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System Identification Using Chirp Signals and Time-
Variant Filters in the Joint Time-Frequency Domain

Xiang-Gen Xia,Member, IEEE

Abstract—In this paper, we propose a novel method to iden-
tify an unknown linear time invariant (LTI) system in low
signal-to-noise ratio (SNR) environment. The method is based
on transmitting chirp signals for the transmitter and using linear
time-variant filters in the joint time-frequency (TF) domain for
the receiver to reduce noise before identification. Due to the TF
localization property of chirp signals, a large amount of additive
white noise can be reduced, and therefore, SNR before iden-
tification can be significantly increased. This, however, cannot
be achieved in the conventional methods, where pseudo-random
signals are used, and therefore, noise reduction techniques do not
apply. Our simulation results indicate that the method proposed
in this paper outperforms the conventional methods significantly
in low SNR environment. This paper provides a good application
of time-frequency analysis and synthesis.

I. INTRODUCTION

T HE SYSTEM identification problem is a classical and
important problem in signal processing, which has appli-

cations in many fields including channel estimation in wireless
communications. There have been extensive studies on this
problem; see, for example, [2], [3], [28], [31], and [32]. The
problem can be stated as

(1.1)

where

transmitted signal;
impulse response of a linear time invariant (LTI)
system (or channel);
additive noise;
received signal.

The problem is to identify the LTI system transfer function
of given the input and the output signals and

The conventional method for solving the above problem is
the least-squared solution method that is equal to the cross-
spectral method in stationary cases, i.e., the system transfer
function can be estimated by

(1.2)
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where is the cross-spectrum of and , and
is the autospectrum of When the additive noise

in (1.1) is a zero-mean Gaussian process and statistically
independent of the input signal , the estimate in (1.2) is
asymptotically unbiased, and its error variance approaches the
Cramer–Rao lower bound that is proportional to the variance
of the additive noise Clearly, the performance is limited
by this noise variance, or the signal-to-noise ratio (SNR).
When this SNR is low, the performance of the estimate in
(1.2) is poor. Since the autospectrum of the input signal
is in the denominator in the estimate (1.2), the input signal
is, in general, chosen as a pseudo-random signal with flat
spectrum [4]. With these kinds of input signals, noise reduction
techniques before system identification do not apply. As a
matter of fact, any traditional noise reduction technique, such
as any Fourier transform technique, does not perform well
for wideband signals. This implies that it is not possible to
increase the SNR or the performance of the estimate (1.2) by
transmitting a pseudo random signal and using the conven-
tional Fourier noise reduction techniques. Several questions
arise here:

i) Can we transmit other wideband signals, such as chirp
signals, instead of pseudo random signals?

ii) If so, can we take the advantage of these wideband
signals and reduce the noise in (1.1)?

iii) If so, can we improve the performance of the estimate
(1.2) after denoising?

The aim of this paper is to positively answer these questions.
The main idea is the following. Chirp-type signals are trans-
mitted, which have wideband characteristics in the frequency
domain but concentrate in the joint time-frequency domain.
Chirp-type signals are used quite often, such as in radar and
in FM in communications systems. The TF concentration
property usually holds after an LTI system (this will be seen
later). Since a joint TF distribution usually spreads noises and
localizes signals, in particular chirps, the receiver may use a
TF analysis technique (see, for example, [5]–[27]) to map the
received signal from the time domain into the joint time-
frequency domain. In this way, the SNR can be significantly
increased in the joint TF domain, and the receiver may be
able to see patterns in the joint TF plane and therefore reduce
the noise by filtering in the joint TF domain. This filtering
is basically atime-variantfiltering. We use this name in the
rest of this paper. The model (1.1) after a time-variant filter
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becomes

(1.3)

where is the new noise after the filtering.
The time-variant filter used in this paper is based on the

discrete Gabor transforms, which was studied in [5]–[7]. For
chirp-type signals, about 13 dB SNR is increased consistently
with this filter in [6]. When the original SNR in (1.1) is not
too low, say, for example, above1 dB, the new SNR in (1.3)
may reach a significant high level so that the estimate of
from and is accurate enough for many applications.
In this paper, both denoising with several mask design methods
and system identification simulations are performed. These
simulations show that a much better performance over the
conventional method can be achieved.

It should be pointed out that the optimal training signal
design for dynamic system identification has a long history
dating back over 20 years. The design methods are traditionally
based on the minimization of the Cramer–Rao bound for
the system parameter estimation in either the time or the
frequency domain (see, for example, [28]–[32]) but not in
the joint TF domain. The aim of this paper is, however, not
focused on the optimal training signal design, although it is
a very interesting topic. Denoising before identification using
nonredundant discrete wavelet transform was studied in [33]
for chemical process control applications.

This paper is organized as follows. In Section II, we briefly
review discrete Gabor transforms and the iterative time-variant
filtering studied in [5]–[7]. In Section III, we use the time-
variant filter studied in Section II to reduce additive white
Gaussian noise for a received signal. The filtering problem in
this paper has its own characteristics due to the fact that the
transmitter and the receiver know the transmitted chirp signal

, and therefore, its TF information is knowna priori. This
TF information can be used in designing a mask in the time-
variant filtering. In Section IV, we utilize the conventional
system identification method, i.e., the cross-spectral method
(1.2), after the denoising in Section III. In Section V, we
conclude this paper by addressing some possibilities for further
improvements.

II. DISCRETE GABOR TRANSFORM

AND TIME-VARIANT FILTERING

There have been many TF analysis techniques, such as
Wigner–Ville distributions in the Cohen’s class, spectrogram
(short-time Fourier transform or Gabor transform or DFT
filterbanks), and scalogram (wavelets) (see, for example, [5],
[23]–[27]). Some of them, such as bilinear TF distributions,
have high resolution but have crossterms for multicomponent
signals. Some of them, such as linear techniques (for exam-
ple, Gabor transforms and wavelet transforms), do not have
crossterms for multicomponent signals but may not have very
high resolutions. Since, in this paper, we deal with a linear
combination (or a linear system) of various chirp signals, it is
important for a TF analysis technique not to have crossterms
while it should also have a good resolution. This leads us to

consider Gabor transforms. In this section, we first review the
discrete Gabor transforms (DGT).

Since oversampled DGT is more robust for noise, it is
usually used in noise reduction applications. However, a
disadvantage for oversampled DGT is that it is not an onto
mapping. In other words, not every signal in the DGT
transform domain corresponds to a time domain signal
so that the DGT of is exactly equal to This
causes problems in filtering in the DGT transform domain,
which is that the filtered signal in the DGT transform domain
may not correspond to any time domain signal as shown
in Fig. 1. An intuitive solution for this problem is to take
the least-squared error (LSE) solution in the time domain
(see, for example, [8]–[13]). The LSE, however, usually does
not have a desired TF characteristics in the DGT transform
domain. When a signal is very long, the computational load
for the LSE solution is significantly high because of the
inverse matrix computation. Based on these observations,
an iterative algorithm was proposed in [5]–[7]. Conditions
on the convergence, properties of the limit signals, and the
relationship between the LSE solutions and solutions from
the iterative algorithms were obtained in [6] and [7], where
a significant improvement over the LSE solution was also
shown. The second part of this section is to briefly review
some of these results.

A. Discrete Gabor Transform

We first review some basics on the DGT, which is necessary
for this paper. For more about the discrete short-time Fourier
transform, see [14], for more about DFT filterbanks, see [15],
and for more about the DGT, see, for example, [16]–[22]. Let a
signal , a synthesis window function , and an analysis
window function be all periodic with same period Then

(2.1)

(2.2)

(2.3)

(2.4)

and The coefficients are
called the DGT of the signal , and the representation (2.1)
is called theinverse DGT(IDGT) of the coefficients
One condition on the analysis and synthesis window functions

and obtained by Wexler and Raz is the identity1

(2.5)

1If we take the inverse discrete Fourier transform with respect to the
parametern at the both sides, the system (2.5) is the same as the one obtained
in [14] when all convolutions are considered to be cyclic convolutions for
finite length signals in [14].
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Fig. 1. TF transform illustration.

where and are the time and the frequency sampling
interval lengthes, and and are the numbers of sampling
points in the time and the frequency domains, respectively,

(or ). The
critical sampling case is when The
condition (2.5) on window functions and can be rewritten
in matrix form as

(2.6)

where the subscript means the by matrix
, and

and the element at the th row and
the th column in the matrix is

In the critical sampling case and when has full rank,
there is a unique solution for the analysis window function

In the oversampling case and when has full rank,
there are infinite many solutions for the system (2.5). Among
them, the minimum norm solution was given in [17]

(2.7)

where means the complex conjugate transpose. It was proved
in [18]–[20] that the above minimum norm solution is also the
most orthogonal-like solution, i.e., (a more general form was
given in [22])

(2.8)

The DGT and IDGT can be also represented in matrix forms.
Let

The DGT can be represented by the matrix
with its th row and th column element

The IDGT can be represented by the matrix
with its th row and th column element

Thus

and (2.9)

The condition (2.5) implies that

(2.10)

where is the identity matrix.

B. Iterative Time-Variant Filtering Algorithm

We next want to briefly review the iterative time-variant
filtering algorithm proposed in [5]–[7]. This algorithm is used
later in the denoising for the system identification problem.

The oversampling of the DGT adds redundancy, which
is usually preferred for noise reduction applications. From
(2.1)–(2.5), (2.9), and (2.10), one can see that an-
dimensional signal is transformed into an -dimensional
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Fig. 2. Iterative time-varying filtering algorithm.

signal , and is greater than due to the oversampling.
Therefore, only a small set of -dimensional signals in the
TF plane have their corresponding time waveforms with length

Let denote the mask transform, specifically, a
diagonal matrix with diagonal elements either 0 or 1. Let
be a signal with length in the time domain. The first step
in the time-variant filtering is to mask the TF transform of

where masks a desired domain in the TF plane.
Since the DGT is a redundant transformation, the
IDGT of may not fall in the mask. In other
words, in general

(2.11)

where , which is illustrated in Fig. 1(e). Notice that
in the critical sampling case, i.e., , the inequality
(2.11) becomes an equality. An intuitive method to reduce the
difference between the right- and the left-hand sides of (2.11)
is to mask the right-hand side of (2.11) again and repeat the
procedure, which leads to the iterative algorithm

(2.12)

(2.13)

(2.14)

The above iterative algorithm is illustrated in Fig. 2.
Before going to the convergence, let us see what the LSE is.

Based on the definition, the LSE solution is the vector
that minimizes

(2.15)

Then

(2.16)

Clearly, when the signal length is large, the inverse matrix
computation is expensive. Although the error in (2.15) is min-
imized, the DGT of the least-squared solutionmay not fall
in the mask
when

The complexity for the iterative algorithm (2.12)–(2.14) is,
however, low, which does not need to compute inverses of
large size matrices. By considering the DGT and IDGT in
(2.1)–(2.4), the computational complexity in (2.12)–(2.14) is
proportional to the signal length multiplied by the window
length, i.e., Notice that the complexity of directly
computing the inverse matrices in (2.16) is proportional to
Therefore, when the length of window functionsand is
much shorter than the length of the signal, the computational
complexity in the iterative algorithm (2.12)–(2.14) is much
lower than the one for the least-squared solution in (2.16).

We next want to list several related results on the above
iterative algorithm obtained in [6] and [7], such as the conver-
gence, the properties of the limit signals, and the relationship
between this algorithm and the LSE solution. These results
are based on the condition on the window functionsand
obtained in [6] and [7]:

(2.17)

for and
Theorem 1: When the synthesis and the analysis window

functions and satisfy condition (2.17), the iterative
algorithm (2.12)–(2.14) converges.

There are two trivial cases where (2.17) holds. The first
case is the orthogonal case for all integer The
second case is the critical sampling case Notice
that the continuous Gabor transform is never orthogonal unless
the window functions are badly localized in the frequency
domain. This, however, is not the case for the DGT. The
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Fig. 3. Transmitted signalx[n] and its Fourier spectrumX(!):

most orthogonal-like solution was studied by Qianet al. in
[18]–[20]. They showed that it is possible to have the analysis
window function very close to the synthesis window function

when is truncated Gaussian. The error betweenand is
less than (see Fig. 4) while they are of unit energy,
and therefore, the error is negligible. It was shown in [6] that
the performance of the iterative algorithm strongly depends
on (2.17). When this condition does not satisfy, the iterative
algorithm may not converge.

Theorem 2: Under (2.17), the DGT of the limit of the
iterative algorithm (2.12)–(2.14) falls in the mask ,
i.e.

(2.18)

The above results say that as long as (2.17) on the analysis
and synthesis window functions is satisfied, the iterative
algorithm converges, and the limit signal has the desired TF
characteristics, i.e., its DGT falls in the desired mask. One
might ask whether it violates the known fact that an image
of a TF transform of a signal in the TF plane cannot be
compactly supported. This is because a signal cannot be time-
and bandlimited simultaneously. To answer this question, we
first need to know that the above known fact is true for
continuous TF transforms. Moreover, the proof of the fact is
based on the marginal properties of TF transforms. It may not
be true for discrete TF transforms. In other words, discrete TF
transforms may have compact support [5].

Theorem 3: Under (2.17), the first iteration of the it-
erative algorithm (2.12)–(2.14) is equal to the least-squared
solution in (2.16), i.e.,

With this result, one will see later that the iterative algorithm
(2.12)–(2.14) improves the least-squared solution when the
number of iterations increases, and meanwhile, one does not
need to compute the inverse matrix in (2.16).

III. D ENOISING FOR RECEIVED

SIGNALS THROUGH A NOISY CHANNEL

In this section, we want to do noise reduction with the time-
variant filter studied in Section II for received signals in a
noisy channel.

A. Some Parameters

The signal length is randomly chosen as 500. The signal
for the transmitter is

(3.1)

The waveform and its Fourier transform of the above
signal are shown in Fig. 3. Notice that since the Fourier
power spectrum will be used in the denominator in
the system identification, it should be as far away from zero as
possible. Since the noise-reduction performance of the time-
variant filtering in Section II depends on the localization of
the signal in the TF plane, the transmitted signal should
be as concentrated in the joint time and frequency domain as
possible. The synthesis and analysis window functions used in
this paper are shown in Fig. 4, where their lengthes are 256.
The synthesis window function is just the Gaussian function
and its analysis window function is the most orthogonal-like
solution given in (2.7). Their difference and the difference
between the left-hand side and the right-hand side of (2.17),
i.e., the condition error, are also shown in Fig. 4. One can
see that they almost satisfy (2.17). The time sampling interval
length and the frequency sampling interval length

in the discrete Gabor transform and its inverse in
Section II. These parameters are used throughout the rest of
this paper. The DGT of is shown in Fig. 5. The tail part
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Fig. 4. Synthesis and analysis window functions and the condition (2.17) test.

Fig. 5. Discrete Gabor transform of signalx[n]:

of the DGT in Fig. 5 is because of the discrete calculation
aliasing.

In this paper, we use 20-tap LTI systems in our numerical
examples, where the number 20 is just randomly chosen. The
channel model is

(3.2)

where in the following numerical examples, is an
additive white Gaussian noise and independent of the signal

, and

(3.3)

is considered to be the signal, is the transmitted signal
as in (3.1), is the received signal, and is an LTI
system (or channel) impulse response. The original SNR for
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Fig. 6. Example of LTI channelh[n]; signal s[n]; and received signaly[n] and their Fourier spectrum, where the SNR= �4.5 dB for the additive
white Gaussian noise.

Fig. 7. Discrete Gabor transform of the received signaly[n] in Fig. 6 with SNR= �4.5 dB.

the received signal is calculated by

In the following, we randomly generate the channel As
an example, a channel Fourier spectrum and received signal

time waveform with SNR 4.5 dB and the signal
without noise and their Fourier spectrum are shown in Fig. 6.
The DGT of the received signal with 4.5 dB SNR is
shown in Fig. 7. In Fig. 7, one is still able to see the chirp
pattern in the joint time and frequency plane, although it is
impossible in the time or the frequency domain alone in Fig. 6.

B. Mask Design

The pattern in the DGT domain of the above signal in
(3.3) is similar to the one for the signal in Fig. 5. This is
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not only true for this particular example but is also the case for
our numerous examples. The reason is due to the following
analytic argument.

Assume the chirp signal for some
constants and Then

which is dominated by the original chirp for finite tap
LTI systems It is because that the highest chirp order of

and the corresponding chirp rate are the same as those
of whereas the chirp order for the above multiplier of

in

is only As a special case, when

where is the Fourier transform of the signal

When the channel has only a finite tap, the function
is usually a smooth signal.

Since the transmitted signal is known to both trans-
mitter and the receiver, by the above property, its pattern in
the DGT domain may help in designing a mask in the DGT
domain for filtering noise. This is exactly the motivation for
the following design method of a mask in the
iterative time-variant algorithm (2.12)–(2.14). The subscript

of the mask will be dropped from
now on without causing confusion in understanding.

1) Mask Design Procedure:

Step 1) Implement the DGT of the transmitted signal

Step 2) Threshold the DGT coefficients and have a
mask from

if
otherwise

where is a predesigned positive number that is
called thresholding constant.

Step 3) Implement Steps 1 and 2 for the received signal
, and design a mask with thresholding

constant from the DGT coefficients of with
another predesigned constant

Step 4) The final mask is the product of and

Since the DGT of the signal usually dominates the
DGT of the signal , the pattern in the DGT domain of

the signal is usually in a close neighborhood of the
pattern in the DGT domain of Therefore, the mask
is usually designed so that it covers a relatively large area,
i.e., the thresholding constant in Step 2 is usually chosen
not too large. Since the received signal is from a noisy
channel, the resolution of its DGT pattern may be reduced,
and therefore, the thresholding constantin Step 3 is usually
chosen to be not too small. Otherwise, the maskwill cover
too much unwanted area. Let us see an example. The mask
from , the mask from , their product ,
and the mask from the true signal are shown in
Fig. 8, respectively. The SNR in this case is SNR 1.4
dB. The thresholding constants in Steps 1–3 are
and DGT It should be pointed out that
the above mask design procedure may be improved by using
more sophisticated designs. Possible improvements are

i) to find the optimal thresholding constantsand by
training a large number of signals and systems;

ii) to use more sophisticated statistical detection method
in the DGT domain for the received signal instead
of a simple thresholding in Step 3;

iii) to smooth the mask since the true mask
is usually smooth due to the nature of a chirp signal,
but from the noisy signal may not be smooth.
Some morphological operations, such as dilation, may
be used to smooth the mask

Another observation from our various numerical examples
is that the mask is the mean of the true mask in terms
of different LTI systems

C. Denoising Experiments

In this subsection, we want to implement the time-variant
filtering algorithm in Section II with three masking techniques:
using the mask from the transmitted signal, using
the mask as designed by Steps 1–4, using the
true mask We run 100 tests in terms of different
LTI systems (randomly generated) and different additive
white Gaussian noises for each masking method and take
their mean SNR. Nine iterative steps are used in the iterative
algorithm (2.12)–(2.14). Fig. 9 shows the curves of the mean
SNR versus iterative steps for the three masking methods.

First, we analyze the time-variant filter (2.12)–(2.14) with
the mask From Fig. 9, the SNR drops after the
second iteration. This is because the mask we used is

, which matches the transmitted signal and not
Although there is a similarity (see Fig. 8) in the TF plane
between the DGT of and the DGT of , they are
not equal. The similarity is exactly the reason why the SNR
increases significantly in the first and the second iteration step.
The difference between and causes the SNR to drop
after the second iteration. Notice that the mask is
known to the receiver, and it is a good candidate in the time-
variant filtering if the iterative algorithm stops at the second
iteration step.

We now analyze the performance of the mask
This mask rejects a lesser portion of the noise outsidethan

alone does, when the first thresholding constantfor
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Fig. 8. Example of masksDx from x[n];Dy from y[n]; the final maskD = DxDy ; and the true maskDs from s[n]; where the SNR= �1:4 dB.

Fig. 9. Mean SNR curves of the iterative time-variant filtering with the following masks:D = Dx;D = DxDy; andD = Ds:

in Step 2 is less than the one in designingalone. The reason
why this for should not be large is for the conservation
because the mask is multiplied by in designing
It, however, happens because the beginning SNR’s are not as
high as the ones in the time-variant filtering with the mask,
which is shown by the solid line in Fig. 9. Since, in general,

covers relatively more signal information than
alone does, the SNR increases when the iteration number

increases.
The third masking method is the ideal case. With

this ideal mask, about an 11 dB SNR increase with the iter-

ative time-variant filtering over the original SNR is achieved
consistently. Notice that by Theorem 3, the first iteration is
equal to the conventional least squared solution. The iterative
time-variant filtering outperforms the least squared solution
by about 3 dB.

To improve the performance of the iterative time-variant
filtering, what one can do further is to use more sophisticated
methods to detect and , in particular , so that
their product is as close to as possible.
Besides what has been mentioned in the previous subsections,
directly minimizing the difference between and
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Fig. 10. DGT ofy[n] with noise ands[n] without noise and their corresponding masks (original SNR=2.7 dB).

Fig. 11. New system identification method.

with training signals is another potential approach. When
the original SNR is not too low, the chirp pattern of can
usually be seen clearly in the DGT domain of the received
signal An example is shown in Fig. 10, where the original
SNR 2.7 dB.

IV. SYSTEM IDENTIFICATION

In this section, we first use the iterative time-variant filter
(2.12)–(2.14) developed in the previous sections to reduce
the additive white Gaussian noise from the received
signal In the iterative time-variant filter, for calculation
simplicity, we choose the first masking method studied in
Section III-C, i.e., the mask , for all calculations
in this section. With this mask, two iterations are used in
the time-variant filter in Section II-B. We then implement
the conventional system identification method, as shown in
Fig. 11.

The conventional system identification method used here is
the cross-spectral method

(4.1)

where is the chirp signal defined in (3.1). It is compared
with the conventional method without denoising, i.e.,

(4.2)

where is also the chirp signal. Since the system iden-
tification performance usually depends on the signal
transmitted, one might say that it is not fair to compare them
using the chirp signal that is preferred here for denoising but
might not be preferred for other methods. For this reason, we
also compare our new method with the conventional method
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Fig. 12. Comparison of system identification methods. The conventional method using chirp signals; the conventional method using pseudo-random signals;
new method using chirp signals, and time-variant filtering.

Fig. 13. System identification examples: Original spectrumjH(!)j; identified spectrum without additive noise using the chirp signal; conventional method
with additive noise of SNR= �0.4 dB; new method with additive noise of SNR= �0.4 dB.

using pseudo-random sequences

(4.3)

where is a pseudo-random sequence.
Fig. 12 shows their performances, where 200 tests are used

for the mean SNR curves for the system spectrum versus the
original SNR. Our new method performs much better than
others. Surprisingly, even for the conventional cross spectral

method, the chirp signal in (3.1) outperforms pseudo-random
signals by about 6 dB. In Fig. 13, some identification examples
are shown, where the original SNR is0.4 dB. As a remark,
all system identification calculations used in this paper are
based on the Matlab Signal Processing Toolbox.

V. CONCLUSION

In this paper, we proposed a system identification method.
The proposed method is based on transmitting chirp signals
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Fig. 14. Cross correlations between the new noise~v[n] (SNR= 0:74 dB) and the signalx[n] and the original noisev[n] and the signalx[n] (SNR= �6:4 dB).

and denoising followed by the conventional identification
method. The denoising method is based on time-variant filter-
ing in the joint time-frequency (TF) domain. Since transmitted
signals are chirp-type signals, they are well-localized in the
TF domain, and one is usually able to see their patterns in
the TF domain, even in a very low SNR environment. Due to
this property, a significant SNR increase after a time-variant
filtering can be achieved. Our numerical simulations were
performed to illustrate this theory. The simulations done in this
paper were used simply for showing the potential performance
of the new approach based on time-frequency analysis and
synthesis techniques in very low SNR environment. Several
further improvements are possible. They are

i) to use more sophisticated detection methods in design-
ing masks for the iterative time-variant filter;

ii) to search the optimal reference signal so that its
Fourier spectrum is as far away from 0 as possible and
it localizes in the TF domain as much as possible;

iii) to use more sophisticated existing system identification
methods, such as the method recently proposed in [1]
by Shalvi and Weinstein, where the additive noise
in the system model is not necessarily independent of
the signal

The reason for mentioning iii) here is because of the fol-
lowing argument. Since a joint TF domain filter that usually
depends on the signal is used, the new noise after
denoising and the transmitted signal may have similar
TF characteristics, and therefore, they may be correlated, in
particular, when the original SNR is too low. Such an example
is shown in Fig. 14, where the original SNR 6.4 dB
and the SNR 0.74 dB after the second iteration of the
time-variant filtering. From Fig. 14, one can clearly see that
the correlation between the new noise after denoising
and the signal exists, whereas it does not exist between

the original noise and It should be observed from
our numerous numerical examples that this phenomenon only
happens when the original SNR is very low.
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