (3; 9); (3; 18); (6; 9) 11:0303�10410 (3; 11); (3; 22); (6; 11) 12:3655�10412 (3; 15); (3; 30); (6; 15) 14:2981�10516 (3; 40); (4; 30); (6; 20) 13:24�10818 (3; 21); (3; 42); (6; 21) 11:1752�101020 (3; 25); (3; 50); (6; 25) 14:0484�101122 (3; 23); (3; 46); (6; 23) 14:083�101324 (3; 35); (3; 70); (6; 35) 19:8192�101327 (3; 27); (3; 54); (6; 27) 13:0205�101828 (3; 29); (3; 58); (6; 29) 17:3757�101830 (3; 33); (3; 66); (6; 33) 11:8992�102032 (3; 80); (4; 60); (6; 40) 16:8797�1021The proof of Theorem 4 is in Appendix B. From Theorem 4 we can see that:(i) All the optimal cyclotomic lattices can be achieved by Eisenstein cyclotomic latices;18



(ii) The optimal cyclotomic lattice can not be achieved byGaussian lattice except Lt = 2; 8; 16; 32;(iii) The Lt = 4 dimensional optimal cyclotomic lattice can not be achieved by Gaussian lattice;(iv) Since as we explained in Section 3, the generating matrix Gm;n is unitary if and only if Lt = n,most of the optimal generating matrices Gm;n are not unitary.We want to make another remark here. When the number of transmit antennas is a prime, i.e.,Lt = p, if we let m = pm0 and n = p with gcd(p;m0) = 1, or n = 2p with gcd(2p;m0) = 1, then itis not hard to show that Lt = �(mn)�(m) = p2 � pp� 1 = p:Thus, the corresponding Gm;n in (16) can be used as a generating matrix to generate full diversitycyclotomic lattices (or space-time codes). However, which one is optimal remains open.4.3 Comparison with Existing LatticesNow let us compare our proposed optimal cyclotomic lattices with some existing ones based on ourresult in Lemma 1.For the complex lattices �2(M2) and �4(M4) over ��4 in Example 1 in in [3, 5], jdet (M2)j =1, the minimum product dmin(�2(M2)) = p55 , and jdet (M4)j = 1 and the minimum productdmin(�4(M4)) = 140 . Thus,dmin(�2(M2))jdet (��4) det (M2)j = p55 and dmin(�4(M4))jdet (��4)j2 jdet (M4)j = 140 :For the complex lattices �2(G2f ) and �4(G4f ) over ��4 in Example 2 in [2, 3], jdet (G2f )j =2p3, the minimum product dmin(�2(G2f )) = 1, and jdet (G4f )j = 64 and the minimum productdmin(�4(G4f )) = 1. Thus,dmin(�2(G2f ))jdet (��4) det (G2f )j = 12p3 and dmin(�4(G4f ))jdet (��4)j2 jdet (G4f )j = 164 :For the complex lattices �2(G2) and �4(G4) over ��4 in Example 3 in [2, 3], jdet (G2)j =2, the minimum product dmin(�2(G2)) = 1, and jdet (G4)j = 16 and the minimum productdmin(�4(G4)) = 1. Thus,dmin(�2(G2))jdet (��4) det (G2)j = 12 and dmin(�4(G4))jdet (��4)j2 jdet (G4)j = 116 :Notice that G2 = Ĝ4;2 and G4 = Ĝ4;4 and they are equivalent to G4;2 and G4;4, respectively, whichare not optimal.From Theorem 4 we know that cyclotomic lattice �2(G6;2) over ��6 = Z[�6] and cyclotomiclattice �2(G4;3) over ��4 = Z[j] are two optimal cyclotomic lattices for 2 transmit antennas, andcyclotomic lattices �4(G3;5) and �4(G6;5) over ��3 = ��6 = Z[�3] = Z[�6] are two optimal cyclotomiclattices for 4 transmit antennas. Furthermore, jdet(��6)j = jdet(��3)j = p32 , jdet(G6;2)j = 2,19



jdet(G4;3)j = p3, jdet(G3;5)j = jdet(G6;5)j = 11:1803, and dmin(�2(G6;2)) = dmin(�2(G4;3)) =dmin(�4(G3;5)) = dmin(�4(G6;5)) = 1. Thus,dmin(�2(G6;2))jdet (��6) det (G6;2)j = dmin(�2(G4;3))jdet (��4) det (G4;3)j = 1p3 > 12 ;and dmin(�4(G3;5))jdet (��3)j2 jdet (G3;5)j = dmin(�4(G6;5))jdet (��6)j2 jdet (G6;5)j = 43� 11:1803 > 116 :This shows that the optimal cyclotomic lattices we present here are better than the existing exam-ples in the literature.5 Diagonal Cyclotomic Space-Time Code DesignsBy using the cyclotomic lattices proposed in the last section and the structures studied in [2] and [5],we can generate some new diagonal space-time codes and linear precodes for fast fading channels.To design a rate R cyclotomic space-time code for Lt transmitters is to �nd a subset 
 of some Ltdimensional cyclotomic lattice �Lt(Gm;n) such that it can achieve good performance.5.1 Design SchemesTo design a cyclotomic space-time code 
 of a certain size j
j, we �rst select an optimal Ltdimensional cyclotomic lattice by using the criterion developed in Section 4. After a cyclotomiclattice �Lt(Gm;n) is selected, we select j
j points on the lattice with the smallest total signal energy.The theory developed in Sections 3 have ensured that such a space-time code has full diversity and agood diversity product. Let us formulate it in details below. Assume cyclotomic lattice �Lt(Gm;n)over ��m is selected. Let y = [y1; � � � ;yLt ]T , diag(y)=diag(y1; � � � ;yLt), x = [x1; � � � ;xLt ]T 2(��m)Lt , and y = Gm;nx. The goal of designing a cyclotomic code 
 of size j
j here is to select
1 = fdiag(yi) : yi = Gm;nxi; xi 6= xl 2 (��m)Lt ; 1 � i 6= l � j
jg (30)such that j
jXi=1 kyik2 is minimized. (31)Since the vectors yi are on a lattice, the mean of all the codewords may not be zero, i.e.,� �= 1j
j j
jXi=1 yi 6= 0;which may waste the transmission signal power. Therefore, we need to shift the selected space-timecode to the origin to form the �nal diagonal space-time code
 = fdiag(yi � �) : 1 � i � j
jg: (32)20



There are at least two approaches to solve this problem depending on how the informationsymbols x are selected and binary information bits are mapped to space-time codewords. Noticethat x = [x1; � � � ;xLt ]T and each component xi can be thought of as either a two dimensional reallattice point on ��m or equivalently a complex number as explained in Section 2.Method I: Component-wise Independent Selection { ��m-QAMIn this case, the space-time code size has to have the form of j
j = 2RLt , where R is the throughputin bits per second per Hz (bits/s/Hz) and the components xi in x are independently selected from2R-QAM located on the two dimensional lattice ��m , such as the conventional QAM on the squarelattice if m = 4 and QAM on the equilateral triangular lattice if m = 3 or 6. This method isdescribed as follows.Select 2R-QAM signal constellation S on the lattice ��m such that its total energy is minimized:S = fxi : xi 6= xl 2 �(�m); 1 � i 6= l � 2Rg and min Xx2S���m kxk2:This method is called ��m -QAM for convenience and in case ��m = Z[�m], it is called Z[�m]-QAM.With this method, binary information bits are �rst mapped to complex symbols xi 2 S, 1 �i � Lt. Then, these symbols xi are encoded into diagonal space-time codewords as described in(30)-(32) for 
1 and 
.Method II: Joint Component Selection { ��m-JointIn this case, since the components xi 2 ��m of x are jointly considered, we should be able tominimize the codeword vector y energy as described in (30)-(31) by selecting the optimal j
jdistinct vectors xoi 2 (��m)Lt for 1 � i � j
j. Then, let S = fxoi : 1 � i � j
jg.With this method, the encoding can be done as follows. Each log2(j
j) bits of binary informationare mapped to a vector, say xoi0 , in S. Then, this vector xoi0 is used to generate a diagonal space-timecode diag(yoi0 � �), where yoi0 = Gm;nxoi0 and � = 1j
j j
jXi=1 yoi :5.2 Some Design Examples of Optimal Cyclotomic Space-Time CodesBased on the optimal cyclotomic lattices found in the previous section, we can design optimalcyclotomic space-time codes as described in Section 5.1. We now present a few examples based onthe optimal cyclotomic lattices for Lt = 2 and Lt = 4 in Section 4 and the two methods, Method I,i.e., the \��m -QAM" method, and Method II, i.e., the \��m -Joint" method, introduced in Section5.1. The energies of space-time codewords are normalized in the following way: for Lt transmitantennas and a space-time code of rate R bits/s/Hz, the total energy of 2Lt�R diagonal matrices(or codewords) is normalized into 2Lt�R. We then compare these codes with the existing ones in21



[2, 3]. For the cyclotomic lattices G2 and G4 in Example 3 [3, 2], which correspond to the non-optimal G4;2 and G4;4 in the family presented in this correspondence as we explained before, wealso use Method I and Method II to design the optimal cyclotomic space-time codes. The diversityproducts for these codes are listed in Table 2 and Table 3. One can clearly see the improvement ofthe optimal cyclotomic space-time codes presented in this correspondence over the existing ones inthe literature.Table 2 Diversity Products of Diagonal Codes for Two Transmit AntennasBit Rates Space-Time Codes(bits/s/Hz) M2-Z[j]-QAM G2-Z[j]-QAM G2-Z[j]-Joint G6;2-��6 -QAM G6;2-��6-Joint2 14:47 12 12 12 123 15:5231 15 14:6562 14:3125 14:1254 111:2 110 19:5703 18:75 18:2266Table 3 Diversity Products of Diagonal Codes for Four Transmit AntennasBit Rates Space-Time Codests/s/Hz) M4-Z[j]-QAM G4-Z[j]-QAM G4-Z[j]-Joint G6;5-��6 -QAM G6;5-��6 -Joint2 1640 1256 1256 1128 1104:983 11000 1400 1323:2265 1297:5625 1170:5144 14000 11600 11305:9 11225 1681:84186 Simulation ResultsIn this section, we present some simulation results for 4 transmit and 2 receive antennas. Similarto that in [5], the codeword is normalized such that the mean power of codewords at all transmitantennas is 1. The additive white Gaussian noise at each receive antenna has a variance �2 =1=SNR= Lr=(2SNR) per real dimension, where Lr is the number of receive antennas and SNR isthe signal to noise ratio at each receive antenna. The channel is assumed quasi-static Rayleighfading. Two kinds of diagonal cyclotomic space-time codes are compared: the non-optimal one butthe best in the existing literature, i.e., G4 in [3, 5], and the optimal one, i.e., G6;5 found in Section4 and listed in Table 2. The simulation results of codeword error probability for three di�erent bitrates R, R = 2, 3, and 4, are shown in Fig. 1, Fig. 2, and Fig. 3, respectively, where \-QAM"and \-Joint" correspond to the two di�erent diagonal cyclotomic space-time code design methods,Method I and Method II, respectively, in Section 5. For rate R = 2 case in Fig. 1, the codeG4-QAM and G4-Joint are the same and so only G4-QAM is shown. The reason why the codeworderror probability is provided is that the Gray mapping for Method II, i.e., \-Joint" is not available.In these �gures, the DAST codes in [5, 3] are also compared. One can clearly see the performanceimprovement of the optimal cyclotomic codes over the non-optimal ones in the literature, whichhas illustrated the theoretical results obtained in Subsection 5.2.22



7 ConclusionsIn this correspondence, a systematic and full diversity cyclotomic lattice design has been proposed.The newly proposed full diversity cyclotomic lattices have a concrete form and in�nitely manymembers for a �xed lattice dimention. Due to the concrete form of the cyclotomic lattice generatingmatrices, we have presented the optimal cyclotomic lattices based on the packing density theory,where the optimality is in the sense of minimizing the mean transmission signal power for a �xedminimum (diversity) product or equivalently maximizing the minimum product for a �xed meantransmission signal power. It is found that (i) the square lattice Z[j] based designs are not optimalin most cases and (ii) the optimal generating matrices are not unitary in most cases. The cyclotomiclattices have immediate applications in the designs of diagonal space-time block codes for multipleantennas and linear precodes for achieving signal space diversity for single antenna systems overfast Rayleigh fading channels.Diagonal codes have applications not only as space-time codes themselves but also in quasi-orthogonal space-time code designs as recently observed in [20], where it is shown that, for a �xedquasi-orthogonal design, the diversity product of a quasi-orthogonal space-time code equivalentlydepends on the diversity product of a diagonal space-time code. Although the optimality on thecyclotomic lattices has been studied for various numbers of transmit antennas, it is still open forseveral numbers of transmit antennas, such as Lt = 5. As explained in Section 2, an Lt dimensionalcomplex lattice can be converted to a 2Lt dimensional real lattice. In contrast, a 2Lt dimensionalreal vector on an 2Lt dimensional real lattice can be used to form an Lt dimensional complex vectorby grouping each two consecutive real components into a complex number and the signal energydoes not change in the conversion. In other words, any 2Lt dimensional real lattice can also be usedto design a complex-valued diagonal space-time code. The di�erence is that these Lt dimensionalcomplex vectors may not necessarily form a complex lattice and in case they form a complex lattice,then it is equivalent to a complex lattice studied in Section 2. Therefore, the complex lattice designis a special case of the above real lattice design. We believe that the ultimate goal of the latticebased diagonal space-time code design is to design optimal 2Lt � 2Lt real generating matrix Ksuch that the 2Lt dimensional real lattice has the maximal minimum product when the meansignal power is �xed. As a �nal remark, optimal cyclotomic lattices for more general number, Lt,transmit antennas have been recently obtained in [46, 47].Appendix A: Proof of Theorem 1Before we prove Theorem 1, we need some results on algebraic number �elds.Let F be a �eld and F[x] denote the polynomial ring over F, i.e., all polynomials with coe�cientsin F. Let f(x) 2 F[x]. A splitting �eld of f(x) is a �eld extension E of F such that polynomial f(x)splits in E , i.e., f(x) can be factorized into order 1 polynomials of coe�cients in E , but it does notsplit in any proper sub�eld of E . For more details about a split �eld, see for example [42]. E is23



called the splitting �eld of f(x) over F.Let F � E be two �elds and assume that E is a splitting �eld of a polynomial over F. Galois groupGal(E=F) denotes the quotient group of F in E , i.e., E=F , and consists of all the automorphisms ofE that �x F.We now cite three results (Propositions) from algebraic number �elds, which are used to proveTheorem 1.Proposition 3 (pg. 36, [42]) If E is the splitting �eld of a polynomial f(x) 2 F[x] over F, thenjGal(E=F )j = [E : F], i.e., the extension degree of E over F.Proposition 4 (pg. 75, [43]) If K is the splitting �eld of xn � 1 over Q , then [K : Q ] = �(n)and Gal(K =Q ) = fni : 1 � ni � n � 1 and gcd(ni; n) = 1g. Moreover, if ! is a primitive nthroot of unity in K , then Gal(K =Q ) = f�i : gcd(i; n) = 1; 1 � i � n� 1g, where �i is determined by�i(!) = !i.An example of K in Proposition 4 is K = Q(�n). In Proposition 4, gcd stands for the greatestcommon advisor and gcd(a; b) = 1 means a and b are co-prime.Proposition 5 (pg. 37, [42]) Let F � B � E be three �elds and B be the splitting �eld of somepolynomial f(x) 2 F[x] over F and E be the splitting �eld of another polynomial g(x) 2 F[x] over F.Then, Gal(E=B ) is a normal subgroup of Gal(E=F ), and the quotient group Gal(E=F)�Gal(E =B ) �=Gal(B=F).We are now ready to prove Theorem 1. To use Proposition 5, let F = Q , B = Q(�m), E =Q(�mn), f(x) = xm � 1, and g(x) = xmn � 1. Then, it is easy to check that Q(�m) is the splitting�eld of f(x) = xm � 1 over Q and Q(�mn) is the splitting �eld of g(x) = xmn � 1 over Q . FromProposition 3, we havejGal(Q(�mn)=Q)j = [Q(�mn) : Q ] = �(mn) and jGal(Q(�m)=Q)j = [Q(�m) : Q ] = �(m):Using the results in Proposition 4 and Proposition 5, we haveGal(Q(�mn)=Q) = f�i : gcd(i;mn) = 1; 1 � i � mn� 1g ;Gal(Q(�m )=Q) = f�i : gcd(i;m) = 1; 1 � i � m� 1g ;and Gal(Q(�mn)=Q(�m)) is the coset of Gal(Q(�m )=Q) in Gal(Q(�mn)=Q). Therefore,Gal(Q(�mn)=Q(�m )) = f�1+mni : gcd(1 +mni; mn) = 1; 0 � ni � n� 1g ;which can be seen from the fact that �1+nim is in the coset of �1 2 Gal(Q(�m )=Q) inGal(Q(�mn)=Q)).This means that there are Lt = �(mn)�(m) automorphisms �i of Q(�mn) that �x Q(�m ), and all of themhave the property �i(�N ) = �1+nimN , where N = mn. q.e.d.24



Appendix B: Proof of Theorem 4Case of Lt = 2For two transmit antennas, we have the following Theorem.Theorem 5 For two transmit antennas, �2(G3;4) over ��3 , �2(G6;2) over ��6 , and �2(G4;3) over��4 are the optimal cyclotomic lattices withdmin(�2(G3;4))jdet (��3) det (G3;4)j = dmin(�2(G6;2))jdet (��6) det (G6;2)j = dmin(�2(G4;3))jdet (��4) det (G4;3)j = p33 ;where G3;4 = G6;2 = � �12 �212��12 �212 � ; G4;3 = � �12 �212�12�3 �212�23 � :Proof: From (3),��3 = � 1 cos(2�=3)0 sin(2�=3) � ; ��6 = � 1 cos(�=3)0 sin(�=3) � ; and ��4 = � 1 00 1 � :It is easy to checkjdet (G3;4)j jdet (��3)j = jdet (G6;2)j jdet (��6)j = jdet (G4;3)j jdet (��4)j = p3:From Proposition 2, we knowdmin(�2(G3;4)) = dmin(�2(G6;2)) = dmin(�2(G4;3)) = 1:Thus, dmin(�2(G3;4))jdet (��3) det (G3;4)j = dmin(�2(G6;2))jdet (��6) det (G6;2)j = dmin(�2(G4;3))jdet (��4) det (G4;3)j = p33 :This implies that �2(G3;4) over ��3 , �2(G6;2) over ��6 , and �2(G4;3) over ��4 are the same accordingto the criterion in Section 4.2.We next prove that they are optimal among cyclotomic lattices �2(Gm;n) for any integers mand n with �(mn)�(n) = 2. Since Lt = 2, there are two integers n1 and n2 in the generating matrixGm;n in (16). Since n1 = 0, to determine Gm;n, we only need to determine the integer n2 with0 < n2 < n such that 1 + n2m and mn are co-prime.Let m and n be integers and N = mn such that �(N)�(m) = 2. There are two di�erent cases:gcd(m;n) = 1 and gcd(m;n) > 1.Case 1. gcd(m;n) = 1In this case, m and n are co-prime and �(N) = �(mn) = �(m)�(n). Thus, we have �(N)�(m) =�(n) = 2. Therefore, there are only three subcases for values n: n = 3, n = 4, or n = 6.Subcase 1.1. gcd(m;n) = 1, n = 4 In this subcase, m is an odd number. In order to �nd theform of the generating matrix Gm;n in (16), we need to �nd the integer n2 in the range from 1 to
25



n�1 = 3 such that 1+n2m and 4m are co-prime. Since m is odd, n2 has to be even and therefore,n2 has to be 2, i.e., n2 = 2. This implies that the generating matrix Gm;4 in (16) isGm;4 = " �N �2N�1+2mN �2(1+2m)N # = � 1 1�24 �44 � � �N 00 �2N � :It is not hard to see that jdet (Gm;4)j = 2. By using the result in Theorem 3, we know that �2(G3;4)over ��3 is the optimal cyclotomic lattice in this class.Subcase 1.2. gcd(m;n) = 1, n = 3In this subcase, m can not be divided by 3 and the integer n2 in Gm;n has only two possibilitiesof n2 = 1 or n2 = 2. Since m can not be divided by 3, m has only two di�erent forms, m = 3m0+1and m = 3m0 + 2 for integers m0.(i) Consider the case when m = 3m0 + 1. If n2 = 2, then 1 + n2m = 1+ 2m = 3+ 3m0 that isnot co-prime with mn = 3m. This proves that n2 = 1 when m = 3m0 + 1.(ii) Consider the case when m = 3m0 + 2. If n2 = 1, 1 + n2m = 1 +m = 3m0 + 3 that is notco-prime with mn = 3m. This proves that n2 = 2 when m = 3m0 + 2. Go back to the generatingmatrix Gm;3: Gm;3 = " �N �2N�1+n2mN �2(1+n2m)N # = � 1 1�n23 �2n23 � � �N 00 �2N � :Sincem � 3 and gcd(m; 3) = 1, we have m � 4. we next prove that �2(G4;3) over ��4 is the optimalamong the cyclotomic lattices in class �2(Gm;3) over ��m for m � 4. Since 1 and �m belong to��m � Z[�m], points x = 1� �m and �x are on lattice ��m � Z[�m]. Thus,� y1y2 � = " �N �2N�1+n2mN �2(1+n2m)N #� x�x �is a point on the cyclotomic lattice �2(Gm;3) over ��m . Therefore, the minimum product dmin(�2(Gm;3))satis�es dmin(�2(Gm;3)) � jxj2 j(1� �3m) (1� �n23 �3m)j :Let f(m) = jxj2 j(1� �3m) (1� �n23 �3m)jjdet (��m)j ;Since jxj = 2 sin(�=m) and jdet(�m)j = sin(2�=m), we havef(m) = 2 tan(�=m) j(1� �3m) (1� �n23 �3m)j :By the discussions in (i) and (ii), we havef(m) = (2 tan(�=m) j(1� �3m) (1� �3�3m)j if m = 3m0 + 1; m0 � 1;2 tan(�=m) ��(1� �3m) �1� �23�3m��� if m = 3m0 + 2; m0 � 1:It is easy to check thatdmin(�2(Gm;3))jdet (��m)j � f(m) � f(5) < 0:9 < 1 = dmin(�2(G4;3))jdet (��4)j for m � 5:26



From Theorem 3, the optimality of cyclotomic lattice �2(G4;3) over ��4 also holds in this case.Subcase 1.3. gcd(m;n) = 1; n = 6This subcase is similar to Subcase 1.1 when n = 4.Case 2. gcd(m;n) > 1From Lemma 2 we know 2 = �(N)�(m) = �(mn)�(m) � gcd(m;n) > 1:Thus, we have gcd(m;n) = 2. We next want to show n = 2. In fact, if n = 2n0 for n0 > 1 and n0is even, then n = 2rn00 with r � 2 and n00 � 1. From Lemma 2, it is not hard to see�(mn)�(m) � 4:If n = 2n0 for n0 > 1 and n0 is odd, then n0 � 3 and gcd(m;n0) = 1 due to gcd(m;n) = 2.From Lemma 2, it is not hard to see�(mn)�(m) = 2�(n0) > 2;which is because �(n0) > 1 when n0 > 2. This contradicts with the assumption of Lt = 2 andtherefore proves n = 2.Since gcd(m; 2) = 2, m has to be even. Since n = 2, the two integers n1 and n2 in Gm;2 in (16)have to be n1 = 0 and n2 = 1. Thus,Gm;2 = " �N �2N�1+mN �2(1+m)N # = � 1 11 �1 � � �N 00 �2N � :In this case, jdet (Gm;2)j = 2 for any even m. By Theorem 3, we know that the best cyclotomiclattice in this class is �2(G6;2) over ��6 = Z[�6]. Furthermore, since jdet(��4)j > jdet(��6)j, lattice�2(G6;2) over ��6 is strictly better than �2(G4;2) over ��4 that is the same as G2 in Example 3.q.e.d.Case of Lt = 3In this subsection, we present the optimal cyclotomic lattices for three transmit antennas, i.e.,Lt = 3.Theorem 6 For three transmit antennas, �3(G3;6) over ��3, �3(G6;3) over ��6 , and �3(G3;3) over��3 are the optimal cyclotomic lattices withdmin(�3(G3;6))jdet (��3)j3=2 jdet (G3;6)j = dmin(�3(G6;3))jdet (��6)j3=2 jdet (G6;3)j = dmin(�3(G3;3))jdet (��3)j3=2 jdet (G3;3)j = 1�p32 �3=2 � 5:1963 ;whereG3;6 = G6;3 = 24 1 1 1�3 �23 �33�23 �43 �63 3524 �18 0 00 �218 00 0 �318 35 ; G3;3 = 24 1 1 1�3 �23 �33�23 �43 �63 3524 �9 0 00 �29 00 0 �39 35 :27



Proof. It is easy to check that �3(G3;6) over ��3 = Z[�3], �3(G6;3) over ��6 = Z[�6], and�3(G3;3) over ��3 are cyclotomic lattices with jdet (G3;6)j = jdet (G6;3)j = jdet (G3;3)j = 5:1963:Thus, they are the same according to the criterion in Section 4.2. We next prove that they are theoptimal cyclotomic lattices for Lt = 3.Since Lt = 3, there are three integers n1; n2 and n3 in the generating matrix Gm;n in (16). Wenext determine these integers for di�erent possible m and n.We �rst consider integer n. Let m and n be two positive integers with N = mn such that�(N)�(m) = Lt = 3. We claim gcd(m;n) > 1. In fact, if gcd(m;n) = 1, then3 = �(N)�(m) = �(n):But there does not exist any positive integer n such that �(n) = 3. Since, from Lemma 2, gcd(m;n)is a factor of Lt = 3, we have proved that gcd(m;n) = 3. Thus, n = 3n0 and m = 3m0 and m0 andn0 are co-prime. We next show n = 3 or n = 6.We now claim that n0 can not be divided by 3. In fact, if n0 can be divided by 3, then we letn0 = 3rk0 and r � 1 and gcd(k0; 3) = 1. Since gcd(m0; n0) = 1, we have gcd(m0; 3) = 1. Thus,from Lemma 2, we have �(mn)�(n) = �(31+rm0k0)�(3m0) = 31+r�(k0) = 3;which implies r = 0 and contradicts with the assumption. The above property also implies thatn0 = k0 and �(n0) = �(k0) = 1, Therefore, we have proved that there are only two possibilities forinteger n: either n0 = 1, i.e., n = 3, or n0 = 2, i.e., n = 6.Case 1. n = 3In this case, n1 = 0, n2 = 1, and n2 = 2 in (16) and the generating matrix Gm;3 is ��m is:Gm;3 = 264 �N �2N �3N�1+mN �2(1+m)N �3(1+m)N�1+2mN �2(1+2m)N �3(1+2m)N 375 = 24 1 1 1�3 �23 �33�23 �43 �63 3524 �N 0 00 �2N 00 0 �3N 35 :Thus, all the determinants jdet (Gm;3)j = 5:1962 are the same for di�erent integers m = 3m0.From Theorem 3, we know that the best cyclotomic lattice in this class is �3(G6;3) over ��6 ; or�3(G3;3) over ��3 . This proves the theorem.Case 2. n = 6In this case, n0 = 2. Since gcd(m0; n0) = 1, m0 has to be odd. We next determine integers nifor i = 1; 2; 3 and 0 = n1 < n2 < n3 � 5 such that 1 + nim and mn are co-prime for i = 1; 2; 3.Since m is an odd number, 1 + m, 1 + 3m and 1 + 5m are even numbers and therefore have acommon factor 2 with mn = 6m. Thus, ni can not be 1; 3; or 5. This proves that n1 = 0, n2 = 2,
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and n3 = 4 and the generating matrix Gm;3 isGm;6 = 264 �N �2N �3N�1+2mN �2(1+2m)N �3(1+2m)N�1+4mN �2(1+4m)N �3(1+4m)N 375= 24 1 1 1�26 �46 �66�46 �86 �126 3524 �N 0 00 �2N 00 0 �3N 35 = 24 1 1 1�3 �23 �33�23 �43 �63 3524 �N 0 00 �2N 00 0 �3N 35 :From Theorem 3, the best cyclotomic lattice in class �3(Gm;6) over ��m is �3(G3;6) over ��6 .q.e.d.It is not hard to see that G3;6, G6;3 and G3;3 are all unitary.Case of Lt = 4For four transmit antennas, we have the following Theorem.Theorem 7 For four transmit antennas, �4(G3;5) over ��3 , �4(G3;10) over ��3, and �4(G6;5) over��6 are the optimal cyclotomic lattices withdmin(�4(G3;5))jdet (��3)j2 jdet (G3;5)j = dmin(�4(G3;10))jdet (��3)j2 jdet (G3;10)j = dmin(�4(G6;5))jdet (��6)j2 jdet (G6;5)j = 43� 11:1803 ;whereG3;5 = 2664 1 1 1 1�5 �25 �35 �45�25 �45 �65 �85�45 �85 �125 �165 37752664�15 0 0 00 �215 0 00 0 �315 00 0 0 �4153775, G3;10 = G6;5 = 2664 1 1 1 1�5 �25 �35 �45�25 �45 �65 �85�35 �65 �95 �125 37752664�30 0 0 00 �230 0 00 0 �330 00 0 0 �4303775 :Proof. It is easy to check that �4(G3;5) over ��3 , �4(G3;10) over ��3 , and �4(G6;5) over ��6 arethree 4 dimensional cyclotomic lattices and have the same packing densities and the same minimumproducts. In the following, we compare them with other 4 dimensional cyclotomic lattices.To determine a Gm;n in (16), we need to determine the 4 integers ni and integers m and n. Letm and n be integers with N = mn and �(N)�(m) = Lt = 4: There are two di�erent cases: gcd(m;n) = 1and gcd(m;n) > 1.Case 1. gcd(m;n) = 1In this case, �(N)�(m) = �(n) = 4;and therefore, there are only four cases for integer n: n = 5, n = 8, n = 10; and n = 12.Subcase 1.1. gcd(m;n) = 1 and n = 5In this case, Gm;5 = 2664�n15 �2n15 �3n15 �4n15�n25 �2n25 �3n25 �4n25�n35 �2n35 �3n35 �4n35�n45 �2n45 �3n45 �4n45 37752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 ;29



and 0 = n1 < n2 < n3 < n4 � 4. Since matrix2664�n15 �2n15 �3n15 �4n15�n25 �2n25 �3n25 �4n25�n35 �2n35 �3n35 �4n35�n45 �2n45 �3n45 �4n45 3775is a Vandermonde matrix of entry variables �ni5 ; i = 1; :::; 4 that take four di�erent values from 5equally spaced points exp� j2k�5 � ; k = 0; :::; 4 on the unit circle. The di�erent choices of (n1; n2; n3; n4)does not change the absolute value of the determinant jdet (Gm;5)j = 11:1803. Therefore, from The-orem 3, the optimal cyclotomic lattices in the class Gm;5 are �4(G3;5) and �4(G6;5) over ��6 .Subcase 1.2. gcd(m;n) = 1 and n = 8In this subcase, m has to be an odd number. Thus, the four integers ni in (16) have to ben1 = 0; n2 = 2; n3 = 4; n4 = 6 so that 1 + nim and 8m are co-prime. Thus,Gm;8=26664 �N �2N �3N �4N�1+2mN �2(1+2m)N �3(1+2m)N �4(1+2m)N�1+4mN �2(1+4m)N �3(1+4m)N �4(1+4m)N�1+6mN �2(1+6m)N �3(1+6m)N �4(1+6m)N 37775=2664 1 1 1 1�28 �48 �68 �88�48 �88 �128 �168�68 �128 �188 �248 37752664 �N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 ;and their determinant absolute values are the same: jdet (Gm;8)j = 16 > 11:1803 = jdet (G6;5)j.From Theorem 3, the optimal cyclotomic lattice can not be in this class.Subcase 1.3. gcd(m;n) = 1 and n = 10In this case, m has to be odd and similar to the previous case, ni have to be even. Thus,0 = n1 < n2 < n3 < n4 � 8 have to take four of the 5 integers f0; 2; 4; 6; 8g, or 0 = n01 = n12 < n02 =n22 < n03 = n32 < n04 = n42 � 4 have to take four of the 5 integers f0; 1; 2; 3; 4g Also, the generatingmatrixGm;10 =2664�n110 �2n110 �3n110 �4n110�n210 �2n210 �3n210 �4n210�n310 �2n310 �3n310 �4n310�n410 �2n410 �3n410 �4n410 37752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 = 266664�n015 �2n015 �3n015 �4n015�n025 �2n025 �3n025 �4n025�n035 �2n035 �3n035 �4n035�n045 �2n045 �3n045 �4n045
3777752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 :Then, it is back to Subcase 1.1.Subcase 1.4. gcd(m;n) = 1 and n = 12In this subcase, m is an odd number, and m can not be divided by 3. The four integersni; i = 1; :::; 4, in (16) are even number, i.e., ni = 2n0i for some integers n0i. Then, n02 < n03 < n04 2f1; 2; 3; 4; 5g. Let m = 3m0 +m1 for m1 = 1 or m1 = 2. Thus, 1 + 2n0im = 6n0im0 + 1 + 2n0im1. Ifm1 = 1, then 1 + 2n0im can be divided by 3 when n0i = 1 or n0i = 4. If m1 = 2, then 1 + 2n0im canbe divided by 3 if n0i = 2 or n0i = 5. Since 1 + nim has to be co-prime with n = 12 and thereforecan not be divided by 3, we have(n02; n03; n04) = (2; 3; 5); when m1 = 1and (n02; n03; n04) = (1; 3; 4); when m1 = 2:30



On the other hand,Gm;12=26664 �N �2N �3N �4N�1+2n02mN �2(1+2n02m)N �3(1+2n02m)N �4(1+2n02m)N�1+2n03mN �2(1+2n03m)N �3(1+2n03m)N �4(1+2n03m)N�1+2n04mN �2(1+2n04m)N �3(1+2n04m)N �4(1+2n04m)N 37775=26664 1 1 1 1�n026 �2n026 �3n026 �4n26�n036 �2n036 �3n036 �4n36�n046 �2n046 �3n046 �4n46 377752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 :From the above analysis, the two possibilities of integers ni for m1 = 1 and m1 = 2 correspondto the four points f1; �n026 ; �n036 ; �n046 g and its rotated version on the unit circle and therefore don'tchange the absolute value of the Vandermonde matrix in the above Gm;12. Thus,jdet (Gm;12)j = 12 > 11:1803 = jdet (G6;5)j :From Theorem 3, class �4(Gm;12) over ��m does not include the optimal one.Case 2. gcd(m;n) > 1In this subcase, because 4 = �(N)�(m) � gcd(m;n);we have gcd(m;n) � 4 and gcd(m;n) is a factor of 4 from Lemma 2. Thus, the common primefactor of m and n can only be 2. Let n = 2rn0, where n0 is an odd number. From Lemma 2,4 = �(N)�(m) = 2r�(n0):Therefore, we have two cases:(i) r = 1 and �(n0) = 2, i.e., n0 = 3; n = 6;m = 2m0,(ii) r = 2 and �(n0) = 1, i.e., n0 = 1; n = 4;m = 2m0.Subcase 2.1. n = 4In this case, the four integers ni in Gm;4 in (16) are 0; 1; 2; 3 andGm;4=26664 �N �2N �3N �4N�1+mN �2(1+m)N �3(1+m)N �4(1+m)N�1+2mN �2(1+2m)N �3(1+2m)N �4(1+2m)N�1+3mN �2(1+3m)N �3(1+3m)N �4(1+3m)N 37775=2664 1 1 1 1�4 �24 �34 �44�24 �44 �64 �84�34 �64 �94 �124 37752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 :Therefore, for all m, the determinant absolute values are the samejdet (Gm;4)j = 16 > 11:1083 = jdet (G6;5)j :From Theorem 3, class �4(Gm;4) over �m does not include the optimal one.Subcase 2.2. n = 6In this subcase, the four integers ni satisfy that, 1 + nim and N = mn are co-primes, andn1; n2; n3; n4 2 f0; 1; 2; 3; 4; 5g. Since the only prime common factor of m and 6 is 2, integer m cannot be divided by 3. Let m = 3m0 +m1, m1 = 1 or m1 = 2. Similar to the proof in Subcase 1.4, ifwe take n1 = 0, we know that,(n2; n3; n4) = (2; 3; 5); when m1 = 131



and (n2; n3; n4) = (1; 3; 4); when m1 = 2:On the other hand, the generating matrix isGm;6=26664 �N �2N �3N �4N�1+n2mN �2(1+n2m)N �3(1+n2m)N �4(1+n2m)N�1+n3mN �2(1+n3m)N �3(1+n3m)N �4(1+n3m)N�1+n4mN �2(1+n4m)N �3(1+n4m)N �4(1+n4m)N 37775=2664 1 1 1 1�n16 �2n16 �3n16 �4n16�n26 �2n26 �3n26 �4n26�n36 �2n36 �3n36 �4n26 37752664�N 0 0 00 �2N 0 00 0 �3N 00 0 0 �4N 3775 :Similar to the proof of Subcase 1.4, for all m, the absolute values of the determinants of Gm;6are the same: jdet (Gm;6)j = 12 > 11:1803 = jdet (G6;5)j :From Theorem 3, this class �4(Gm;6) over ��m does not include the optimal one.By summarizing all the above cases, we have proved that �4(G3;5) and �4(G6;5) over ��6 arethe optimal cyclotomic lattices for 4 transmit antennas. q.e.d.It is easy to check that matrices G3;5, G3;10, and G6;5 are not unitary.Cases of Lt = 6; 8; 9In this subsection, we present the optimal cyclotomic lattices for six, eight and nine transmitantennas, i.e., Lt = 6; 8; 9 without proofs. Their proofs are similar to the ones in Sections 5.1-5.3by using the same techniques. We also list optimal cyclotomic lattices for some other numbers oftransmit antennas.Theorem 8 For six transmit antennas, �6(G3;7) over ��3 , �6(G3;14) over ��3 , and �6(G6;7) over��6 are the optimal cyclotomic lattices withdmin(�6(G3;7))jdet (��3)j3 jdet (G3;7)j = dmin(�6(G3;14))jdet (��3)j3 jdet (G3;14)j = dmin(�6(G6;7))jdet (��6)j3 jdet (G6;7)j = 83p3� 129:64 ;where G3;7 = (ai;l)6�6 ; ai;l = �ni(l�1)7 � l21; n1 = 0; n2 = 1; n3 = 3; n4 = 4; n5 = 5; n6 = 6;G3;14 = G6;7 = (ai;l)6�6 ; ai;l = �ni(l�1)7 � l42; n1 = 0; n2 = 2; n3 = 3; n4 = 4; n5 = 5; n6 = 6:Theorem 9 For eight transmit antennas, �8(G3;20) over ��3 , �8(G4;15) over ��4 , and �8(G6;10)over ��6 are the optimal cyclotomic lattices withdmin(�8(G3;20))jdet (��3)j j4 det (G3;20)j = dmin(�8(G4;15))jdet (��4)j4 jdet (G4;15)j = dmin(�8(G6;10))jdet (��6)j4 jdet (G6;10)j = 11125 ;where G3;20 = G6;10 = (ai;l)8�8 ;32



with ai;l = �ni(l�1)20 � l60; (n1; n2; n3; n4; n5; n6; n7; n8) = (0; 2; 4; 6; 10; 12; 14; 16);and G4;15 = (ai;l)8�8 ;with ai;l = �ni(l�1)15 � l60; (n1; n2; n3; n4; n5; n6; n7; n8) = (0; 3; 4; 7; 9; 10; 12; 13):Theorem 10 For nine transmit antennas, �9(G3;9) over ��3 , �9(G3;18) over ��3 , and �9(G6;9)over ��6 are the optimal cyclotomic lattices withdmin(�9(G3;9))jdet (��3)j9=2 jdet (G3;9)j = dmin(�9(G3;18))jdet (��3)j9=2 jdet (G3;18)j = dmin(�9(G6;9))jdet (��6)j9=2 jdet (G6;9)j = 16�p29� 4p3� 19683 ;where, G3;9 = (ai;l)9�9 ; ai;l = �(i�1)(l�1)9 � l27;and G3;18 = G6;9 = (ai;l)9�9 ; ai;l = �(i�1)(l�1)9 � l54:Proofs are similar to before.Other Cases in Theorem 4 can be similarly proved.References[1] K. Boulle and J.-C. Bel�ore, \Modulation schemes designed for the Rayleigh fading channel,"Proc. CISS'92, Princeton, NJ, Mar. 1992.[2] X. Giraud, E. Boutillon, and J.-C. Bel�ore, \Algebraic tools to build modulation schemes forfading channels," IEEE Trans. Inform. Theory, vol. 43, pp.938-952, May 1997.[3] J. Boutros and E. Viterbo, \Signal space diversity: a power- and bandwidth-e�cient diversitytechnique for the Rayleigh fading channel," IEEE Trans. Inform. Theory, vol. 44, pp. 1453-1467,July 1998.[4] M. O. Damen, H. El Gamal, and N. C. Beaulieu \A systematic construction of full diver-sity algebraic constellations," Proc. Canadian Workshop on Information Theory (CWIT 2003),Waterloo, Canada, May 2003.[5] M. O. Damen, K. A. Meraim, and J.-C. Bel�ore, \Diagonal algebraic space-time block codes,"IEEE Trans. Inform. Theory, vol. 48, pp. 628-636, March 2002.[6] M. O. Damen, A. Tew�k, and J.-C. Bel�ore, \A construction of a space-time code based onnumber theory," IEEE Trans. Inform. Theory, vol.48, pp. 753-760, March 2002.33
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Figure 1: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 2bits/s/Hz.
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Figure 2: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 3bits/s/Hz. 37
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Figure 3: Codeword error rate comparisons: 4 transmit antennas, 2 receive antennas, and 4bits/s/Hz.
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