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System ldentification Using Chirp Signals and Time-
Variant Filters in the Joint Time-Frequency Domain

Xiang-Gen Xia,Member, IEEE

_ Abstract—In this paper, we propose a novel method to iden- where S;,(w) is the cross-spectrum of[n] and y[r], and
tify an unknown linear time invariant (LTI) system in low S..(w) is the autospectrum af[n]. When the additive noise

signal-to-noise ratio (SNR) environment. The method is based in (1.1) i G . d statisticall
on transmitting chirp signals for the transmitter and using linear v[n] in (1.1) is a zero-mean Gaussian process and statistically

time-variant filters in the joint time-frequency (TF) domain for ~ independent of the input signalx], the estimate in (1.2) is
the receiver to reduce noise before identification. Due to the TF asymptotically unbiased, and its error variance approaches the

localization property of chirp signals, a large amount of additive _ ; : ;
white noise can be reduced. and therefore. SNR before iden- Cramer—Rao lower bound that is proportional to the variance

tification can be significantly increased. This, however, cannot Of the additive noise[n]. Clearly, the performance is limited
be achieved in the conventional methods, where pseudo-randomby this noise variance, or the signal-to-noise ratio (SNR).
signals are used, and therefore, noise reduction techniques do not\\/hen this SNR is low, the performance of the estimate in

apply. Our simulation results indicate that the method proposed . . . .
in this paper outperforms the conventional methods significantly (1.2) is poor. Since the autospectrum of the input sigrial

in low SNR environment. This paper provides a good application is in the denominator in the estimate (1.2), the input signal

of time-frequency analysis and synthesis. is, in general, chosen as a pseudo-random signal with flat
spectrum [4]. With these kinds of input signals, noise reduction
. INTRODUCTION techniques before system identification do not apply. As a

HE SYSTEM identification problem is a classical andnatter of fact, any traditional noise reduction technique, such

important problem in signal processing, which has applas any Fourier transform technique, does not perform well
cations in many fields including channel estimation in wireleggr wideband signals. This implies that it is not possible to
communications. There have been extensive studies on fpigrease the SNR or the performance of the estimate (1.2) by
problem; see, for example, [2], [3], [28], [31], and [32]. Thgransmitting a pseudo random signal and using the conven-

problem can be stated as tional Fourier noise reduction techniques. Several questions

yln] = hln — (k] + v[n] (1.1) arise here:
k i) Can we transmit other wideband signals, such as chirp
where signals, instead of pseudo random signals?
z[k] transmitted signal; i) If so, can we take the advantage of these wideband
hln] impulse response of a linear time invariant (LTI) signals and reduce the noisg:] in (1.1)?
system (or channel); ii) If so, can we improve the performance of the estimate
v[n] additive noise; (1.2) after denoising?

yln] receivgd signal. _ ~ The aim of this paper is to positively answer these questions.
The problem is to identify the LTI system transfer functioRrhe main idea is the following. Chirp-type signals are trans-
H(w) of h[n] given the input and the output signalf1] and  iteq which have wideband characteristics in the frequency

vlnl. domain but concentrate in the joint time-frequency domain.

The conventional method for solving the above problem Ehi : : .
. . hirp-type signals are used quite often, such as in radar and
the least-squared solution method that is equal to the cross- : o .
IFM in communications systems. The TF concentration

spectral method in stationary cases, i.e., the system trandfe e
function H(w) can be estimated by property usually holds after an LTI system (this will be seen

So (@) later). Since a joint TF distribution usually spreads noises and
S’”y d (1.2) localizes signals, in particular chirps, the receiver may use a
z2(w) TF analysis technique (see, for example, [5]-[27]) to map the
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becomes consider Gabor transforms. In this section, we first review the
discrete Gabor transforms (DGT).
gln] = Zh[n—k]x[k]‘i‘f/[”] 1.3) Since oversampled DGT is more robust for noise, it is
k usually used in noise reduction applications. However, a
where[n] is the new noise after the filtering. disadyantage for oversampled DGT .is that it_is not an onto
The time-variant filter used in this paper is based on t1{BaPPINg. In othgr words, not every 5'9”%{"“7” |n.the_DGT
&ansform domain corresponds to a time domain sigial

discrete Gabor transforms, which was studied in [5]-[7]. F hat the DGT of X | | toSTE. 11, Thi
chirp-type signals, about 13 dB SNR is increased consisten?& that the 0 3.[”] IS exacty equal toS]%, ]. IS~
uses problems in filtering in the DGT transform domain,

\tlgléhlcf\r/]\/l,ssg;?:‘ol?e[g]e{mvglz ?g;gieirg;%?hfwlgﬁél% I(slgc))twhich is that the filtered signal _in the DGT tra_nsform domain
may reach a significant high level so that the estimat& @f) may not corrgspo_nd to any time d(_)maln S|gngl as shown
from g[n] andz[n] is accurate enough for many applicationén Fig. 1. An intuitive solution for th's p-roblem Is to take.
In this paper, both denoising with several mask design meth&HE least-squared error (LSE) solution in the time domain
and system identification simulations are performed. TheGge, for examp!e, [8]-13]). The I.‘S.E’ however, usually does
simulations show that a much better performance over t gt hgve a desweq TF gharacterlstlcs in the DGT-transform
conventional method can be achieved. omain. When a s.|gnall is very long, thg computational load
It should be pointed out that the optimal training signa{Pr the LSE.SO|Ut'°n IS _S|gn|f|cantly high because of @he
design for dynamic system identification has a long hiSthlg)ve.rse matrlx cgmputatlon. Based on these obserygﬂons,
dating back over 20 years. The design methods are traditionaily iterative algorithm was proposed in [5}-[7]. Conditions

based on the minimization of the Cramer-Rao bound f8 the convergence, properties of the limit signals, and the

the system parameter estimation in either the time or th?atlonsmp between the LSE solutions and solutions from

frequency domain (see, for example, [28]-[32]) but not i e iterative algorithms were obtained in [6] and [7], where

the joint TF domain. The aim of this paper is, however, n%significant improvement over the I.‘SE. solutio_n was "’.“SO
focused on the optimal training signal design, although it own. The second part of this section is to briefly review
a very interesting topic. Denoising before identification usinf;Ome of these results.

nonredundant discrete wavelet transform was studied in [33]

for chemical process control applications. A. Discrete Gabor Transform

This paper is organized as follows. In Section Il, we briefly we first review some basics on the DGT, which is necessary
review discrete Gabor transforms and the iterative time-varigat this paper. For more about the discrete short-time Fourier
filtering studied in [5]-[7]. In Section Ill, we use the time-transform, see [14], for more about DFT filterbanks, see [15],
variant filter studied in Section Il to reduce additive whitgind for more about the DGT, see, for example, [16]-[22]. Let a
Gaussian noise for a received signal. The filtering problem éignal s[k], a synthesis window functioh[r], and an analysis

this paper has its own characteristics due to the fact that {hgdow functiony[n] be all periodic with same periabl. Then
transmitter and the receiver know the transmitted chirp signal

x[n], and therefore, its TF information is knovenpriori. This Mo1N-L

TF information can be used in designing a mask in the time- slk] = Z Z Cr,nhim n[k] (2.1)

variant filtering. In Section 1V, we utilize the conventional m=0 n=0

system identification method, i.e., the cross-spectral method =y .

(1.2), after the denoising in Section IIl. In Section V, we Crmn = Zs[khmm[k] (2.2)

conclude this paper by addressing some possibilities for further k=0 ANK

improvements. honn[k] =k — mAM]WE (2.3)
Y k] =]k — mAM|WpANE (2.4)

Il. DISCRETE GABOR TRANSFORM

AND. TIME-VARIANT FILTERING andWy, = exp(j2n/L), j = v/—1. The coefficients’,, ,, are

. . called the DGT of the signai[k], and the representation (2.1)
There have been many TF analysis techniques, suchig@galled theinverse DGT(IDGT) of the coefficientsCy, .
Wigner-Ville distributions in the Cohen’s class, spectrograne condition on the analysis and synthesis window functions

(short-time Fourier transform or Gabor transform or DFT[k] and h[k] obtained by Wexler and Raz is the identity
filterbanks), and scalogram (wavelets) (see, for example, [5],

[23]-[27]). Some of them, such as bilinear TF distributions =1 oMk .

have high resolution but have crossterms for muIticomponeE hlk +mN]W, v*[k]

signals. Some of them, such as linear techniques (for exarfi=9

ple, Gabor transforms and wavelet transforms), do not have = ¢é[m}é[n], 0<m<AN-1, 0<n<AM-1
crossterms for multicomponent signals but may not have very (2.5)
high resolutions. Since, in this paper, we deal with a linear

Comblnatlon (or a ||near System) Of Varlous Chlrp Slgnalsy It Isllf we take the inVeltSe discrete Fourier t!’anSfOI’m with I’espect to the
. f TE analvsis technigue not to have crosstert arameter at the both S|d_es, the system (2.5) is the same as the one obtained
'mport_am ora y q ’ : i %14] when all convolutions are considered to be cyclic convolutions for
while it should also have a good resolution. This leads us fisite length signals in [14].
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Fig. 1. TF transform illustration.

whereAM and AN are the time and the frequency sampling The DGT and IDGT can be also represented in matrix forms.
interval lengthes, and/ and N are the numbers of samplingLet

points in the time and the frequency domains, respectively, C =(Coo Corr s Crit 1)

M-AM=N-AN =L, MN > L (or AMAN < L). The T ML

critical sampling case is whei - N = AM - AN = L. The s=(s[0], s[1],- -, s[L = 1])".

condition (2.5) on window functions and~ can be rewritten The DGT can be represented by theN x L matrix Gy x 1

in matrix form as with its (mN + n)th row andkith column element
e (26)  Vulk] =7k —mAMIW AR 0<m < M -1

. . 0<n<N-1, 0<k<L-1.
where the subscripin x n means them by n matrix p =

AM - AN,vpx1 = (7[0],v[1],---,7[L — 1])T, and 1,51 = The IDGT can be represented by thec M N matrix Hyx ar v
(1,0,---,0)T and the element at then AM + n)th row and with its kth row and(mN + n)th column element

the kth column in the matrixH, s, is o [H] = B[l — mAM]WPANE, 0<m<M—1

hlk +mNW ™Mk 0<m < AN -1 0<n<N-1, 0<k<L-1.
0<n<AM-1, 0<k<L-1 Thus
In the critical sampling case and whéf,,; has full rank, C=Guynxrs and s=Hp.ynC. (2.9)

there is a unique solution for the analysis window function N o
~[n]. In the oversampling case and whéh, ;. has full rank, The condition (2.5) implies that
there are inﬁn?te many solution_s for the s_:ystem (2.5). Among HiwunGunwr = Ioxr (2.10)
them, the minimum norm solution was given in [17]

where I, is the L x L identity matrix.

Vix1 = H;xL(HPXLH;xL)_1NPX1 2.7)

B. Iterative Time-Variant Filtering Algorithm
wheret means the complex conjugate transpose. It was prove
in [18]-[20] that the above minimum norm solution is also th
most orthogonal-like solution, i.e., (a more general form w
given in [22])

%e next want to briefly review the iterative time-variant
gtering algorithm proposed in [5]-[7]. This algorithm is used
ater in the denoising for the system identification problem.
The oversampling of the DGT adds redundancy, which
lvox: = Poxil = min Wrx: = hoxil|- is usually preferred for noise reduction applications. From
Yo x1i Hpx 1y 1 =Hpx1 (2.1)—(2.5), (2.9), and (2.10), one can see that &n
(2.8) dimensional signa$ is transformed into ad/ N-dimensional
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Fig. 2. Iterative time-varying filtering algorithm.

signalC, and M N is greater tharl. due to the oversampling. Clearly, when the signal length is large, the inverse matrix
Therefore, only a small set dff V-dimensional signals in the computation is expensive. Although the error in (2.15) is min-
TF plane have their corresponding time waveforms with lengtimized, the DGT of the least-squared soluti@may not fall
L. Let Dyynvxcun denote the mask transform, specifically, @ the maSkDMNxMN: G]w]\rfo 75 DJWNXJ\{NGJWJ\Tfo
diagonal matrix with diagonal elements either O or 1. ket when MN > L.
be a signal with length. in the time domain. The first step The complexity for the iterative algorithm (2.12)—(2.14) is,
in the time-variant filtering is to mask the TF transformsof however, low, which does not need to compute inverses of
C. = Dun G large size matrices. By considering the DGT and IDGT in
1 MNxMNSMNx LS (2.1)—(2.4), the computational complexity in (2.12)—(2.14) is
where Dy v« v masks a desired domain in the TF plangeroportional to the signal length multiplied by the window
Since the DGTGunxz IS a redundant transformation, thdength, i.e., LLy-. Notice that the complexity of directly
IDGT of Cy, HyxymnCi may not fall in the mask. In other computing the inverse matrices in (2.16) is proportional.to

words, in general Therefore, when the length of window functiohsand ~ is
I D I much shorter than the length of the sigeathe computational
GunxrHixunCr # Dynsaun GunxHoxaun Gy complexity in the iterative algorithm (2.12)—(2.14) is much

(2.11) lower than the one for the least-squared solution in (2.16).

where M N > L, which is illustrated in Fig. 1(e). Notice that.t Wf. nexlt Wiﬂt 0 k!ItSt sedv_eraIG rela;e(i resultt_]s ththe above
in the critical sampling case, i.eM N = L, the inequality fterative algorithm obtained in [6] and [7], such as the conver-

(2.11) becomes an equality. An intuitive method to reduce yegnce, the properties of the limit signals, and the relationship

difference between the right- and the left-hand sides of (2. tistween this algorithm and the LSE solution. These results

is to mask the right-hand side of (2.11) again and repeat t &all)r?sdeollno[lﬁlth:ngo;?|t|on on the window functidnand ¥

procedure, which leads to the iterative algorithm

AN-1
s0=5$ (2.12) > YIN +EJAIN + k+mAM]
Cit1 =DynxunGuNx LSt (2.13) 1=0
Stv1 = HrxunC 1=0,1,2,---. (2.14 At
T AL e (214) = N WIN+ KR[N + k+mAM] (2.17)
The above iterative algorithm is illustrated in Fig. 2. 1=0

Before going to the convergence, let us see what the LSEfg, 1. — 0,1,---,N—1landm =0,1,---,M — 1.

Based on the definition, the LSE solution is the< 1 vector Theorem 1: When the synthesis and the analysis window
z that minimizes functions h[n] and~[n] satisfy condition (2.17), the iterative
algorithm (2.12)—(2.14) converges.

There are two trivial cases where (2.17) holds. The first
case is the orthogonal cagén] = ~[n] for all integern. The

|GrnxL® — Dy nGrrn xrs||
= H%cin lGrinxr® — DynsyunGunxrs]|. (2.15)

Then second case is the critical sampling casé/ = N. Notice
_ : L that the continuous Gabor transform is never orthogonal unless
T =(CGynxrGunxr)” GynPunxunGunxrs.  the window functions are badly localized in the frequency

(2.16) domain. This, however, is not the case for the DGT. The
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Fig. 3. Transmitted signal[n] and its Fourier spectrunk (w).
most orthogonal-like solution was studied by Qianal. in [II. DENOISING FOR RECEIVED
[18]-[20]. They showed that it is possible to have the analysis SIGNALS THROUGH A NoISY CHANNEL

window functiony very close to the synthesis window function

h when/ is truncated Gaussian. The error betwéeand~y IS \ariant filter studied in Section Il for received signals in a

less tharg x 10~° (see Fig. 4) while they are of unit eNnergynoisy channel.

and therefore, the error is negligible. It was shown in [6] that

the performance of the iterative algorithm strongly depends

on (2.17). When this condition does not satisfy, the iterative: S0Me Parameters

algorithm may not converge. The signal length is randomly chosen as 500. The signal
Theorem 2:Under (2.17), the DGT of the limig of the x[n] for the transmitter is

iterative algorithm (2.12)—(2.14) falls in the magky; n x pr N,

ie.

In this section, we want to do noise reduction with the time-

n+157*
x[n] = cos 150 ; n=0,1,---,499. (3.1)
(2.18) 0

The above results say that as long as (2.17) on the analyBige waveform and its Fourier transforii(w) of the above
and synthesis window functions is satisfied, the iterativ@gnalz[n] are shown in Fig. 3. Notice that since the Fourier
algorithm converges, and the limit signal has the desired Pewer spectrun.X (w)|? will be used in the denominator in
characteristics, i.e., its DGT falls in the desired mask. Ortke system identification, it should be as far away from zero as
might ask whether it violates the known fact that an imaggossible. Since the noise-reduction performance of the time-
of a TF transform of a signal in the TF plane cannot beariant filtering in Section Il depends on the localization of
compactly supported. This is because a signal cannot be tirttee signal in the TF plane, the transmitted sigafd] should
and bandlimited simultaneously. To answer this question, we as concentrated in the joint time and frequency domain as
first need to know that the above known fact is true fquossible. The synthesis and analysis window functions used in
continuous TF transforms. Moreover, the proof of the fact this paper are shown in Fig. 4, where their lengthes are 256.
based on the marginal properties of TF transforms. It may nbhe synthesis window function is just the Gaussian function
be true for discrete TF transforms. In other words, discrete BHAd its analysis window function is the most orthogonal-like
transforms may have compact support [5]. solution given in (2.7). Their difference and the difference

Theorem 3:Under (2.17), the first iteratios; of the it- between the left-hand side and the right-hand side of (2.17),
erative algorithm (2.12)—(2.14) is equal to the least-squared., the condition error, are also shown in Fig. 4. One can
solution in (2.16), i.e.s; = =. see that they almost satisfy (2.17). The time sampling interval

With this result, one will see later that the iterative algorithrtength AM = 16 and the frequency sampling interval length
(2.12)—(2.14) improves the least-squared solution when theV = 2 in the discrete Gabor transform and its inverse in
number of iterations increases, and meanwhile, one does 8ettion Il. These parameters are used throughout the rest of
need to compute the inverse matrix in (2.16). this paper. The DGT of[n] is shown in Fig. 5. The tail part

Gunxr3=DynsxmnGunxLs.
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synthesis window h[n]

analysis window r[n]
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Fig. 4. Synthesis and analysis window functions and the condition (2.17) test.
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Fig. 5. Discrete Gabor transform of signaln).

of the DGT in Fig. 5 is because of the discrete calculatiar[n], and
aliasing.
In this paper, we use 20-tap LTI systems in our numerical

examples, where the number 20 is just randomly chosen. The e
channel model is sin] = > hlkle[n — K] (3.3)
N-1 k=0
y[n] = Z hlklz[n — k] + vin] (3.2)
k=0

is considered to be the signal[n] is the transmitted signal
whereN = 20 in the following numerical examples[n]isan as in (3.1),y[n] is the received signal, anli[n] is an LTI
additive white Gaussian noise and independent of the sigsgbktem (or channel) impulse response. The original SNR for
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Fig. 6. Example of LTI channek[n], signal s[n], and received signal[n] and their Fourier spectrum, where the SNR —4.5 dB for the additive

white Gaussian noise.
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In the following, we randomly generate the chanhpt]. As
an example, a channel Fourier spectrum and received sig(®&B) is similar to the one for the signaln] in Fig. 5. This is

&0

Discrete Gabor transform of the received siggal] in Fig. 6 with SNR= —4.5 dB.

time waveformy([n] with SNR= —4.5 dB and the signai[n]
without noise and their Fourier spectrum are shown in Fig. 6.
The DGT of the received signajn] with —4.5 dB SNR is
shown in Fig. 7. In Fig. 7, one is still able to see the chirp
pattern in the joint time and frequency plane, although it is
impossible in the time or the frequency domain alone in Fig. 6.

B. Mask Design
The pattern in the DGT domain of the above siggial] in
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not only true for this particular example but is also the case fure signal s[n] is usually in a close neighborhood of the
our numerous examples. The reason is due to the followipgttern in the DGT domain of[n]. Therefore, the masP,,

analytic argument. is usually designed so that it covers a relatively large area,
Assume the chirp signak[n] = exp(jen”) for some i.e., the thresholding constan in Step 2 is usually chosen
constantsr > 2 andc¢ # 0. Then not too large. Since the received signgh| is from a noisy
s[n] = Zh[k]a:[n — k] channel, the resolution of iFs DGT pattern may_be reduced,
! and therefore, the thresholding constanin Step 3 is usually

chosen to be not too small. Otherwise, the magkwill cover
too much unwanted area. Let us see an example. The Mask
1 from z[n], the maskD,, from y[r|, their productD = D, D,,
_ P ; Lyr—l and the maskD, from the true signals[n] are shown in
= expljen )zk:h[k] P <Jc;cm b ) Fig. 8, respectively. The SNR in this case is SNR-1.4
1 dB. The thresholding constants in Steps 1-3 gre= 0.12
= x2[n] Z h[k] exp <jcz cmlm—l) andt; = 0.15 - max(DGT(y)). It should be pointed out that
& =0 the above mask design procedure may be improved by using
which is dominated by the original chirp[n] for finite tap More sophisticated designs. Possible improvements are
LTI systemsh[k]. It is because that the highest chirp order of i) to find the optimal thresholding constantsand¢; by
s[n],r, and the corresponding chirp rate are the same as those training a large number of signals and systems;
of z[n], whereas the chirp order for the above multiplier of ii) to use more sophisticated statistical detection method

= ) Dkl exp(je(n = k)")
5

z[n] in s[n] in the DGT domain for the received signgh| instead
r—1 of a simple thresholding in Step 3;
Z h[k] exp <jcz cmlk”_l> iii) to smooth the maslD = D, D, since the true mask,
k =0 is usually smooth due to the nature of a chirp signal,
is only » — 1. As a special case, when= 2 but D, from the noisy signaj/[»] may not be smooth.
s[n] = z[n]G(2cn) Some morphological operations, such as dilation, may

be used to smooth the magk.
Another observation from our various numerical examples
Gw) = Z hlk]x[k] exp(—j2enk). is that the maslkD,, is the mean of the true magdR, in terms
k of different LTI systemsh[n].

whereG(w) is the Fourier transform of the signaln]z[n]

When the channél[n] has only a finite tap, the functiof(w)
is usually a smooth signal. C. Denoising Experiments

Since the transmitted signain] is known to both trans-  |n this subsection, we want to implement the time-variant
mitter and the receiver, by the above property, its pattern fitering algorithm in Section Il with three masking techniques:
the DGT domain may help in designing a mask in the DG{sing the maskD = D, from the transmitted signal, using
domain for filtering noise. This is exactly the motivation fokhe maskpD = D,D, as designed by Steps 1-4, using the
the following design method of a maskynxmn in the  true maskD = D,. We run 100 tests in terms of different
iterative time-variant algorithm (2.12)—(2.14). The subscriptr| systemsh[n] (randomly generated) and different additive
MN x MN of the maskDynxnn Will be dropped from  \hite Gaussian noisesn] for each masking method and take

now on without causing confusion in understanding. their mean SNR. Nine iterative steps are used in the iterative
1) Mask Design Procedure: algorithm (2.12)—(2.14). Fig. 9 shows the curves of the mean
Step 1) Implement the DGT,, ., of the transmitted signal SNR versus iterative steps for the three masking methods.
z[k]. First, we analyze the time-variant filter (2.12)—(2.14) with
Step 2) Threshold the DGT coefficients,, , and have a the maskD = D,. From Fig. 9, the SNR drops after the
mask D, from Cy, ,, second iteration. This is because the mask we used is
b (1, i [Clmyn)| >t D,., which matches th_e t_ran_smitted si_gm:ih] _and nots[n].
=(m,n) = {07 otherwise Although there is a similarity (see Fig. 8) in the TF plane

between the DGT ofr[n] and the DGT ofs[n], they are
wheretq is a predesigned positive number that isot equal. The similarity is exactly the reason why the SNR
called thresholding constant increases significantly in the first and the second iteration step.
Step 3) Implement Steps 1 and 2 for the received sigrihe difference between[n] and s[n] causes the SNR to drop
y[k], and design a maskD, with thresholding after the second iteration. Notice that the md3k= D, is
constantt; from the DGT coefficients ofi[n] with  known to the receiver, and it is a good candidate in the time-

another predesigned constant> 0. variant filtering if the iterative algorithm stops at the second
Step 4) The final mask is the productbf, andD,: D = teration step.
D.D,. We now analyze the performance of the md3k= D, D,.

Since the DGT of the signat[n] usually dominates the This mask rejects a lesser portion of the noise outgigehan
DGT of the signals[n], the pattern in the DGT domain of D, alone does, when the first thresholding constarfor D,,
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mask Dx from x[n] mask Dy from y[n]
40
30
20
10
20 40 60
the final mask D=DxDy mask Ds from original s[n}
40 40
30 30
20 20
10 10 I
L
20 40 60 20 40 60

Fig. 8. Example of mask®, from z[n], D, from y[r], the final maskD = D, D,, and the true maslP, from s[r], where the SNR= —1.4 dB.

mean SNR
10 T T T T T T T T
8 -
6 .
4 -
o ) solid: with mask Dx
2 ! dashed: with mask D=DxDy b
dashdot: with true mask Ds
0 =
-2 Foriginal SNR b
-4 1 1 1 L 1 t 1 1
0 1 2 3 4 5 6 7 8 9

number of iterations

Fig. 9. Mean SNR curves of the iterative time-variant filtering with the following magks: D.,D = D, D,, andD = Dj.

in Step 2 is less than the one in designifig alone. The reason ative time-variant filtering over the original SNR is achieved
why this ¢y for D should not be large is for the conservatiomonsistently. Notice that by Theorem 3, the first iteration is
because the mask, is multiplied by D, in designingD. equal to the conventional least squared solution. The iterative
It, however, happens because the beginning SNR’s are notiase-variant filtering outperforms the least squared solution
high as the ones in the time-variant filtering with the mask by about 3 dB.
which is shown by the solid line in Fig. 9. Since, in general, To improve the performance of the iterative time-variant
D = D,D, covers relatively more signal information tharfiltering, what one can do further is to use more sophisticated
D, alone does, the SNR increases when the iteration numbegthods to detectD, and D,, in particular D,, so that
increases. their productD = D,D, is as close toD, as possible.
The third maskingD = D, method is the ideal case. WithBesides what has been mentioned in the previous subsections,
this ideal mask, about an 11 dB SNR increase with the itatirectly minimizing the difference betweel? = D, D, and
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DGT of yin] mask O =Duly
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Fig. 10. DGT ofy[r] with noise ands[n] without noise and their corresponding masks (original SNR7 dB).

................................................................................................

yInl . ) yIn] hn]

: Denoising using System i

- i e PSP o a—
——+» time-variant identification| i

: filters :

new system identification method

Fig. 11. New system identification method.

D, with training signals is another potential approach. When The conventional system identification method used here is
the original SNR is not too low, the chirp pattern gfi] can the cross-spectral method
usually be seen clearly in the DGT domain of the received

signaly[n]. An example is shown in Fig. 10, where the original _ Sgo(w)
SNR = 2.7 dB. Hnew(w) (41)

wherez[n] is the chirp signal defined in (3.1). It is compared
with the conventional method without denoising, i.e.,

In this section, we first use the iterative time-variant filter
(2.12)—(2.14) developed in the previous sections to reduce Ho (w) = Syz(w) 4.2)
the additive white Gaussian noisgn| from the received ol Sez(w) '
signaly[n]. In the iterative time-variant filter, for calculation
simplicity, we choose the first masking method studied wwhere xz[n] is also the chirp signal. Since the system iden-
Section 1lI-C, i.e., the maskD = D,, for all calculations tification performance usually depends on the signfi]
in this section. With this mask, two iterations are used imansmitted, one might say that it is not fair to compare them
the time-variant filter in Section II-B. We then implemenusing the chirp signal that is preferred here for denoising but
the conventional system identification method, as shown fimight not be preferred for other methods. For this reason, we
Fig. 11. also compare our new method with the conventional method

IV. SYSTEM IDENTIFICATION
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system Fourier spectrum SNR after identification

10 T T T T T
5F i
o conventional method -7 - 1
using chirp signal _ -
m -7
° -~
- -
-5} -7 T 1
- _/"
-~ - - rd
~10- - - .
PE ~¢éonventional method
_.- using pseudo-random signal
_15 1 1 1 1 1
-6 -4 -2 0 2 4 6

original noisy channel SNR

Fig. 12. Comparison of system identification methods. The conventional method using chirp signals; the conventional method using pseudaiedsidom sig
new method using chirp signals, and time-variant filtering.

original no noise
10 10
8 8
6 6
4 4
2 2
0 0
0 1 2 3 4 0 1 2 3 4
old method new method
25 10
20 8
15 6
10 4
5 2
0 0
0 1 2 3 4 0 1 2 3 4

Fig. 13. System identification examples: Original spectiffifww)|; identified spectrum without additive noise using the chirp signal; conventional method
with additive noise of SNR= —0.4 dB; new method with additive noise of SNR —0.4 dB.

using pseudo-random sequences method, the chirp signal in (3.1) outperforms pseudo-random
signals by about 6 dB. In Fig. 13, some identification examples

Hog, (w) = SL(W) (4.3) are shown, where the original SNR-€.4 dB. As a remark,
Saz(w) all system identification calculations used in this paper are

where #[n] is a pseudo-random sequence. based on the Matlab Signal Processing Toolbox.

Fig. 12 shows their performances, where 200 tests are used
for the mean SNR curves for the system spectrum versus the
original SNR. Our new method performs much better than In this paper, we proposed a system identification method.
others. Surprisingly, even for the conventional cross spectiidie proposed method is based on transmitting chirp signals

V. CONCLUSION
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crosscorrelation between x[n] and original noise
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Fig. 14. Cross correlations between the new né[s¢ (SNR= 0.74 dB) and the signat|n] and the original noise[n] and the signat[n] (SNR= —6.4 dB).

and denoising followed by the conventional identificatiothe original noisev[n] and z[n]. It should be observed from
method. The denoising method is based on time-variant filtexar numerous numerical examples that this phenomenon only
ing in the joint time-frequency (TF) domain. Since transmittellappens when the original SNR is very low.

signals are chirp-type signals, they are well-localized in the
TF domain, and one is usually able to see their patterns in
the TF domain, even in a very low SNR environment. Due to
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of the new approach based on time-frequency analysis and
synthesis techniques in very low SNR environment. Several
further improvements are possible. They are

i) to use more sophisticated detection methods in desigrill
ing masksD for the iterative time-variant filter;

ii) to search the optimal reference signgh] so that its [2]
Fourier spectrum is as far away from 0 as possible anE,’
. ) . : o ]
it localizes in the TF domain as much as possible;

iii) to use more sophisticated existing system identificatiori4]

methods, such as the method recently proposed in [1]
by Shalvi and Weinstein, where the additive noige] [5]
in the system model is not necessarily independent 0[1;3]
the signalz[n].
The reason for mentioning iii) here is because of the foll”]
lowing argument. Since a joint TF domain filter that usually
depends on the signaln] is used, the new noisé[n] after
denoising and the transmitted signelln] may have similar
TF characteristics, and therefore, they may be correlated, ig
particular, when the original SNR is too low. Such an example
is shown in Fig. 14, where the original SNR —-6.4 dB
and the SNR= 0.74 dB after the second iteration of theio]
time-variant filtering. From Fig. 14, one can clearly see that
the correlation between the new noisf] after denoising ;1
and the signalk[n] exists, whereas it does not exist between
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