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Abstract—The robust Chinese remainder theorem (CRT) has
been recently proposed for robustly reconstructing a large non-
negative integer from erroneous remainders. It has found many
applications in signal processing, including phase unwrapping, and
frequency estimation under sub-Nyquist sampling. Motivated by
the applications in multidimensional (MD) signal processing, in this
article we propose the MD-CRT and robust MD-CRT for integer
vectors. Specifically, by rephrasing the abstract CRT for rings in
number-theoretic terms, we first derive the MD-CRT for integer
vectors with respect to a general set of integer matrix moduli,
which provides an algorithm to uniquely reconstruct an integer
vector from its remainders, if it is in the fundamental parallelepiped
of the lattice generated by a least common right multiple of all
the moduli. For some special forms of moduli, we present explicit
reconstruction formulae. Moreover, we derive the robust MD-CRT
for integer vectors when the remaining integer matrices of all the
moduli left divided by their greatest common left divisor (gcld) are
pairwise commutative, and coprime. Two different reconstruction
algorithms are proposed, and accordingly, two different conditions
on the remainder error bound for the reconstruction robustness are
obtained, which are related to a quarter of the minimum distance
of the lattice generated by the gcld of all the moduli or the Smith
normal form of the gcld.

Index Terms—Chinese remainder theorem (CRT), integer
matrices, lattices, multidimensional (MD) frequency estimation,
robust CRT, robust MD-CRT.

I. INTRODUCTION

THE Chinese remainder theorem (CRT) is one of the most
fundamental theorems in number theory, and has a long

history going back to the 3rd–5th centuries AD [1]–[3]. Basi-
cally, the CRT allows to uniquely reconstruct a large nonnegative
integer from its remainders with respect to a set of small moduli,
if the large integer is less than the least common multiple (lcm)
of all the moduli. To date, there has been a surge in work on
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applying the CRT for partitioning a large task into a number of
smaller but independent subtasks, which can be performed in
parallel. For example, the CRT has been intensively utilized
in the signal processing community in the context of cyclic
convolution [4], [5], fast Fourier transform [6], [7], coprime
sensor arrays [8]–[11], to name a few. It also finds applications
in various other fields, such as computer arithmetic based on
modulo operations (e.g., multiplication of very large numbers),
coding theory (e.g., residue number system codes), and cryptog-
raphy (e.g., secret sharing); see [1]–[3] and references therein.

Motivated by the applications of the CRT in phase unwrap-
ping and frequency estimation under sub-Nyquist sampling, a
robust remaindering problem has been raised and investigated
in [12]–[19]. In these applications, signals are usually subject to
noise, and thereby the detected remainders may be erroneous.
Two significant questions underlying the robust remaindering
problem are: 1) what is the reconstruction range of the large
nonnegative integer? and 2) how large can the remainder errors
be to ensure the robust reconstruction? It is well-known that the
CRT is not robust against remainder errors, i.e., a small error
in a remainder may result in a large error in the reconstruction
solution. Directly applying the CRT to these applications will
thus yield poor performance. Recently, the robust CRT has been
proposed in [12]–[14] and further systematically studied in [20]–
[24], for solving the robust remaindering problem. The robust
CRT demonstrates that even though every remainder has a small
error, a large nonnegative integer can be robustly reconstructed
in the sense that the reconstruction error is upper bounded by the
bound of the remainder errors. Beyond these applications afore-
mentioned, the robust CRT may have or has offered applications
in multi-wavelength optical measurement [25]–[27], distance or
velocity ambiguity resolution [28]–[31], fault-tolerant wireless
sensor networks [32]–[34], error-control neural coding [35]–
[37], signal recovery using multi-channel modulo samplers [38],
etc. Note that the (robust) CRT has been generalized to (robustly)
reconstruct multiple large nonnegative integers from their un-
ordered remainder sets as well [39]–[45]. A thorough review of
the robust CRT can be found in [46].

In this article, we extend the CRT and robust CRT for integers
to the multidimensional (MD) case, called the MD-CRT and
robust MD-CRT for integer vectors, so that they can be utilized
in MD signal processing. Note that MD signal processing here
refers to true (nonseparable) MD signal processing, since sepa-
rable MD signal processing is straightforward by handling their
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1-dimensional counterparts separately along each dimension.
First, through rephrasing the abstract CRT for rings in number-
theoretic terms, we derive the MD-CRT for integer vectors with
respect to a general set of moduli (namely a set of arbitrary
nonsingular integer matrices). It is basically that given a set of
nonsingular moduli {Mi}Li=1, an integer vector m ∈ N(R) can
be uniquely reconstructed from its remainders ri for 1 ≤ i ≤ L,
where R is a least common right multiple of all the moduli, and
N(R) denotes the set of all integer vectors in the fundamental
parallelepiped of the lattice generated by R. A reconstruction
algorithm is proposed as well. Notably, the MD-CRT for integer
vectors was previously investigated in [47], [48] for a special
case when the L moduli are given by Mi = UΛiU

−1 for
1 ≤ i ≤ L with U being a unimodular matrix and Λi’s coprime
diagonal integer matrices. For some other special forms of
moduli, we further obtain explicit reconstruction formulae of
the MD-CRT for integer vectors in this article.

Moreover, we derive the robust MD-CRT for integer vectors
when the L nonsingular moduli are in the form of Mi = MΓi

for 1 ≤ i ≤ L, where M is an arbitrary integer matrix, and
Γi’s are pairwise commutative and coprime integer matrices.
As in the robust CRT for integers [12]–[14], [20]–[24], we
attempt to accurately determine all the folding vectors ni’s (i.e.,
the quotient vectors of m left divided by the moduli), and a
robust reconstruction of m can be calculated as the average
of the reconstructions obtained from the folding vectors, i.e.,
m̃ = 1

L

∑L
i=1(Mini + r̃i), where r̃i denotes the i-th erroneous

remainder. We find that the size of the remainder error bound
for the reconstruction robustness depends on the reconstruction
algorithm. In other words, different reconstruction algorithms
will lead to different conditions on the remainder error bound.
We then propose two different reconstruction algorithms, and
accordingly, we obtain two different conditions on the remainder
error bound for the reconstruction robustness, which are related
to a quarter of the minimum distance of the lattice generated by
M or the Smith normal form of M. At the end, we verify the
robust MD-CRT for integer vectors by numerical simulations
and apply it to MD frequency estimation when a complex MD
sinusoidal signal is undersampled using multiple sub-Nyquist
sampling matrices.

The rest of this article is organized as follows. In Section II, we
recall some background knowledge needed to make this article
more self-contained. In Section III, we derive the MD-CRT
for integer vectors with respect to a general set of moduli,
and provide explicit reconstruction formulae when the moduli
are in some special forms. In Section IV, we investigate the
robust MD-CRT for integer vectors, and propose two different
algorithms for robust reconstruction, resulting in two different
conditions on the remainder error bound for the reconstruction
robustness. In Section V, we present simulation results of the
robust MD-CRT for integer vectors as well as its application to
MD sinusoidal frequency estimation with multiple sub-Nyquist
samplings. We conclude this article in Section VI.

Notations: Capital and lowercase boldfaced letters are used to
denote matrices and vectors, respectively. LetR andZ denote the
sets of reals and integers, respectively. The transpose, inverse,
inverse transpose, and determinant of a matrix A are denoted
as AT , A−1, A−T , and det(A), respectively. Given a set of

scalars a1, a2, . . . , aD, we denote by diag(a1, a2, . . . , aD) the
diagonal matrix with ai being the i-th diagonal element. A D-
dimensional vector a ∈ [c, d)D means that every element of a
is in the range of [c, d) and c, d ∈ R. We denote the (i, j)-th
element of a matrixA asA(i, j), and the i-th element of a vector
a as a(i). The symbols I and 0 denote the identity matrix and the
all-zero vector/matrix, respectively, with size determined from
context. The relative complement of a set A with respect to a
setB is written asB\A. Throughout this article, all matrices are
square matrices unless otherwise stated.

II. PRELIMINARIES

The preliminary knowledge involved in this article is mainly
related to some fundamental properties in elementary number
theory. In this section, we recall general concepts and notations
for integer vectors and integer matrices [49]–[53].

i) Unimodular matrix: A matrix U is unimodular if it is
an integer matrix and |det(U)| = 1. For any unimodular
matrix U, its inverse U−1 is also unimodular because of
U−1 = adj(U)/det(U) and |det(U−1)| = |det(U)| = 1,
where adj(U) stands for the adjugate ofU and is an integer
matrix.

ii) Divisor: An integer matrixA is a left divisor of an integer
matrix M if A−1M is an integer matrix. Similarly, A is
a right divisor of M if MA−1 is an integer matrix.

iii) Multiple: A nonsingular integer matrixA is a left multiple
of an integer integer M if A = PM for some integer
matrix P. Similarly, A is a right multiple of M if A =
MQ for some integer matrix Q.

iv) Greatest common divisor (gcd): An integer matrix A is
a common left divisor (cld) of L (L ≥ 2) integer matri-
ces M1,M2, . . . ,ML, if A−1Mi is an integer matrix
for each 1 ≤ i ≤ L. We call B a greatest common left
divisor (gcld) of M1,M2, . . . ,ML, if any other cld is
a left divisor of B. Note that among all cld’s, a gcld
has the greatest absolute determinant and is unique up
to postmultiplication by a unimodular matrix (because
if B is a gcld, so will be BU for any unimodular matrix
U). Similarly, a common right divisor (crd) and a greatest
common right divisor (gcrd) of M1,M2, . . . ,ML can be
defined, respectively.

v) Least common multiple (lcm): A nonsingular integer ma-
trix A is a common left multiple (clm) of L (L ≥ 2)
integer matrices M1,M2, . . . ,ML, if A = PiMi for
some integer matrix Pi and each 1 ≤ i ≤ L. We call C a
least common left multiple (lclm) of M1,M2, . . . ,ML,
if any other clm is a left multiple ofC. Note that among all
clm’s, an lclm has the smallest absolute determinant and
is unique up to premultiplication by a unimodular matrix
(because ifC is an lclm, so will be UC for any unimodular
matrixU). Similarly, a common right multiple (crm) and a
least common right multiple (lcrm) of M1,M2, . . . ,ML

can be defined, respectively.
vi) Coprimeness: Two integer matrices M and N are said to

be left (right) coprime if their gcld (gcrd) is unimodular.
In other words, M and N are left (right) coprime if they
have no cld’s (crd’s) other than unimodular matrices.
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Note that both divisors and multiples above are always taken
to be nonsingular integer matrices in this article. Given aD ×D
nonsingular integer matrix M, we define N(M) by

N(M) = {k | k = Mx,x ∈ [0, 1)D, and k ∈ Z
D}. (1)

The number of elements in N(M) is equal to |det(M)| [53].
In the 1-dimensional case (i.e., D = 1), letting M be a positive
integer, we have N(M) = {0, 1, . . . ,M − 1}.

Then, the integer vector division is defined as follows. A
D-dimensional integer vector m has a unique representation
with respect to a D ×D nonsingular integer matrix M as
m = Mn+ r, or equivalently

m ≡ r mod M, (2)

with r ∈ N(M), where M is viewed as a modulus, and integer
vectors n and r are the folding vector and remainder of m with
respect to the modulus M, respectively. For simplicity, we write
r in (2) as r = 〈m〉M. We can compute r by

r = m−M�M−1m	, (3)

i.e., the folding vector n is computed by n = �M−1m	, where
�·	denotes the floor operation that is performed on every element
of the vector. Since M−1 is in general a matrix with rational
elements, �M−1m	 is subject to round-off errors due to finite
precision arithmetic. To this end, an alternative [49] to compute
r is given by

r = M (adj(M)m mod det(M)) /det(M), (4)

where the modulo operation is performed on every element of
adj(M)m.

It is well known that when the involved matrices in MD signal
processing are diagonal, most results in the 1-dimensional case
can be straightforwardly extended to the MD case by handling
their 1-dimensional counterparts separately. For example, when
M in (2) is diagonal, i.e., M = diag(M1,M2, . . . ,MD), then
(2) is equivalent to m(i) ≡ r(i) mod Mi for 1 ≤ i ≤ D, where
m(i) and r(i) denote the i-th elements of m and r, respectively.
The division for integer vectors is therefore reduced to that for in-
tegers. However, the involved matrices are usually nondiagonal,
and extending the results of 1-dimensional signal processing to
the MD case will become nontrivial. The Smith normal form, as
a popular tool to diagonalize an integer matrix, has been widely
used to simplify several MD signal processing problems; see,
for example, [53], [54].

Proposition 1 (The Smith normal form [50]): A D ×K in-
teger matrix M can be decomposed as

UMV =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
Λ 0

)
if K > D,

Λ if K = D,(
Λ

0

)
if K < D,

(5)

whereU andV areD ×D andK ×K unimodular matrices, re-
spectively, andΛ is a min(K,D)× min(K,D) diagonal integer
matrix, i.e., Λ = diag(λ1, λ2, . . . , λγ , 0, . . . , 0) with λi’s being
positive integers and γ being the rank of M. Also, λi’s satisfy
λi|λi+1, i.e., λi divides λi+1, for each 1 ≤ i ≤ γ − 1. Under the
conditions, Λ is unique for a given matrix M, while U and V

are generally not. Moreover, λi’s are called the invariant factors
and can be computed by λi = di/di−1 for 1 ≤ i ≤ γ, where di
is the gcd of all i× i determinantal minors of M and d0 = 1.

Proposition 2 (The Bezout’s theorem [51]): Let L be a gcld
of integer matrices M and N. Then, there exist integer matrices
P and Q such that

MP+NQ = L. (6)

Similarly, let L be a gcrd of M and N. Then, there exist integer
matrices P and Q such that

PM+QN = L. (7)

In Appendix A, we introduce how to calculate a gcld L of two
given nonsingular D ×D integer matrices M and N, and the
accompanying P and Q in (6) in the Bezout’s theorem; see [51]
for details. Similarly, we can calculate a gcrd L of M and N,
and the accompanying P and Q in (7).

Proposition 3 ([49]): Let M and N be two nonsingular inte-
ger matrices. When MN = NM, the following four statements
are equivalent: 1) M and N are right coprime; 2) M and N are
left coprime; 3) MN is an lcrm of M and N; and 4) MN is an
lclm of M and N.

Remark 1: As stated in Proposition 3, when M and N are
commutative, i.e.,MN = NM, their left coprimeness and right
coprimeness can imply each other, so we use the simpler term
“coprimeness”. Similarly, when M and N are commutative and
coprime, their product MN is both an lcrm and an lclm, so we
use the simpler term “lcm”. For the 1-dimensional case (i.e.,
integer case), Propositions 2 and 3 are well-known facts.

Given aD ×D nonsingular matrixM (which is not necessar-
ily an integer matrix), the set of all integer linear combinations
of the columns of M, i.e.,

LAT(M) = {Mn | n is an integer vector} , (8)

is called the D-dimensional lattice generated by M, denoted
as LAT(M). The fundamental parallelepiped of LAT(M) is
defined as the region:

FLAT(M) =
{
Mx | x ∈ [0, 1)D

}
. (9)

The shape of FLAT(M) defined above depends on the generating
matrix M. All lattice cells of LAT(M) have the same volume
equal to |det(M)| [51]. One can observe that FLAT(M) and its
shifted copies (i.e., the other lattice cells) constitute the whole
real vector space RD. When M is a nonsingular integer matrix,
we obtain N(M) ⊂ FLAT(M) and N(M) = FLAT(M) ∩ Z

D.
Proposition 4 ([52]): Two nonsingular integer matrices M

and N generate the same lattice, i.e., LAT(M) = LAT(N), if
and only if M = NP, where P is a unimodular matrix.

Proposition 5 ([52]): Given two nonsingular integer matrices
M and N, let C be an lcrm of M and N. Then, LAT(C) =
LAT(M) ∩ LAT(N).

III. MD-CRT FOR INTEGER VECTORS

The well-known CRT for integers allows the reconstruction
of a large nonnegative integer from its remainders with respect
to a general set of moduli (namely a set of arbitrary positive
integers), and it has been successfully applied in 1-dimensional
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signal processing, cryptography, parallel arithmetic computing,
coding theory, etc.; see [1]–[3] and references therein. In this
section, as a natural extension of the CRT for integers, the
MD-CRT for integer vectors is systematically studied, which
provides a reconstruction algorithm for an integer vector from
its remainders with respect to a general set of moduli (namely
a set of arbitrary nonsingular integer matrices), and possesses
potential usefulness in MD signal processing. To begin with, we
briefly revisit the CRT for integers as follows.

Proposition 6 (CRT for integers [3]): Given L moduli Mi

for 1 ≤ i ≤ L, which are arbitrary positive integers, let R be
their lcm. For an integer m ∈ N(R) (i.e., 0 ≤ m < R), we can
uniquely reconstruct m from its remainders ri = 〈m〉Mi

as

m =

〈
L∑

i=1

WiŴiri

〉
R

, (10)

where Wi = R/Ni, Ŵi is the modular multiplicative inverse of
Wi modulo Ni, i.e., WiŴi ≡ 1 mod Ni (or equivalently, Ŵi is
some integer satisfying

WiŴi +NiQi = 1 (11)

for some integer Qi), if Ni �= 1, else Ŵi = 0, and
N1, N2, . . . , NL are taken to be anyL pairwise coprime positive
integers such thatR = N1N2 · · ·NL andNi dividesMi for each
1 ≤ i ≤ L.

It is worth noting that when the moduli M1,M2, . . . ,ML

are pairwise coprime, we can take Ni = Mi for 1 ≤ i ≤ L, and
then Proposition 6 reduces to the CRT for integers with respect
to pairwise coprime moduli.

We next extend the CRT for integers to the integer vector re-
construction problem. We call it the MD-CRT for integer vectors.
The non-commutativity of matrix multiplication prevents many
results for integers from being clearly established for integer
vectors and integer matrices. For this reason, it is necessary to
explicitly derive the MD-CRT for integer vectors in this article.
Before presenting the main results, we first give the following
lemma, which will be used in the sequel.

Lemma 1: Given integer matrices M1,M2, . . . ,ML, if B is
an lcrm ofM1,M2, . . . ,ML−1, andR is an lcrm ofB andML,
then R is an lcrm of M1,M2, . . . ,ML. In addition, a similar
statement holds when lcrm above is replaced with lclm.

Proof: See Appendix B. �
We then have the following result.
Theorem 1 (MD-CRT for integer vectors): Given L moduli

Mi for 1 ≤ i ≤ L, which are arbitrary nonsingular integer ma-
trices, let R be anyone of their lcrm’s. For an integer vector
m ∈ N(R), we can uniquely reconstruct m from its remainders
ri = 〈m〉Mi

.
Proof: Let G1 and R1 be a gcld and an lcrm of M1 and M2,

respectively. Based on the Bezout’s theorem in Proposition 2, we
have, for some integer matrices P1 and P2, M1P1 +M2P2 =
G1, on both sides of which we right-multiply G−1

1 and obtain

M1P1G
−1
1 +M2P2G

−1
1 = I. (12)

Let

m1 = M2P2G
−1
1 r1 +M1P1G

−1
1 r2. (13)

We next prove that m1 given in (13) is a solution of a system of
congruences as follows:{

m ≡ r1 mod M1

m ≡ r2 mod M2.
(14)

From (12), we can rewrite (13) as

m1 = (I−M1P1G
−1
1 )r1 +M1P1G

−1
1 r2

= r1 +M1P1G
−1
1 (r2 − r1).

(15)

One can see from (14) that M1n1 −M2n2 = r2 − r1 holds for
some integer vectorsn1 andn2, and thus we haveG−1

1 (r2 − r1)
= G−1

1 M1n1 −G−1
1 M2n2. Since G1 is a gcld of M1 and

M2, we know that G−1
1 M1 and G−1

1 M2 are integer matri-
ces, and thus G−1

1 (r2 − r1) is an integer vector. Therefore,
m1 given in (13) is an integer vector, and we have, from
(15), m1 ≡ r1 mod M1. Similarly, we can rewrite (13) as
m1 = r2 +M2P2G

−1
1 (r1 − r2), andm1 given in (13) satisfies

m1 ≡ r2 mod M2. That is to say,m1 given in (13) is a solution
of the system of congruences in (14). Thus, we have m−m1 ∈
LAT(M1) and m−m1 ∈ LAT(M2). From Proposition 5, we
have m−m1 ∈ LAT(R1), i.e., m ≡ m1 mod R1. Based on
the cascade architecture of the congruences, we can accordingly
calculate a solution m2 of{

m ≡ m1 mod R1

m ≡ r3 mod M3.
(16)

Letting R2 be an lcrm of R1 and M3, we have m ≡ m2

mod R2. Moreover, from Lemma 1, R2 is an lcrm of M1,M2,
and M3. Following the above procedure, we merge two congru-
ences at a time until we calculate a solution mL−1 of{

m ≡ mL−2 mod RL−2

m ≡ rL mod ML,
(17)

whereRL−2 is an lcrm ofM1,M2, . . . ,ML−1. LetRL−1 be an
lcrm of RL−2 and ML, and we have m ≡ mL−1 mod RL−1,
where we readily know from Lemma 1 that RL−1 is an lcrm
of M1,M2, . . . ,ML. Without loss of generality, we can let
RL−1 = R. So, we can get m ∈ N(R) as

m = 〈mL−1〉R. (18)

Finally, we prove the uniqueness of the solution for m modulo
R. Assume that there exists another solution m′ ∈ N(R) that
satisfies ri = 〈m′〉Mi

for 1 ≤ i ≤ L. Let m′′ = m−m′. We
know m′′ ≡ 0 mod Mi for 1 ≤ i ≤ L, that is,

m′′ ∈ LAT(M1) ∩ LAT(M1) ∩ · · · ∩ LAT(ML) = LAT(R),
(19)

where the last equality is valid due to Proposition 5 and
Lemma 1. Hence, we have m′′ ∈ LAT(R), i.e.,

m′′ = Rk for some integer vector k. (20)

Since m,m′ ∈ N(R) and m′′ = m−m′, we have

m′′ ∈ {n |n = Rx,x ∈ (−1, 1)D and n ∈ Z
D}, (21)

where D is the length of m′′. Since R is nonsingular from the
definition of lcrm, this implies k = 0 in (20), and thus m′′ = 0.
The proof is completed. �
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As it can be seen in the proof of Theorem 1, a reconstruction
algorithm for the MD-CRT for integer vectors is given as well,
which solves the first two congruences, uses that result as the
remainder with respect to an lcrm of the first two moduli, and
combines this new congruence with the third congruence, and so
on. We assume that there exist L pairwise commutative and
coprime integer matrices, denoted by N1,N2, . . . ,NL, such
that R = N1N2 · · ·NLU for some unimodular matrix U and
Ni is a left divisor of Mi for each 1 ≤ i ≤ L in Theorem 1.
Under this assumption, we can derive a simple reconstruction
formula for the MD-CRT for integer vectors as follows.

Lemma 2: Let Ni for 1 ≤ i ≤ L be L nonsingular in-
teger matrices, which are pairwise commutative and co-
prime, i.e., NiNj = NjNi, and Ni and Nj are coprime for
each pair of i and j, 1 ≤ i �= j ≤ L. Then, Ni1Ni2 · · ·Nip

and Nj1Nj2 · · ·Njq are commutative and coprime for any
subsets {i1, i2, . . . , ip} ⊂ {1, 2, . . . , L} and {j1, j2, . . . , jq} ⊂
{1, 2, . . . , L}\{i1, i2, . . . , ip}. Moreover, Ni1Ni2 · · ·Nip is an
lcm of Ni1 ,Ni2 , . . . ,Nip for any subset {i1, i2, . . . , ip} ⊂
{1, 2, . . . , L} with p ≥ 2.

Proof: See Appendix C. �
Corollary 1: Given L moduli Mi for 1 ≤ i ≤ L, which are

arbitrary nonsingular integer matrices, let R be anyone of their
lcrm’s. Let us assume that there exist L pairwise commutative
and coprime integer matrices, denoted by N1,N2, . . . ,NL,
such that R = N1N2 · · ·NLU for some unimodular matrix
U and Ni is a left divisor of Mi for each 1 ≤ i ≤ L. For an
integer vector m ∈ N(R), we can uniquely reconstruct m from
its remainders ri = 〈m〉Mi

as

m =

〈
L∑

i=1

WiŴiri

〉
R

, (22)

where Wi = N1 · · ·Ni−1Ni+1 · · ·NL, and if Ni is not uni-
modular, Ŵi is some integer matrix satisfying

WiŴi +NiQi = I (23)

for some integer matrix Qi, and can be calculated by following
the procedure (83)–(91) in advance; otherwise Ŵi = 0.

Proof: See Appendix D. �
In what follows, let us see in detail some special cases of the

MD-CRT for integer vectors, where the L nonsingular moduli
are given by

Mi = MΓi for 1 ≤ i ≤ L, (24)

and M and Γi’s here are integer matrices. Clearly, the moduli
given by (24) are in general not commutative. For the specific
moduli in (24), we first prove the following lemma.

Lemma 3: For the moduli Mi’s in (24), if A is an lcrm of Γi

for 1 ≤ i ≤ L, then MA is an lcrm of Mi for 1 ≤ i ≤ L.
Proof: See Appendix E. �
Then, we present the following results.
Corollary 2: Given L nonsingular moduli Mi = MΓi for

1 ≤ i ≤ L, whereM,Γ1,Γ2, . . . ,ΓL are pairwise commutative
and coprime integer matrices, let R be anyone of their lcrm’s,
i.e., R = MΓ1Γ2 · · ·ΓLU for any unimodular matrix U. For
an integer vector m ∈ N(R), we can uniquely reconstruct m
from its remainders ri = 〈m〉Mi

as in Corollary 1.

Proof: See Appendix F. �
Corollary 3: Given L nonsingular moduli Mi = MΓi for

1 ≤ i ≤ L, where M is a unimodular matrix, and Γi’s are pair-
wise commutative and coprime integer matrices, letR be anyone
of their lcrm’s, i.e., R = MΓ1Γ2 · · ·ΓLU for any unimodular
matrix U. For an integer vector m ∈ N(R), we can uniquely
reconstruct m from its remainders ri = 〈m〉Mi

as

m =

〈
L∑

i=1

WiŴiri

〉
R

, (25)

where Wi = MΓ1 · · ·Γi−1Γi+1 · · ·ΓL, and Ŵi is some inte-
ger matrix satisfying

WiŴi +MiQi = I (26)

for some integer matrix Qi and can be calculated by following
the procedure (83)–(91) in advance.

Proof: See Appendix G. �
Particularly, when M is the identity matrix, i.e., M = I,

Corollary 3 reduces to the MD-CRT for integer vectors with
respect to pairwise commutative and coprime moduli (which is
simply denoted as the CC MD-CRT for integer vectors), as stated
below, in comparison with the CRT for integers with respect to
pairwise coprime moduli.

Theorem 2 (CC MD-CRT for integer vectors): Given L non-
singular moduli Mi for 1 ≤ i ≤ L, which are pairwise com-
mutative and coprime integer matrices, let R be anyone of
their lcrm’s, i.e., R = M1M2 · · ·MLU for any unimodular
matrix U. For an integer vector m ∈ N(R), we can uniquely
reconstructm from its remainders ri = 〈m〉Mi

as in Corollary 3
with M = I.

We next see another special case of the MD-CRT for integer
vectors, where the L nonsingular moduli can be simultaneously
diagonalized by using two common unimodular matrices, i.e.,

Mi = UΛiV ∈ Z
D×D for 1 ≤ i ≤ L (27)

with Λi’s being diagonal integer matrices, and U and V being
unimodular matrices. For each 1 ≤ i ≤ L, write Λi as Λi =
diag(Λi(1, 1),Λi(2, 2), . . . ,Λi(D,D)). Let

Λ = diag(Λ(1, 1),Λ(2, 2), . . . ,Λ(D,D)), (28)

and Λ(j, j) be the lcm of Λ1(j, j),Λ2(j, j), . . . ,ΛL(j, j) for
each 1 ≤ j ≤ D. It is readily verified that Λ is an lcm of Λi’s.

We next prove that Λ is also an lcrm of ΛiV for 1 ≤ i ≤ L.
Since Λ is an lcm of Λi’s, we have Λ = ΛiPi for some integer
matrices Pi’s. Due to the unimodularity of V, we have Λ =
ΛiVV−1Pi andV−1Pi is an integer matrix for each1 ≤ i ≤ L.
So, Λ is a crm of ΛiV for 1 ≤ i ≤ L. For any other crm Q of
ΛiV for 1 ≤ i ≤ L, we have Q = ΛiVQi for some integer
matrices Qi’s, which indicates that Q is a crm of Λi’s. Thus, Q
is a right multiple of Λ, i.e., Λ is an lcrm of ΛiV for 1 ≤ i ≤ L.
Furthermore, from Lemma 3, we obtain that UΛ is an lcrm of
Mi’s given by (27). Let R be anyone of the lcrm’s of Mi’s, i.e.,
R = UΛB for any unimodular matrix B. For an integer vector
m ∈ N(R) and its remainders ri = 〈m〉Mi

, we have

m = UΛiVni + ri and then U−1m = ΛiVni +U−1ri,
(29)
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for 1 ≤ i ≤ L. Due to the unimodularity of U, U−1m and
U−1ri’s are all integer vectors. Hence, we can view (29) as
a system of congruences with respect to the moduli Λi’s, i.e.,

U−1m ≡ U−1ri mod Λi for 1 ≤ i ≤ L, (30)

and then calculate the remainders ζi ∈ N(Λi) ofU−1ri modulo
Λi, i.e.,U−1ri ≡ ζi mod Λi, for 1 ≤ i ≤ L. From (30), we get

U−1m ≡ ζi mod Λi for 1 ≤ i ≤ L. (31)

Since U is unimodular and m ∈ N(UΛB) for any unimodular
matrix B, we have U−1m ∈ N(ΛB). Furthermore, as Λi’s are
diagonal integer matrices, it is always ready to find L pair-
wise commutative and coprime integer matrices (i.e., coprime
diagonal integer matrices), denoted by N1,N2, . . . ,NL, such
that Λ = N1N2 · · ·NL and Ni is a left divisor of Λi for
each 1 ≤ i ≤ L. Therefore, from Corollary 1, we can uniquely
reconstruct such m. When m is restricted to m ∈ N(UΛ), i.e.,
the unimodular matrix B is taken to be the identity matrix, the
reconstruction of m is equivalent to that via the D independent
conventional CRT for integers as follows. Let a = U−1m ∈
Z
D. Because of m ∈ N(UΛ), we obtain a ∈ N(Λ). That is to

say, every element a(j) of a satisfies a(j) ∈ N(Λ(j, j)) (i.e.,
0 ≤ a(j) < Λ(j, j)) for 1 ≤ j ≤ D. Therefore, via the CRT for
integers, we can uniquely reconstruct a(j) for each 1 ≤ j ≤ D
in the following system of congruences:

a(j) ≡ ζi(j) mod |Λi(j, j)| for 1 ≤ i ≤ L. (32)

Based on the above analysis, we have the following result.
Corollary 4: Let L nonsingular moduli Mi for 1 ≤ i ≤ L be

given by (27), and R be anyone of their lcrm’s, i.e., R = UΛB
for any unimodular matrix B, where Λ is given by (28). For
an integer vector m ∈ N(R), we can uniquely reconstruct m
from its remainders ri = 〈m〉Mi

as in Corollary 1. Interestingly,
when B is the identity matrix, i.e., R = UΛ, the reconstruction
of m ∈ N(R) is equivalent to that via the D independent
conventional CRT for integers.

In particular, when the D ×D nonsingular moduli Mi’s can
be simultaneously diagonalized as

Mi = UΛiU
−1 for 1 ≤ i ≤ L, (33)

where U is a D ×D unimodular matrix, and Λi’s are diagonal
integer matrices that are pairwise coprime, it is readily verified
that the moduli are pairwise commutative and coprime. Note
that Λi and Λj are coprime if and only if their corresponding
diagonal elements Λi(k, k) and Λj(k, k) are coprime for each
1 ≤ k ≤ D. For this case, as a direct consequence of Theorem
2 or Corollary 4, we obtain the following result, which has been
presented in [47], [48].

Corollary 5 ([48]): Let L nonsingular moduli Mi for 1 ≤
i ≤ L be given by (33), and R be anyone of their lcrm’s, i.e.,
R = UΛ1Λ2 · · ·ΛLB for any unimodular matrix B. For an
integer vector m ∈ N(R), we can uniquely reconstruct m from
its remainders ri = 〈m〉Mi

as in Theorem 2.
It is worth pointing out that the results of the MD-CRT for

integer vectors in this section are closely related to the already
established results on the abstract CRT for rings [1]. In the con-
text of the non-commutative ring Z

D×D of integer matrices, let

Mi = MiZ
D×D for 1 ≤ i ≤ L be right ideals in Z

D×D, where
Mi’s are pairwise left coprime. LetZD×D/MiZ

D×D, called the
quotient ring ofZD×D byMi, be defined as the set of all cosets of
Mi (i.e.,ZD×D/MiZ

D×D = {R+Mi | R ∈ Z
D×D}). Based

on the Bezout’s theorem in Proposition 2, there exists a ring
isomorphism

Z
D×D/∩iMi

∼= Z
D×D/M1 ⊕ Z

D×D/M2 ⊕ · · · ⊕ Z
D×D/ML,

(34)

where ⊕ stands for the direct product of rings. Given A,B ∈
Z
D×D, A is congruent to B modulo Mi if and only if A−B ∈
Mi. The elements in Z

D×D/Mi can be taken as remainder
classes of ZD×D modulo Mi. We can rephrase the isomorphism
in (34) by stating that the system of congruences modulo Mi’s
can be solved uniquely. This result can be correspondingly
generalized to the case with arbitrary nonsingular integer ma-
trices Mi’s. As the modulo operation on a matrix is carried out
independently along every column of the matrix, the MD-CRT
for integer vectors in this article can be regarded as a special case
of the abstract CRT in the specific algebraic settings of ZD×D.

We conclude this section by showing an example to explain
how to implement the MD-CRT for integer vectors step by step.
Since this example involves a family of 2× 2 integer circulant
matrices, let us first introduce some existing results for integer
circulant matrices. An integer matrix is said to be circulant if
each row can be obtained from the preceding row by a right
circular shift, e.g., a 2× 2 integer circulant matrix P =

(
p q
q p

)
.

It is obvious that integer circulant matrices are commutative with
one another. It has been proved in [55], [56] that any two 2× 2
integer circulant matrices P1 =

(
p1 q1
q1 p1

)
and P2 =

(
p2 q2
q2 p2

)
are

coprime, if and only if p1 + q1 is coprime with p2 + q2, and
p1 − q1 is coprime with p2 − q2. A trivial subclass of 2× 2
integer circulant matrices with all equal elements is excluded
from consideration in [55], [56] and this article. We then prove
that a 2× 2 integer circulant matrix P =

(
p q
q p

)
with q �= 0

cannot be diagonalized as in (33).
Lemma 4: A 2× 2 integer circulant matrix P =

(
p q
q p

)
with

q �= 0 cannot be diagonalized as P = UΛU−1, where U is a
2× 2 unimodular matrix and Λ is a diagonal integer matrix.

Proof: See Appendix H. �
Example 1: Let L = 3 moduli be Mi = MΓi for 1 ≤ i ≤

3, where Γi’s are pairwise coprime integer circulant matrices,
i.e., Γ1 =

(
4 −1
−1 4

)
, Γ2 =

(
7 4
4 7

)
, and Γ3 =

(−2 6
6 −2

)
. We then

consider the following two cases that are not covered by [48] or
Corollary 5 in this article.

i) M is commutative and coprime with each Γi for 1 ≤ i ≤
3. This case corresponds to the moduli given in Corollary
2. Without loss of generality, we take M =

(
4 3
3 4

)
, which

is also an integer circulant matrix. One can see thatMi for
1 ≤ i ≤ 3 in this case are 2× 2 integer circulant matrices
and their nondiagonal elements are non-zero. Therefore,
from Lemma 4, the moduli Mi’s cannot be diagonalized
as in (33). Let R = MΓ1Γ2Γ3 =

(
402 522
522 402

)
and m =(

402 522
522 402

)(
1/6
1/2

)
=

(
328
288

) ∈ N(R). The remainders ofm
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modulo Mi for 1 ≤ i ≤ 3 are calculated from (4), re-
spectively, i.e., r1 =

(
14
14

)
, r2 =

(
39
38

)
, and r3 =

(
14
14

)
.

Conversely, we can reconstruct m from its remainders
ri for 1 ≤ i ≤ 3 via the MD-CRT for integer vectors in
Corollary 2. Let N1 = MΓ1, N2 = Γ2, and N3 = Γ3.
LetW1 = N2N3,W2 = N1N3, andW3 = N1N2, and
then by following the procedure (83)–(91) to calculate
the corresponding Ŵi for each 1 ≤ i ≤ 3 in the Bezout’s
theorem such that (23) holds, we get Ŵ1 =

(
9
23

−3
−7

)
,

Ŵ2 =
(
11
−3

−4
1

)
, andŴ3 =

(−7
50

8
−57

)
. Then, from the

reconstruction formula in (22), we have

m =

〈
3∑

i=1

WiŴiri

〉
R

=

〈(
8456
5096

)
+

(
1196
15436

)
+

( −8862
−10542

)〉
R

=

〈(
790
9990

)〉
R

=

(
328
288

)
.

ii) M is an arbitrary nonsingular integer matrix, which is
not commutative or coprime with Γi’s. This case corre-
sponds to the general moduli given in Theorem 1. With-
out loss of generality, we take M =

(
2 3
4 5

)
. Obviously,

Mi’s are not pairwise commutative, and thus they can-
not be diagonalized as in (33). Let R = MΓ1Γ2Γ3 =(
390 270
654 534

)
and m =

(
390 270
654 534

)(
1/2
1/3

)
=

(
285
505

) ∈ N(R).
The remainders of m modulo Mi for 1 ≤ i ≤ 3 are cal-
culated from (4), respectively, i.e., r1 =

(
5
9

)
, r2 =

(
27
49

)
,

and r3 =
(
3
7

)
. Conversely, we can reconstruct m from its

remainders ri for 1 ≤ i ≤ 3 via the MD-CRT for integer
vectors in Theorem 1. In this case, even though we do
not have an explicit reconstruction formula as Case i),
we can reconstruct m by following the algorithm exhib-
ited in the proof of Theorem 1. One can readily verify
that M and R1 = MΓ1Γ2 are a gcld and an lcrm of
M1 and M2, respectively. Based on the Bezout’s the-
orem in Proposition 2, we follow the procedure (83)–
(91) to get P1 =

(
3
1

11
4

)
and P2 =

(−2
1

−8
4

)
such that

M1P1 +M2P2 = M. So, from (13), we obtain m1 =
M2P2M

−1r1 +M1P1M
−1r2 =

(
510
994

)
, which satisfies{

m1 ≡ r1 mod M1

m1 ≡ r2 mod M2.

We then calculate the remainderν1 ofm1 moduloR1, i.e.,
ν1 = 〈m1〉R1

=
(
30
52

)
. Following the above procedure,

we calculate a solution of a system of congruences:{
m ≡ ν1 mod R1

m ≡ r3 mod M3.

It is also readily verified that M and R2 = R =
MΓ1Γ2Γ3 are a gcld and an lcrm of R1 and M3, re-
spectively. Based on the Bezout’s theorem in Proposi-
tion 2, we follow the procedure (83)–(91) to get Q1 =(

8
−7

−21
18

)
and Q2 =

(
10
−18

−24
49

)
such that R1Q1 +

M3Q2 = M. From (13), we get m2 = M3Q2M
−1ν1 +

R1Q1M
−1r3 =

(−375
1429

)
. Therefore, we get

m = 〈m2〉R2
=

(
285
505

)
.

IV. ROBUST MD-CRT FOR INTEGER VECTORS

In practice, signals of interest are usually subject to noise,
and accordingly the detected remainders may be erroneous in
many signal processing applications of the CRT. To this end,
the robust CRT for integers has been proposed in [12]–[14]
and further dedicatedly studied in [20]–[24]. It basically says
that even though every remainder has a small error, a large
nonnegative integer can be robustly reconstructed in the sense
that the reconstruction error is upper bounded by the remainder
error bound. In this section, motivated by the applications in
MD signal processing, we want to extend the robust CRT for
integers to the MD case, called the robust MD-CRT for integer
vectors. Before presenting that, we first review the robust CRT
for integers in [14], for comparison purposes.

Proposition 7 (Robust CRT for integers [14]): Let L moduli
be Mi = MΓi for 1 ≤ i ≤ L, where Γi’s are pairwise coprime
positive integers, and M > 1 is an arbitrary positive integer. Let
R � MΓ1Γ2 · · ·ΓL be their lcm. For an integerm ∈ N(R) (i.e.,
0 ≤ m < R), let ri’s be its remainders, i.e., ri = 〈m〉Mi

or

m = Mini + ri for 1 ≤ i ≤ L, (35)

where ni’s are its folding integers. Let r̃i � ri +�ri, 1 ≤
i ≤ L, denote the erroneous remainders, where �ri’s are the
remainder errors. From the erroneous remainders r̃i’s, we can
accurately determine the folding integers ni’s, if and only if

−M

2
≤ �ri −�r1 <

M

2
for 2 ≤ i ≤ L. (36)

In addition, let τ be the remainder error bound, i.e., |�ri| ≤ τ
for 1 ≤ i ≤ L, and a simple sufficient condition for accurately
determining the folding integers ni’s is derived as

τ <
M

4
. (37)

Once the folding integers ni’s are accurately obtained, a robust
reconstruction of m can be calculated by

m̂ =

[
1

L

L∑
i=1

(Mini + r̃i)

]
, (38)

where [·] denotes the rounding operation. Obviously, the recon-
struction error is upper bounded by τ , i.e., |m̂−m| ≤ τ .

In [14], a closed-form algorithm for determining the folding
integers ni’s in Proposition 7 was proposed as well. For more
information on the robust CRT for integers, we refer the reader
to a thorough review in [46].

Motivated by Proposition 7 or [14], we propose the robust
MD-CRT for integer vectors through accurately determining the
folding vectors in the rest of this section. Before that, let us first
state two significant definitions related to lattices.

Definition 1 (The shortest vector problem (SVP) on lattices):
For a lattice LAT(M) that is generated by a nonsingular matrix
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M, the minimum distance of LAT(M) is the smallest distance
between any two lattice points:

λLAT(M) = min
w,v∈LAT(M),

w �=v

‖w − v‖. (39)

It is obvious that lattices are closed under addition and subtrac-
tion operations. Therefore, the minimum distance of LAT(M)
is equivalently defined as the length (magnitude) of the shortest
non-zero lattice point:

λLAT(M) = min
v∈LAT(M)\{0}

‖v‖. (40)

Definition 2 (The closest vector problem (CVP) on lattices):
For a lattice LAT(M) that is generated by a nonsingular matrix
M ∈ R

D×D, given an arbitrary point w ∈ R
D, we find a closest

lattice point of LAT(M) to w by

dist(LAT(M),w) = min
v∈LAT(M)

‖v −w‖. (41)

The SVP and CVP are the two most important computa-
tional problems on lattices. The algorithms for solving these
problems either exactly or approximately have been exten-
sively studied [57], [58]. Note that the distance above can be
measured by any norm of vectors, e.g., the Euclidean norm
‖v‖2 =

√∑
i |v(i)|2, the �1 norm ‖v‖1 =

∑
i |v(i)|, and the

�∞ norm ‖v‖∞ = maxi |v(i)|.
Let L nonsingular moduli Mi ∈ Z

D×D for 1 ≤ i ≤ L be
given by

Mi = MΓi, (42)

where Γi ∈ Z
D×D for 1 ≤ i ≤ L are pairwise commutative and

coprime, and M ∈ Z
D×D. Define

Ai={m ∈ Z
D | �M−1

i m	 ∈ N(Γ1 · · ·Γi−1Γi+1 · · ·ΓLUi)}
(43)

for1 ≤ i ≤ L, whereUi ∈ Z
D×D is any unimodular matrix. Let

r̃i = ri +�ri ∈ Z
D for 1 ≤ i ≤ L be the erroneous remain-

ders of an integer vector m with respect to the moduli Mi’s,
where ri’s and �ri’s are the remainders and remainder errors,
respectively.

Since ri’s are the remainders of m with respect to the moduli
Mi’s in (42), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩

m = MΓ1n1 + r1
m = MΓ2n2 + r2

...
m = MΓLnL + rL.

(44)

Without loss of generality, we assume that m ∈ A1. Therefore,
we treat the first equation in (44) as a reference to be subtracted
from the other L− 1 equations, and we get⎧⎪⎪⎪⎨⎪⎪⎪⎩

MΓ1n1 −MΓ2n2 = r2 − r1
MΓ1n1 −MΓ3n3 = r3 − r1

...
MΓ1n1 −MΓLnL = rL − r1.

(45)

Left-multiplying M−1 on both sides of all the equations in (45),
we obtain ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ1n1 − Γ2n2 = M−1(r2 − r1)
Γ1n1 − Γ3n3 = M−1(r3 − r1)

...
Γ1n1 − ΓLnL = M−1(rL − r1).

(46)

From (46), we know that M−1(ri − r1) for 2 ≤ i ≤ L are
integer vectors, i.e.,

ri − r1 ∈ LAT(M). (47)

We then perform the modulo-Γi operation on both sides of the
corresponding (i− 1)-th equation in (46) for 2 ≤ i ≤ L to get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ1n1 ≡ 0 mod Γ1

Γ1n1 ≡ M−1(r2 − r1) mod Γ2

Γ1n1 ≡ M−1(r3 − r1) mod Γ3

...
Γ1n1 ≡ M−1(rL − r1) mod ΓL,

(48)

where the first equation is always available.
Since we know the erroneous remainders r̃i’s rather than the

remainders ri’s, we estimate ri − r1 for each 2 ≤ i ≤ L by
using a closest lattice point vi of LAT(M) to r̃i − r̃1, i.e.,

vi � arg minv∈LAT(M)‖v − (r̃i − r̃1)‖. (49)

Let ñi for 1 ≤ i ≤ L be a set of solutions of (46) when ri − r1
for 2 ≤ i ≤ L are replaced with vi. In summary, we have the
following Algorithm 1 for obtaining ñi’s.

Based on Algorithm 1, we have the following result.

Algorithm 1:
1: Calculate vi for 2 ≤ i ≤ L in (49) from r̃i for

1 ≤ i ≤ L.
2: Calculate the remainder ζi of M−1vi modulo Γi for

each 2 ≤ i ≤ L, i.e.,

M−1vi ≡ ζi mod Γi, (50)

where ζi ∈ N(Γi).
3: Calculate χ1 � Γ1ñ1 ∈ N(Γ1Γ2 · · ·ΓLU1) via the

CC MD-CRT for integer vectors in Theorem 2 from
the following system of congruences⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Γ1ñ1 ≡ 0 mod Γ1

Γ1ñ1 ≡ ζ2 mod Γ2

Γ1ñ1 ≡ ζ3 mod Γ3

...
Γ1ñ1 ≡ ζL mod ΓL.

(51)

4: Calculate ñ1 = Γ−1
1 χ1 ∈ N(Γ2Γ3 · · ·ΓLU1), and

then

ñi = Γ−1
i (χ1 −M−1vi) for 2 ≤ i ≤ L. (52)

Theorem 3 (Robust MD-CRT for integer vectors–I): Let L
nonsingular moduli be given by (42). For an integer vector m ∈
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⋃L
i=1Ai (assuming without loss of generality that m ∈ A1),

we can accurately determine the folding vectors ni’s of m from
the erroneous remainders r̃i’s by Algorithm 1, if and only if

θi = 0 for 2 ≤ i ≤ L, (53)

where θi is defined by

θi � arg minθ∈LAT(M)‖θ − (�ri −�r1)‖. (54)

Besides, we present two simple sufficient conditions for accu-
rately determining the folding vectors ni’s as follows.

1) Condition 1: A sufficient condition is given by

‖�ri −�r1‖ <
λLAT(M)

2
for 2 ≤ i ≤ L. (55)

2) Condition 2: Let τ be the remainder error bound, i.e.,
‖�ri‖ ≤ τ for 1 ≤ i ≤ L, and then a much simpler suf-
ficient condition is given by

τ <
λLAT(M)

4
. (56)

Once the folding vectors ni’s are accurately obtained,
a robust reconstruction of m can be calculated by m̃ =
1
L

∑L
i=1(Mini + r̃i). Obviously, the reconstruction error is

upper bounded by τ , i.e.,

‖m̃−m‖ ≤ τ. (57)

Proof: We first prove the sufficiency. From (49), we have

vi � arg minv∈LAT(M)‖v − (ri − r1)− (�ri −�r1)‖ (58)

for 2 ≤ i ≤ L. As lattices are known to be closed under addi-
tion and subtraction operations, we take θ = v − (ri − r1) ∈
LAT(M), and then (58) is equivalent to

θi � arg minθ∈LAT(M)‖θ − (�ri −�r1)‖ (59)

for 2 ≤ i ≤ L. If the condition in (53), i.e., θi = 0 for 2 ≤ i ≤
L, holds, we obtainvi = ri − r1 for 2 ≤ i ≤ L. Then, from (48)
and (51), Γ1n1 and Γ1ñ1 have the same remainders ζi’s with
respect to the moduliΓi’s. Due tom ∈ A1 andn1 = �M−1

1 m	,
we obtain n1 ∈ N(Γ2Γ3 · · ·ΓLU1), where U1 is any unimod-
ular matrix, and thus Γ1n1 ∈ N(Γ1Γ2 · · ·ΓLU1). From (51),
Γ1n1 can be accurately determined by the CC MD-CRT for
integer vectors in Theorem 2, so can be n1, i.e., ñ1 = n1. After
obtaining n1, we can accurately determine the other folding
vectorsni for 2 ≤ i ≤ L by substitutingn1 into (46). Therefore,
we get ñi = ni for 1 ≤ i ≤ L in (52).

We next prove the necessity. Assume that there exists at least
one remainder error that does not satisfy (53). For example, the
k-th remainder error �rk with 2 ≤ k ≤ L satisfies

θk �= 0. (60)

Therefore, vk in (49) does not equal rk − r1. We then have the
following cases.

Case A: There exists one j with 2 ≤ j ≤ L such that

θj /∈ LAT(MΓj), (61)

i.e., θj �= MΓjk for any integer vector k. We then prove that
the remainders of M−1vj and M−1(rj − r1) modulo Γj are
different. Assume thatM−1vj andM−1(rj − r1) have the same
remainder modulo Γj , i.e.,

M−1vj −M−1(rj − r1) = Γjq (62)

for some integer vector q. Left-multiplying M on both sides of
(62), we get vj − (rj − r1) = MΓjq, i.e., θj = MΓjq, which
contradicts with (61). Therefore, the remainders of M−1vj and
M−1(rj − r1) modulo Γj are different. As a consequence,
χ1 = Γ1ñ1 obtained from the system of congruences in (51)
does not equal Γ1n1 as in (48), and hence ñ1 �= n1.

Case B: For each 2 ≤ i ≤ L, θi ∈ LAT(MΓi) but there
exists at least one j with 2 ≤ j ≤ L such that θj �= 0; see, for
example, that the k-th remainder error makes θk �= 0 according
to (60), i.e., vk �= rk − r1. Since vi = θi + (ri − r1) and θi ∈
LAT(MΓi) for 2 ≤ i ≤ L, we have M−1vi ≡ M−1(ri − r1)
mod Γi. So,Γ1n1 andΓ1ñ1 have the same remainders ζi’s with
respect to the moduliΓi’s, and n1 can be accurately determined,
i.e., ñ1 = n1. However, due to vk �= rk − r1, we have ñk �= nk

from (52). This proves the necessity.
We finally prove the two simple sufficient conditions in (55)

and (56) for accurately determining the folding vectors ni’s,
respectively.

1) Condition 1: Assume that there exists θi ∈ LAT(M) with
θi �= 0 satisfying

θi = arg minθ∈LAT(M)‖θ − (�ri −�r1)‖ (63)

for each 2 ≤ i ≤ L. Then, we have

‖θi‖ = ‖θi − (�ri −�r1)− (0− (�ri −�r1))‖
≤ ‖θi − (�ri −�r1)‖+ ‖�ri −�r1‖
≤ 2‖�ri −�r1‖ < λLAT(M) ,

(64)

which contradicts with‖θi‖ ≥ λLAT(M). Thus, we obtainθi = 0
for each 2 ≤ i ≤ L.

2) Condition 2: When ‖�ri‖ ≤ τ for 1 ≤ i ≤ L, we have

‖�rl −�r1‖ ≤ ‖�rl‖+ ‖�r1‖ ≤ 2τ <
λLAT(M)

2
(65)

for 2 ≤ l ≤ L, which implies Condition 1.
This completes the proof of the theorem. �
Remark 2: In the 1-dimensional case when M is an arbi-

trary positive integer and Γi’s are pairwise coprime positive
integers, we can readily verify that i)A1 = A2 = · · · = AL =⋃L

i=1Ai = N(MΓ1Γ2 · · ·ΓL), and ii) the conditions in (53)
and (55) imply each other, whereas i) and ii) are generally
not observed in the MD case. Therefore, in the 1-dimensional
case, from Theorem 3, it turns out that |�ri −�r1| < M

2 for
2 ≤ i ≤ L is a necessary and sufficient condition for accurately
determining the folding integers ni for 1 ≤ i ≤ L, which is very
similar to the robust CRT for integers in Proposition 7. The only
difference is that there is one more equality sign in the left side of
(36), which is due to the fact that the rounding operation instead
of a norm on R is used in [14].
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Interestingly, we observe that the result of the robust MD-CRT
for integer vectors is dependent upon its reconstruction algo-
rithm. Different reconstruction algorithms might bring about
different results of the robust MD-CRT for integer vectors. In
the following, we propose another reconstruction algorithm, by
which a different result of the robust MD-CRT for integer vectors
is derived.

By Proposition 1, we first calculate the Smith normal form of
M in (42) as

UMV = Λ, (66)

where U and V are unimodular matrices, and Λ is a diagonal
integer matrix. So, we have M−1 = VΛ−1U. From (46), we
get ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Γ1n1 − Γ2n2 = VΛ−1U(r2 − r1)
Γ1n1 − Γ3n3 = VΛ−1U(r3 − r1)

...
Γ1n1 − ΓLnL = VΛ−1U(rL − r1).

(67)

Left-multiplying V−1 on both sides of all the equations in (67),
we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

V−1Γ1n1 −V−1Γ2n2 = Λ−1U(r2 − r1)
V−1Γ1n1 −V−1Γ3n3 = Λ−1U(r3 − r1)

...
V−1Γ1n1 −V−1ΓLnL = Λ−1U(rL − r1).

(68)

We then perform the modulo-V−1Γi operation on both sides of
the corresponding (i− 1)-th equation in (68) for 2 ≤ i ≤ L to
obtain⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V−1Γ1n1 ≡ 0 mod V−1Γ1

V−1Γ1n1 ≡ Λ−1U(r2 − r1) mod V−1Γ2

V−1Γ1n1 ≡ Λ−1U(r3 − r1) mod V−1Γ3

...
V−1Γ1n1 ≡ Λ−1U(rL − r1) mod V−1ΓL,

(69)

where the first equation is always available. From Lemma 3, we
know that V−1Γ1Γ2 · · ·ΓL is an lcrm of the moduli V−1Γi’s
in (69). Because of m ∈ A1 and n1 = �M−1

1 m	, we obtain
n1 ∈ N(Γ2Γ3 · · ·ΓLU1), where U1 is any unimodular matrix,
and thus V−1Γ1n1 ∈ N(V−1Γ1Γ2 · · ·ΓLU1). So, according
to Corollary 3, V−1Γ1n1 can be accurately determined by the
MD-CRT for integer vectors, so can be n1.

We estimateU(ri − r1) for each 2 ≤ i ≤ L by using a closest
lattice point pi of LAT(Λ) to U(r̃i − r̃1), i.e.,

pi � arg minp∈LAT(Λ)‖p−U(r̃i − r̃1)‖. (70)

Due toU(ri − r1) ∈ LAT(Λ) and the closeness of addition and
subtraction operations on lattices, (70) is equivalent to

ϑi � arg minϑ∈LAT(Λ)‖ϑ−U(�ri −�r1)‖. (71)

Since the erroneous remainders r̃i’s are known rather than the
remainders ri’s, let ñi for 1 ≤ i ≤ L be a set of solutions of
(68) when U(ri − r1) for 2 ≤ i ≤ L are replaced with pi. In
summary, we have the following Algorithm 2 for obtaining ñi’s.

Based on Algorithm 2, we have the following result.

Algorithm 2:
1: Calculate pi for 2 ≤ i ≤ L in (70) from r̃i for

1 ≤ i ≤ L.
2: Calculate the remainder�i of Λ−1pi modulo V−1Γi

for each 2 ≤ i ≤ L, i.e.,

Λ−1pi ≡�i mod V−1Γi, (72)

where�i ∈ N(V−1Γi).
3: Calculate ψ1 � V−1Γ1ñ1 ∈ N(V−1Γ1Γ2 · · ·ΓLU1)

via the MD-CRT for integer vectors in Corollary 3
from the following system of congruences⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V−1Γ1ñ1 ≡ 0 mod V−1Γ1

V−1Γ1ñ1 ≡�2 mod V−1Γ2

V−1Γ1ñ1 ≡�3 mod V−1Γ3

...
V−1Γ1ñ1 ≡�L mod V−1ΓL.

(73)

4: Calculate ñ1 = Γ−1
1 Vψ1 ∈ N(Γ2Γ3 · · ·ΓLU1), and

then

ñi = Γ−1
i V(ψ1 −Λ−1pi) for 2 ≤ i ≤ L. (74)

Theorem 4 (Robust MD-CRT for integer vectors–II): Let L
nonsingular moduli be given by (42) and the Smith normal form
of M be given by (66). For an integer vector m ∈ ⋃L

i=1Ai

(assuming without loss of generality that m ∈ A1), we can
accurately determine the folding vectors ni’s of m from the
erroneous remainders r̃i’s by Algorithm 2, if and only if

ϑi = 0 for 2 ≤ i ≤ L. (75)

Besides, we present two simple sufficient conditions for accu-
rately determining the folding vectors ni’s as follows.

1) Condition 1: A sufficient condition is given by

‖U(�ri −�r1)‖ <
λLAT(Λ)

2
for 2 ≤ i ≤ L. (76)

2) Condition 2: Let τ be the remainder error bound, i.e.,
‖�ri‖ ≤ τ for 1 ≤ i ≤ L, and then a much simpler suf-
ficient condition is given by

τ <
λLAT(Λ)

4‖U‖∗ , (77)

where ‖U‖∗ stands for the subordinate matrix norm
of U based on the vector norm ‖ · ‖, i.e., ‖U‖∗ =
sup

‖x‖=1

{‖Ux‖}.

Once the folding vectorsni’s are accurately obtained, a robust re-
construction of m can be calculated by m̃ = 1

L

∑L
i=1(Mini +

r̃i). Obviously, the reconstruction error is upper bounded by τ ,
i.e.,

‖m̃−m‖ ≤ τ. (78)

On the basis of the above analysis (66)–(71), the proof of
Theorem 4 is similar to that of Theorem 3 and is thus omitted
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here. Let us take a simple example below to show a difference
between Theorem 3 and Theorem 4 (between Algorithm 1 and
Algorithm 2). Their difference is caused by the non-equivalence
of the conditions in (53) and (75).

Example 2: Let U =
(
2 1
1 1

)
be a unimodular matrix, and

M in (42) be M = U−1ΛU, where Λ =
(
8 0
0 8

)
. According to

Proposition 4, we know

LAT(M) = LAT(U−1Λ) = LAT

((
8 −8
−8 16

))
.

Without loss of generality, we consider the first two remainder
errors, i.e., �r1 and �r2. Let �r2 −�r1 � (Δ1

Δ2
). Then,

U(�r2 −�r1) =

(
2Δ1 +Δ2

Δ1 +Δ2

)
.

In this example, we measure the distance by the Euclidean norm
of vectors in R

2. On one hand, let Δ1 = 5 and Δ2 = −8. It
is ready to verify that ϑ2 = 0, i.e., the condition in (75) holds
for i = 2. However, θ2 �= 0 in (53), since �r2 −�r1 is much
closer to a non-zero lattice point, e.g., ( 8

−8 ), of LAT(M) than
to 0. On the other hand, let Δ1 = 3 and Δ2 = 0. It is ready to
verify that θ2 = 0, i.e., the condition in (53) holds for i = 2.
However, ϑ2 �= 0 in (75), since U(�r2 −�r1) is much closer
to a non-zero lattice point, e.g., ( 80 ), of LAT(Λ) than to 0.

We shall make a remark that the MD-CRT and robust MD-
CRT for integer vectors studied in this article are different from
the generalized CRT and robust generalized CRT for integers
in [39]–[45]. In the generalized CRT and robust generalized CRT
for integers, every modular is a positive integer and multiple
large positive integers are reconstructed from their unordered
remainder sets, where an unordered remainder set consists of
the remainders of the multiple integers modulo one modular,
but the correspondence between the multiple integers and their
remainders in the remainder set is unknown. However, in the
MD-CRT and robust MD-CRT for integer vectors, every mod-
ular is a nonsingular integer matrix and an integer vector is
reconstructed from its remainders, where a remainder is an inte-
ger vector. In particular, when the moduli Mi ∈ Z

D×D for 1 ≤
i ≤ L are diagonal integer matrices with positive main diagonal
elements, i.e., Mi = diag(Mi(1, 1),Mi(2, 2), . . . ,Mi(D,D))
with Mi(j, j) > 0 for 1 ≤ j ≤ D and 1 ≤ i ≤ L, let R =
diag(R(1, 1), R(2, 2), . . . , R(D,D)) be their lcrm, where
R(j, j) is the lcm of M1(j, j),M2(j, j), . . . ,ML(j, j) for each
1 ≤ j ≤ D. Then, reconstruction of an integer vector m =
(m(1),m(2), . . . ,m(D))T ∈ N(R) using the MD-CRT and ro-
bust MD-CRT for integer vectors is equivalent to reconstruction
of all elements of the integer vector one by one using the CRT and
robust CRT for integers, and is also equivalent to reconstruction
of all elements of the integer vector using the generalized CRT
and robust generalized CRT for integers with ordered remainder
sets.

V. SIMULATION RESULTS

In this section, we first show numerical simulations to verify
the robust MD-CRT for integer vectors. We moreover apply the
robust MD-CRT for integer vectors to MD frequency estimation

Fig. 1. Mean error and theoretical error bound for the two cases with different
M’s.

when a complex MD sinusoidal signal is undersampled by multi-
ple sub-Nyquist sampling matrices. In all the experiments below,
without loss of generality, we consider the robust MD-CRT
for integer vectors in Theorem 3 (i.e., Algorithm 1), where the
integer vector or frequency to be estimated falls into the range
of A1 with U1 = I in (43), and the vector norm ‖ · ‖ is the
Euclidean norm, i.e., ‖ · ‖2. In the simulations, we solve the
integer quadratic programming problems in (40) and (49) using
enumeration [59] and MOSEK with CVX [60], respectively.

Let moduli be Mi = MΓi for i = 1, 2, where Γ1 = ( 1 3
3 1 ),

Γ2 = ( 3 4
4 3 ), and two different M’s are considered, given by

M = ( 48 17
8 46 ) and M = 2( 48 17

8 46 ) = ( 96 34
16 92 ) for simplicity. We

can easily know from [55], [56] that the integer circulant ma-
trices Γ1 and Γ2 are commutative and coprime. According to
Theorem 3, the two differentM’s lead to two different remainder
error bounds τ < 48.66/4 = 12.17 and τ < 97.32/4 = 24.33,
respectively. With respect to each of M’s, we uniformly choose
the unknown integer vector m ∈ A1 and two remainder errors
‖�r1‖2 ≤ τ and ‖�r2‖2 ≤ τ . In this simulation, we consider
the remainder error bounds τ = 0, 2, 4, 6, . . . , 30, and for each
of them, 5000 trials are run. We apply Algorithm 1 to get
the estimate m̃, and in Fig. 1, we illustrate the mean error
E(‖m− m̃‖2) in terms of various remainder error bounds. One
can observe from Fig. 1 that for both of the two cases with
different M’s, all the reconstruction errors are much smaller
than the remainder error bound τ , until τ achieves the maximal
possible bound. This coincides with the theoretical result in
Theorem 3.

Next, we formulate the application of the robust MD-CRT
for integer vectors in MD sinusoidal frequency estimation as
follows. Without loss of generality, suppose that f = m ∈ Z

D

is an unknown integer MD frequency of interest in a complex
MD sinusoidal signal x(t) and may be very high:

x(t) = a exp(j2πfT t) + ω(t), t ∈ R
D, (79)

where a is an unknown non-zero constant and ω(t) is additive
noise. Let M−T

i for 1 ≤ i ≤ L be L different sampling matrices
that have sampling densities |det(Mi)|, respectively, where each
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Mi is a D ×D nonsingular integer matrix. For each sampling
matrix M−T

i , the undersampled sinusoidal signal is given by

xi(n) = a exp(j2πfTM−T
i n) + ωi(n), n ∈ Z

D. (80)

We take the MD discrete Fourier transform (DFT) with respect
to MT

i [61] for the above xi(n), n ∈ N(MT
i ), and we have, for

k ∈ N(Mi),

Xi(k) = a
∑

n∈N(MT
i )

exp(j2πfTM−T
i n) exp(−j2πkTM−T

i n)

+ Ωi(k)

= a
∑

n∈N(MT
i )

exp(−j2π(k− f)TM−T
i n) + Ωi(k)

= a
∑

n∈N(MT
i )

exp(−j2π(k− ri)
TM−T

i n) + Ωi(k)

= a|det(Mi)|δ(k− ri) + Ωi(k), (81)

where Ωi(k) is the MD DFT of ωi(n) with respect to MT
i , ri

is the remainder of f modulo Mi, i.e., ri = 〈f〉Mi
, and δ(n)

is the MD discrete delta function, i.e., δ(n) = 1 if n = 0 and
δ(n) = 0 otherwise. Note that the last equation in (81) holds due
to the unitarity of the MD DFT [62], i.e., for any nonsingular
integer matrix M ∈ Z

D×D,∑
n∈N(M)

exp(−j2πkTM−1n) = |det(M)|δ(〈k〉MT )

for k ∈ Z
D. (82)

Therefore, we can detect the remainder ri of f modulo Mi (also
called the aliased frequency) as a peak in magnitude of the MD
DFT domain of xi(n) in (81), if the signal-to-noise ratio (SNR)
is not too low. Nevertheless, when the SNR is not too high, the
detected remainder r̃i is most likely to be erroneous, i.e., r̃i �
ri +�ri ∈ N(Mi), where�ri is the remainder error. Then, the
robust MD-CRT for integer vectors provides an intuitive way
to estimate f from the erroneous remainders {r̃i}Li=1 modulo
the corresponding moduli {Mi}Li=1. At this point, the sampling
densities (|det(Mi)| for 1 ≤ i ≤ L) of the multiple sub-Nyquist
samplings may be far less than the Nyquist sampling density
that is defined by |det(R)|, where R is an lcrm of {Mi}Li=1.

We then illustrate the performance of the robust MD-CRT for
integer vectors in the application of MD sinusoidal frequency
estimation. In this simulation, we adopt the same Mi = MΓi

for i = 1, 2 as in the first simulation (i.e., Fig. 1). Specifically, we
undersample the sinusoidal signal with two sampling matrices
M−T

i for i = 1, 2, followed by two MD DFT’s with respect to
MT

i ’s on the undersampled sinusoids, respectively, where we
facilitate calculating the MD DFT’s with respect to MT

i ’s by
their equivalent separable MD DFT’s [47]. We set f = ( 16451373 )
and obviously this frequency belongs toA1 for both of the two
sampling cases with different M’s. The additive noise in (79)
is complex white Gaussian noise, i.e., ωi(n) ∼ CN(0, 2σ2) in
(80), and the SNR is defined as SNR = 10 log10 |a|2/2σ2 dB.
In Fig. 2, we present the probability of detection to illustrate
the estimation performance of the robust MD-CRT for integer

Fig. 2. The probability of detection versus various SNR’s for the two sampling
cases with different M’s.

Fig. 3. Mean relative error versus various SNR’s for the two sampling cases
with different M’s.

vectors in terms of various SNR’s for the two sampling cases,
where the estimated frequency f is said to be correctly detected
if its folding vectors are accurately determined, i.e., a robust
estimate of f is obtained, by Algorithm 1. Fig. 3 shows the
mean relative error E(‖f − f̃‖2/‖f‖2) between the true f and
the reconstruction f̃ verse SNR’s for the two sampling cases.
In these two figures, the SNR is increased from −38 dB to
−20 dB and 5000 trials are implemented for each SNR. From
Figs. 2 and 3, the sampling case with M = ( 96 34

16 92 ) achieves
better performance (higher probability of detection and lower
mean relative error) than the sampling case with M = ( 48 17

8 46 ),
which is in accordance with the theoretical result in Theorem 3
that the former case has a larger robustness bound than the latter
case, as mentioned before.

As a final comment, general non-separable sampling matri-
ces {Mi}Li=1 may lead to interesting MD signal processing
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properties as it has been pointed out earlier in the literature,
for example, [61], [63].

VI. CONCLUSION

In this article, the CRT and robust CRT for integers are ex-
tended to the MD case, called the MD-CRT and robust MD-CRT
for integer vectors, respectively, which are expected to have
numerous applications in MD signal processing. Specifically,
we first derive the MD-CRT for integer vectors with respect to
a general set of moduli (namely a set of arbitrary nonsingu-
lar integer matrices), which allows to uniquely reconstruct an
integer vector from its remainders, if the integer vector is in
the fundamental parallelepiped of the lattice generated by an
lcrm of all the moduli. When the moduli are given in some spe-
cial forms, we further present explicit reconstruction formulae.
Furthermore, we provide some results of the robust MD-CRT
for integer vectors under the assumption that the remaining
integer matrices of all the moduli left divided by their gcld are
pairwise commutative and coprime. Accordingly, we propose
two different reconstruction algorithms, by which two different
conditions on the remainder error bound for the reconstruction
robustness are separately obtained and proved to be related to a
quarter of the minimum distance of the lattice generated by the
gcld of all the moduli or the Smith normal form of the gcld. The
robust MD-CRT for integer vectors with respect to a general set
of moduli is still an open problem for future research.

APPENDIX

A. Matrix Computation in the Bezout’s theorem

Define S = (M N ), which is a D × 2D integer matrix of
rank D. From Proposition 1, the Smith normal form of S is

U
(
M N

)
V =

(
Λ 0

)
, (83)

where U and V are both unimodular matrices of sizes D ×D
and 2D × 2D, respectively, and Λ is a D ×D diagonal integer
matrix. Since U−1 is also unimodular, we can write (83) as(

M N
)
V =

(
L 0

)
, (84)

where L = U−1Λ is a D ×D integer matrix. Partitioning the
2D × 2D unimodular matrix V into D ×D blocks, we have(

M N
)(V11 V12

V21 V22

)
︸ ︷︷ ︸

V

=
(
L 0

)
. (85)

This implies

MV11 +NV21 = L. (86)

By rewriting (84) as(
M N

)
=

(
L 0

)(K11 K12

K21 K22

)
︸ ︷︷ ︸

V−1

, (87)

we have M = LK11 and N = LK12, where Kij for 1 ≤ i, j ≤
2 are all integer matrices due to the unimodularity of V. There-
fore, L is a cld of M and N. Then, we demonstrate that L is

actually a gcld of M and N. For any other cld T of M and N,
i.e., M = TA and N = TB for some integer matrices A and
B, we have, from (86), T(AV11 +BV21) = L, which means
that T is a left divisor of L. Therefore, L is a gcld of M and N,
and is given by

L = U−1Λ. (88)

From (86), the integer matrices P and Q in (6) are given by

P = V11 and Q = V21. (89)

In particular, if M and N are left coprime, their gcld L must be
unimodular. We right-multiply L−1 on both sides of (86), and
can further get

MV11L
−1 +NV21L

−1 = I. (90)

This equation is called the Bezout’s identity. In this case, I is
viewed as a gcld of M and N, and the integer matrices P and
Q in (6) in the Bezout’s identity are

P = V11L
−1 = V11Λ

−1U and Q = V21L
−1 = V21Λ

−1U.
(91)

B. Proof of Lemma 1

It is obvious that R is a crm of M1,M2, . . . ,ML. Then, for
any other crm C of M1,M2, . . . ,ML, we have C = MLQ
for some integer matrix Q. Moreover, since C is a crm of
M1,M2, . . . ,ML−1, and B is an lcrm of M1,M2, . . . ,ML−1,
we know that C is a right multiple of B, i.e., C = BP for some
integer matrix P. Thus, C is a crm of B and ML. Since R is an
lcrm of B and ML, C is known as a right multiple of R, i.e.,
C = RA for some integer matrix A. Therefore, R is an lcrm of
M1,M2, . . . ,ML. Similarly, we can prove that if B is an lclm
of M1,M2, . . . ,ML−1, and R is an lclm of B and ML, then
R is an lclm of M1,M2, . . . ,ML.

C. Proof of Lemma 2

As N1,N2, . . . ,NL are pairwise commutative, we im-
mediately verify the commutativity of Ni1Ni2 · · ·Nip and
Nj1Nj2 · · ·Njq . We next prove their coprimeness. For easy of
presentation, we first look at a simple case when L = 3. In this
case, we need to prove without loss of generality that N1N2 and
N3 are coprime. LetD be a gcrd ofN1N2 andN3. SinceN1 and
N3 are coprime, from the Bezout’s theorem in Proposition 2 we
have, for some integer matrices P and Q, PN1 +QN3 = I,
on both sides of which we right-multiply N2D

−1, and then
commute N2 and N3 to get PN1N2D

−1 +QN2N3D
−1 =

N2D
−1. Since D is a gcrd of N1N2 and N3, we know that

N2D
−1 is an integer matrix. That is to say, D is a right divisor

of N2. As stated above, D is a right divisor of N3, and N2

and N3 are coprime. So, D must be a unimodular matrix. Thus,
N1N2 and N3 are right coprime (equivalently coprime from
Proposition 3 and their commutativity). Accordingly, the above
result can be readily generalized to the case when L > 3, and
therefore, Ni1Ni2 · · ·Nip and Nj1Nj2 · · ·Njq are coprime.

In addition, based on Proposition 3 and the above result, we
know that R2 � Ni1Ni2 is an lcm of Ni1 and Ni2 , and R2
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is commutative and coprime with Ni3 . So, R3 � R2Ni3 =
Ni1Ni2Ni3 is an lcm of R2 and Ni3 , and R3 is commutative
and coprime with Ni4 . Moreover, R3 is an lcrm of Ni1 ,Ni2 ,
and Ni3 from Lemma 1. Continue this procedure until Rp �
Rp−1Nip = Ni1Ni2 · · ·Nip is an lcm of Rp−1 and Nip . From
Lemma 1, Rp is an lcrm of Ni1 ,Ni2 , . . . ,Nip , and similarly,
we can deduce that Rp is also an lclm of Ni1 ,Ni2 , . . . ,Nip .

D. Proof of Corollary 1

Since Ni is a left divisor of Mi for each 1 ≤ i ≤ L, there
exists some integer matrix Pi such that Mi = NiPi for each
1 ≤ i ≤ L. So, from the remainders ri = 〈m〉Mi

, we have

m = NiPini + ri for 1 ≤ i ≤ L, (92)

where ni’s are unknown folding vectors. Regarding (92) as a
system of congruences with respect to the moduli Ni’s, we get

m ≡ ξi mod Ni for 1 ≤ i ≤ L, (93)

where ξi = 〈ri〉Ni
. Since N1,N2, . . . ,NL are pairwise

commutative and coprime, we know from Lemma 2 that
N1N2 · · ·NL is their lcrm, so is R = N1N2 · · ·NLU for a
unimodular matrix U. Therefore, we obtain from Theorem 1
that m ∈ N(R) can be uniquely reconstructed from its remain-
ders ξi’s or ri’s. Next, we prove that m in (22) is actually a
solution of the system of congruences in (93). We express m as
m = Rn+

∑L
i=1 WiŴiri for some integer vector n. Then,

for each modulo-Nj operation, we calculate

〈m〉Nj
=

〈
Rn+WjŴjrj +

L∑
i=1,i�=j

WiŴiri

〉
Nj

=
〈
WjŴjrj

〉
Nj

= 〈(I−NjQj) rj〉Nj

= 〈rj〉Nj
= ξj ,

(94)

where the second equality is due to the commutativity of Ni’s,
the third equality is obtained from (23), and (23) holds because
Ni is coprime withWi for each 1 ≤ i ≤ L from Lemma 2. This
completes the proof of the corollary.

E. Proof of Lemma 3

As A is an lcrm of Γi’s, MA is a crm of Mi’s. For any other
crm C of Mi’s, i.e., C = MΓiPi for some integer matrices
Pi’s, we have M−1C = ΓiPi, i.e., M−1C is a crm of Γi’s. So,
M−1C is a right multiple of A, i.e., M−1C = AG for some
integer matrix G. Hence, we have C = MAG. That is to say,
MA is an lcrm of Mi’s.

F. Proof of Corollary 2

Since Γi’s are pairwise commutative and coprime, we know
from Lemma 2 that Γ1Γ2 · · ·ΓL is an lcm of Γi’s. Based on
Lemma 3, R = MΓ1Γ2 · · ·ΓLU for any unimodular matrix
U is an lcrm of Mi’s. Without loss of generality, we let
N1 = MΓ1, N2 = Γ2, . . ., NL = ΓL. As M,Γ1,Γ2, . . . ,ΓL

are pairwise commutative and coprime, we obtain from Lemma

2 that Ni’s are pairwise commutative and coprime. In addition,
it is also readily seen that R = N1N2 · · ·NLU, and Ni is a left
divisor of Mi for each 1 ≤ i ≤ L. Therefore, by Corollary 1,
we can uniquely reconstruct m ∈ N(R) from the moduli Mi’s
and its remainders ri = 〈m〉Mi

by (22).

G. Proof of Corollary 3

Since Γi’s are pairwise commutative and coprime,
Γ1 · · ·Γi−1Γi+1 · · ·ΓL and Γi are known to be commutative
and coprime from Lemma 2. We next prove that Wi and
Mi are left coprime for each 1 ≤ i ≤ L. Let D be a gcld of
Wi and Mi. We then have Wi = MΓ1 · · ·Γi−1Γi+1 · · ·ΓL =
DP and Mi = MΓi = DQ for some integer matrices P and
Q. Hence, we have Γ1 · · ·Γi−1Γi+1 · · ·ΓL = M−1DP and
Γi = M−1DQ. As M is unimodular, M−1D is an integer
matrix and is a cld of Γ1 · · ·Γi−1Γi+1 · · ·ΓL and Γi. Since
Γ1 · · ·Γi−1Γi+1 · · ·ΓL and Γi are commutative and coprime,
all of their cld’s must be unimodular. Therefore, M−1D is a
unimodular matrix, so is D. That is to say, Wi and Mi are
left coprime. Based on the Bezout’s theorem in Proposition 2,
there exist integer matrices, denoted by Ŵi and Qi, such that
(26) holds for each 1 ≤ i ≤ L, and we can calculate them by
following the procedure (83)–(91). In addition, from Lemma 2
and Lemma 3, we know that R = MΓ1Γ2 · · ·ΓLU for any
unimodular matrix U is an lcrm of the moduli Mi’s. The
remaining proof is similar to the proof of Corollary 1 and is
omitted here.

H. Proof of Lemma 4

Let α1 =

(
1
1

)
and α2 =

(
1
−1

)
. It is readily checked that

α1 and α2 are two eigenvectors of P with the corresponding
eigenvalues p+ q and p− q. Any integer vector in R

2 can be
represented by a linear combination ofα1 andα2. Assume that
P can be diagonalized as P = UΛU−1, where U is a 2× 2
unimodular matrix and Λ is a diagonal integer matrix. This
means that U is an eigenmatrix of P. Let u be any column
vector of U and it can be represented by u = aα1 + bα2 with
a, b ∈ R. Then, we get Pu = pu+ q(aα1 − bα2). Since U is
unimodular, it is nonsingular, and its column vectors cannot be
the all-zero vectors. Since u is a non-zero eigenvector of P and
q �= 0, we know that one and only one of a and bmust be 0. Thus,

U has to be the form of

(
a1 a2
a1 a2

)
,

(
b1 b2
−b1 −b2

)
,

(
a1 a2
a1 −a2

)
,

or

(
b1 b2
−b1 b2

)
. Obviously, the determinants of

(
a1 a2
a1 a2

)
and(

b1 b2
−b1 −b2

)
are zero, which indicates that the first two forms

of matrices are not possible to be unimodular. The determinants

of

(
a1 a2
a1 −a2

)
and

(
b1 b2
−b1 b2

)
are −2a1a2 and 2b1b2, respec-

tively, which are not equal to ±1 for any a1, a2, b1, b2 ∈ Z. This
indicates that the last two forms of matrices are also not possible
to be unimodular. Therefore, U cannot be unimodular. That is
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to say, P cannot be diagonalized as P = UΛU−1, where U is
a 2× 2 unimodular matrix and Λ is a diagonal integer matrix.
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