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       a b s t r a c t        

In this paper, a truly sub-Nyquist sampling method for frequency estimation of sinusoidal signals in noise 
             is presented. speaking, first multiple  Basically  sinusoidal signals  are  sampled at  sampling rates lower 

than the Nyquist rate, and then a robust Chinese remainder theorem (CRT) is proposed to estimate the 
frequencies of interest from the aliased frequencies obtained by taking the discrete Fourier transform of 
the collected samples in each undersampled waveform. Compared with compressed sensing, this method 
can be easily implemented from the hardware point of view. This paper provides a thorough overview of 
the existing research results on the robust CRT during the last decade, and discusses some related open 
problems as well. 

© 2018 Elsevier B.V. All rights reserved. 

 1. Introduction 

        Frequency estimation a num- of sinusoidal signals from  finite  

  ber of noisy samples problem signal  is a fundamental  in  process- 
           ing [1–3] . It has wide applications in many fields, such as radar, 

sonar, digital communications, and image analysis. In the past few 

      decades, frequency numerous    estimation approaches have been 
       proposed including in the literature,   maximum likelihood [4,5] , 

nonlinear least squares [6] , Prony’s method [7] , MUSIC and ESPRIT 
            [8,9] , a methods, the usually just to name  few. In these   signal is  

assumed to be sampled at a rate higher than the Nyquist rate, i.e., 

the sampling rate is higher than twice the highest frequency of the 
       signal. However, in  some applications, high-speed e.g., detecting  

moving targets in a synthetic aperture radar (SAR) image and esti- 
mating the wide-range carrier frequency offset in a coherent opti- 

cal orthogonal frequency division multiplexing (CO-OFDM) system, 

         the signal to be estimated has intrinsically high bandwidth, and 
   the consequently becomes traditional Nyquist sampling   infeasible 

due to high power consumption, great cost, and limited bit resolu- 
    tion of analog-to-digital a high-rate  converter (ADC), or in spatial 

         domain as, in, such  SAR. Therefore, studies on frequency estima-  

tion from  sub-Nyquist sampling sequences are interesting and im- 
portant. 
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Compressed also sensing (CS),  known as compressive sampling 

or sparse sampling, has been proposed in the recent years [10–13] , 
        which basically samples signals smaller randomly   with a  much  

          number of of samples than that    using Nyquist the  sampling if 
they are sparse or sparsable in an appropriate transformation do- 

main. However, the design of random sampling-based hardware is 

   still a great challenge [14] . Another family of statistical frequency 
        estimation methods  based on two truly undersampled signal se- 

quences has in been proposed   [15–17] , where by truly undersam- 
        pled it  means that  regular samplers sub-Nyquist  with  sampling 

rates are used. More specifically, they use two uniform sub-Nyquist 

    samplers/arrays with sampling periods being coprime to estimate 
   the the signal autocorrelation sequence at Nyquist rate, and from  

estimated autocorrelation sequence frequencies the  are estimated. 
However, these coprime sampler based methods may require long 

time observations of signals in order to achieve the same autocor- 

relation sequence estimation performance as before. 
     Unlike the methods, above statistical  an efficient deterministic 

method based on the Chinese remainder theorem (CRT), which we 
           will earlier review in paper, had in this   been proposed   the  past 

        to estimate frequencies sinusoidal multiple  of  signals from  truly 

      undersampled waveforms [18–21] starting from the mid 1990s. It 
takes the discrete Fourier transform (DFT) of the collected  samples 

        in each undersampled aliased waveform to detect the  frequency, 
and then the frequencies are estimated from these aliased frequen- 

cies by using versions generalized  of the CRT. Without loss of gen- 
erality, let us consider a single harmonic signal 

   x ( )t  = a exp ( j 2 π N t ) + ω( )t  , (1) 

https://doi.org/10.1016/j.sigpro.2018.04.022 
      0165-1684/© 2018 Elsevier B.V. All rights reserved. 



 L. Xiao, X.-G. Xia / Signal Processing 150 (2018) 248–258  249

            where Hz,  N  the assumed a frequency to be estimated, is  to be  
         positive integer for simplicity,  a is an unknown complex  coeffi- 

cient, and ω( t ) is an additive white noise. We now exploit multiple 
undersampled versions of x ( t ) with several  different but much low 

sampling rates  m 1 Hz , m 2 Hz , · · · , m L Hz , i.e., 

x i   [ n ] = a exp ( j2 π N n/m i ) + ω i (n m/  i  )  (2)

for 1 ≤ i ≤ L . Then, for each of the undersampled signals in (2) , the  

remainder  r i of  N modulo m i is obtained as  the aliased frequency 
 by performing the m i   -point DFT, signal-to-noise (SNR) if the  ratio  

is not too low. It is equivalent to solving a system of simultaneous 
linear congruences for the signal frequency N given the remainders 

r i : 

r i  ≡ N mod m i (3) 

      for 1 ≤ i ≤ L , where sampling the  rates  m i    are called the moduli  

and 0 ≤ r i < m i    . Once collected  we have  these remainders, we can 
uniquely determine the signal frequency N via the CRT if N is less 

          than least the  common multiple (lcm)  of all the moduli  [22–24] . 
          In this paper, we are more concerned about the   robust problem. 

When the SNR is too low, the detected remainders are most likely 

      subject the to error contamination. It is well known that  CRT re- 
construction formula is highly sensitive to errors in the remainders 

in the sense that  a small remainder error may produce a large re- 
construction error in  N. In this paper, we first give an overview of 

  a a robust CRT [25–30] that can be precisely applied and provide  

    robust solution to (3) or the above frequency estimation problem 
         when What the remainders have errors.  the robust CRT basically 

says is that under conditions some  on themoduli the   reconstruc- 
          tion error error is upper remainder bounded by the   bound. Two 

generalizations of the robust CRT are then presented: one is a ro- 

 bust generalized CRT for multiple integers [31] which aims to es- 
timate more than one integer (or frequencies  of a multi-harmonic 

signal) from the remainder sets (or sets of the detected aliased fre- 
         quencies undersampled in  waveforms), and is the other  a robust 

    double-remaindering aims CRT [32] which  to estimate a large in- 

            teger (or ground the a radial velocity of   moving target in a SAR 
image) from the so-called double-remaindering remainders (or the 

       detections ambiguity after resolving Doppler   successively both in  
          time domain and spatial domain). The robust CRT and its gener- 

alizations have have been found to  many applications potential  in 
     other fields, such as phase unwrapping   in radar signal processing  

       [33–38] [39–41] and optical interferometry  , wireless sensor net-  

works [42–44] , and computational neuroscience [45,46] . 
           The organized rest of this paper is   as follows. In Section 2  , 

          we briefly introduce the  CRT. In Sections 3  –5 , the  robust CRT 
     and its in  latest are results  described  a self-contained manner. In 

          Section 6  , the the we present  two generalizations of  robust CRT 

and discuss some interesting open problems  for future research. 

 2. Chinese remainder theorem 

       Before stating the CRT, let us review some basic concepts and 

notations from number theory. 

 i. For two or more integers m 1 , m 2 , , m L with L ≥ 2, their great- 

     est common divisor (gcd),  denoted by gcd( m 1  , m 2   , ,   m L  ), is 

          the largest integer that divides each of them, and their least 
common multiple (lcm), denoted by lcm( m 1 , m 2 , , m L ), is the 

smallest integer that is divisible by each of them. Two integers 
are said to be coprime if their gcd is 1. 

 ii. Given a positive  integer  m, two integers  a and  b are said  to be 

   congruent modulo m , written mathematically as a ≡ b mod m, 
             if their difference  a− b m ais divisible by  (i.e., (  − b) /m is an 

integer), where the number m is called the modulus. If and only 
             if and is  a   m are coprime, there   exactly one solution for  x to 

 the congruence linear  a x ≡ 1 mod m x with  ∈ { 0 , 1 , · · · , m − 1 } . 

We call such a solution the modularmultiplicative  inverse of  a

          modulo m . 5 For example, −  ≡ 9 mod 7 , and 4 the modular is   
 multiplicative inverse of 2modulo  7, i.e., 2 · 4 ≡ 1 mod 7 . 

 iii. For two integers a and m with m > 0, there exists a unique pair 

          of such integers  k and  r  that  a= km + r and 0 ≤ r < m , where 
    the the number k is called  folding number, called and is  r   the 

remainder of a modulo m . Thus, a is congruent to its remainder 
          r m modulo  , i.e., r ≡ a mod m, and moreover, if  a≡ b mod m, 

then a and b have the same remainder modulo m . For example, 

           9 ≡ 15 mod 6 , and the 9 modulo 6 remainders of  and 15   are 
both 3. 

        The earliest congruence the problem first appeared in  3rd- 
century book entitled Sunzi Suanjing : 

  “There are number unknown.  certain things whose  is  If we count 

them by threes, we have two left over; by fives, we have three left 
over ; and by sevens, we have two left over. What will be the num- 

ber?”

Letting                    N denote the number of such things, the congruence
           problem above interpreted as can be   finding its  N such that  re- 

mainders modulo 3, 5,  7 are 2, 3, 2,  respectively, i.e., 

  2 ≡ N mod 3 

  3 ≡ N mod 5 

   2 ≡ N mod 7 . (4) 

          In the a year 1247,  Chinese mathematician Qin Jiushao first pre- 
       sented linear a complete  solution to simultaneous  congruences, 

which is later named the CRT, in his book entitled Shushu Jiuzhang . 
          The systematic CRT has now into  evolved  a  theorem that exists 

ubiquitously in elementary mathematical textbooks. 

We next formally introduce the CRT. Let N be a nonnegative in- 
teger,  m 1 < m 2  <  < m L be the L moduli, M  lcm( m 1 , m 2 , ,   m L ) 

be the lcm of all the moduli, and r 1 , r 2 , , r L be the L remainders 
of N , i.e., 

r i  ≡ N mod m i  or  N= n i m i + r i (5) 

   for 1 ≤ i ≤ L , 0 where  ≤ r i < m i   , and n i    are the numbers. folding  

Given N and the moduli m i , the remainders r i can be uniquely cal- 
culated from division. Conversely, given the moduli m i and remain- 

 ders r i            , N  can be uniquely determined via modulo M  the CRT as 

follows. 

        Theorem 1 [22] (Chinese remainder theorem). Given moduli the  
m i and rema inde rs r i in (5) , a unique there is   solution for N modulo  

M, which is given  by 

N ≡
L  

i =1 
r i D i M i  mod M, (6) 

where M i = M/μ i , D i is the modular multiplicative inverse of M i mod- 
ulo μ i  (i.e., 1 ≡ D i M i mod μ i ) if μ i  = 1, else D i = 0 , and μ 1 , μ 2 , , 
μ L are taken to be any L pairwise coprime positive integers such that 
 L 

i =1 μ i = M and μ i divides m i for each 1 ≤ i ≤ L. In particular, if it  is 

assumed that N is less than the lcm of all the moduli, i.e., 0 ≤ N < M, 

then we can uniquely determine N from (6) , which is in fact the small- 
est nonnegative integer solution to (5) . 

          When are pairwise the moduli    coprime, i.e.,  the gcd of every 

pair of m i and m j , denoted by 

d i j  gcd (m i , m j  )  (7)

           is have 1, Theorem 1 reduces to the traditional CRT wherein we  
μ i = m i for 1 ≤ i ≤ L in the reconstruction formula (6) . Another re- 

         mark we have is to make here  that to enforce the uniqueness of 
             the the solution in  CRT, we tacitly admit that   N is in  the range 
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[0, M ) in the remaining of this paper, unless specifically stated oth- 
erwise. 

          Example 1.  Let us find the the solution to  simultaneous linear 
   congruences the (4) via  CRT. Since themoduli  in (4) are pairwise 

coprime, we have μ 1 = 3 , μ 2 = 5 , μ 3 = 7 . Then, we calculate 

   1.  M= 3 · 5 · 7 = 105 ; 
 2.  M 1 = 35 , M 2 = 21 , M 3 = 15 ; 

 3.  D 1 = 2 , D 2 = 1 , D 3 = 1 ; 
     4.  N≡ (2 · 2 · 35 + 3 · 1 · 21 + 2 ·1 · 15) mod 105 ≡ 23 mod 105 . 

As a result, we get N = 23 . 

         Due to the carry-free property of the modular the  arithmetic,  
       CRT provides an  energy-efficient operation and fast arithmetic  

through breaking down a large computation into a series of smaller 
        computations that independently can be performed  and in par-   

         allel. applications many Thus, the  CRT has offered widespread  in  
        fields such as computing, cryptography, and coding theory, see 

 [22–24] and references therein.  

 3. Rob u st Chinese remainder theorem 

In this section, we state the robust CRT that is the focus of this 

paper, and  compare it with the Chinese residue code. 

      As aforementioned in Introduction, the  remainders r i  are de- 
tected from noisy data in most signal processing applications,   and 

therefore, they are usually known inaccurately. Let  ˜ r i  r i +  r i de- 
     note the erroneous remainders, where  r i    are the remainder er- 

   rors. If apply we  the directly the CRT  to reconstruct N from  erro- 

neous remainders ˜ r i instead of r i , the reconstruction formula (6) is 
likely to yield a large reconstruction error even though the remain- 

der errors  r i are small enough. To illustrate this point, let us look 
at a simple example. 

     Example 2.  Consider the moduli  m 1 = 16 , m 2 = 24 , m 3  = 40 . The 
lcm of all the moduli is M = 240 . In this case, we let μ 1 = 16 , μ 2 = 
3 , μ 3   = 5 . We then calculate M 1 = 15 , M 2 = 80 , M 3  = 48 and  D 1 = 
15 , D 2 = 2 , D 3           = 2 . says the The CRT  that any integer N in  range 

 0 ≤ N < 240 can uniquely be  reconstructed from  its remainders by 

             (6) . knows, the As one  all  remainders of N = 1 are equal to 1. If 
     its remainders are subject to small errors  r 1 =  r 3 = 0 ,  r 2 = 1 , 

i.e., ˜ r 1 = 1 , ˜ r 2 = 2 , ˜ r 3    = 1 , then replacing r i with ˜ r i    in (6) , we get 

a reconstruction ˆ N = 161 , which differs significantly from the true 
value N = 1 . In other words, a large reconstruction error occurs. 

Indeed, a large reconstruction error indicates poor performance 
          of applications. is, It  therefore, a matter  of great importance to 

          properly resist robust the the a remainder errors, in  sense that   
       reconstruction from can be obtained  the erroneous remainders, 

        where, and paper, throughout this  the “robust” means term  that 

        when are the remainders  known approximately within an   error 
 bound τ , i.e., 

|  r i | = | ˜ r i  − r i      | ≤ τ for 1 ≤ i ≤ L, (8) 

          the , the recon- reconstruction error is upper bounded by τ  i.e.,   
structed integer ˆ N of N satisfies 

| ˆ   N − N| ≤ τ. (9) 

            We also call  it a robust CRT. In either theoretical or applied re- 
searches, the robust CRT raises two fundamental problems: 1) How 

           large can bound the remainder error  τ be for the robustness to 
 hold? The  larger τ is,         theweaker the condition is required or the

            lower SNR needed. 2) is   How and do develop we  a fast  efficient 

reconstruction algorithm? 
          To the the best of our knowledge,  robust CRT first appeared 

in resolving the ambiguity in radar signal processing  [47,48] . Nev- 
        ertheless, no and there was  dedicated  systematic approach pro- 

          posed in [47,48] to well addressing problems  the above two  un- 
         til the two decades later  robust CRT was independently investi- 

   gated in [25–30] to estimate frequency multiple un- a large  from   
dersampled that waveforms. Under the assumption  the remaining 

          factors of  the moduli  divided by their gcd are pairwise coprime, 

 i.e.,  m i = m  i    for 1 ≤ i ≤ L , where  1  ,  2  , ,    L  are pairwise  co- 
            prime, basically that it is   stated in [25–27]  an integer   N in the 

 range [0, M ) can be robustly reconstructed, if τ is less than a quar- 
 ter of the gcd of themoduli,  i.e., τ < m /4. Especially, a closed-form 

       reconstruction algorithm was proposed in [27] . More recently, by 

removing the coprimeness assumption made in [25–27] , some im- 
           proved versions of of the with a set robust CRT   general   moduli 

      and the corresponding reconstruction algorithms were presented 
in [28–30] . Their brief descriptions will be     stated in the following

Sections 4 and 5 , respectively. 

The key idea for the robust CRT in [25–30] is to accurately de- 
termine the unknown numbers  folding  n i in and (5) first  then re- 

construct N as 

ˆ N = 

 
1 

L 

L  

i =1 
(n i m i + ˜ r i ) 

 

 , (10) 

where [ x ] stands for the rounding function such that 

   −0 . 5 ≤ x − [ x ] < 0 . 5 . (11) 

It is straightforward to see that long as  as the folding numbers n i 
       are accurately determined, (10) provides a reconstruction, robust  

i.e.,  | ˆ    N − N| ≤ τ , because of ˆ N = N + 
 L 

i =1  r i /L 

and |  r i  | ≤ τ for 

          1 ≤ i ≤ L . the a Therefore,  robust CRT turns into  problem of accu- 
     rately determining the numbers folding  n i   from these erroneous 

remainders ˜ r i . 
The Chinese residue code is well known as another remainder- 

error-resistant technique, which is an error-correcting code and has 

     been investigated in extensively  the literature  [49–52] . More pre- 
      cisely, coprime given V pairwise  moduli m 1 < m 2  <  < m V and 

          an integer   L< V , the a  Chinese residue code has  message space 
N = { 0 , 1 , · · · , 

 L 
i =1 m i         − 1 } , and encodes a message N ∈ N as its 

remainder vector ( r 1 , r 2 , , r V ). In this code, the remainders form 

a redundant representation of N , and according to the CRT, if there 
         are only  (V  − L) / 2        or fewer erroneous remainders, where  ·  

denotes the floor function, then N can be accurately reconstructed 
       as Hamming a the unique output in  minimum  distance decoding  

      algorithm. Remarkably, an alternative algorithm, called decoding   

          list decoding, residue was proposed Chinese for the   code with a  
          large error rate in [53–55] , the where  number of erroneous re- 

mainders may be larger than  (V  − L) / 2  , i.e., the number of erro- 

neous the remainders that  minimum Hamming distance decoding 

algorithm can handle, and the decoding algorithm outputs a small 

list of of possibilities one  which is note,  accurate. As a  the robust 
          CRT considered in paper is this   quite different from the Chinese 

residue code: In the robust CRT, the moduli are generally not pair- 
   wise coprime, inaccurate the may reconstruction  be  but is robust 

to the remainder errors, and all the remainders are allowed to have 

errors that are not too large. 

 4. Closed-form  algorithm for ro bus t C R T 

In the robust CRT setting above, we first present a condition on 
         the with a remainder error bound along   closed-form robust CRT 

         algorithm [27,29] in this section. then develop multi-stage We   a  
       extension proposed [29] of the  closed-form robust CRT algorithm 

to further improve the remainder error bound condition.  Some il- 

lustrative examples are given to verify the results. 
             As the says, the CRT in Theorem 1  an integer N in  range [0, 

        M ) can be uniquely reconstructed from  its remainders  r 1  , r 2  , ,   
r L      with the moduli respect to   m 1  , m 2   , ,   m L     in (5) . This N will 
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also give the unique folding numbers n i as n i  = (N − r i ) /m i , which 
satisfy 0 ≤ n i < M / m i for 1 ≤ i ≤ L . In what follows, we try to directly 

reconstruct n i for 1 ≤ i ≤ L from the remainders r 1 , r 2 , , r L . 
 Letting the last L − 1 equations in (5) subtract the first one, we 

get 

n 1 m 1  − n i m i = r i  − r 1 (12) 

         for 2 ≤ i ≤ L . Dividing both sides of (12) by the gcd d 1 i  of  m 1 and 
m i , we get 

n 1 1 i  − n i  i 1 = q i 1  , (13) 

 where  1 i  m 1 / d 1 i  ,  i 1  m i / d 1 i   , and q i 1  (r i  − r 1 ) /d 1 i   . Next, we 
take both sides of (13) modulo  i 1 , and then have 

n 1 1 i  ≡ q i 1 mod  i 1  . (14) 

Since  1 i and  i 1 are coprime, themodularmultiplicative   inverse 
of  1 i modulo  i 1 uniquely exists, denoted by  1 i  , and then it is 

not hard to see that the congruence (14) can be simplified to 

n 1  ≡ q i 1 1 i mod  i 1  . (15) 

According to (15) , n 1 and q i 1 1 i have the same remainders modulo 

i 1 for 2 ≤ i ≤ L . the Therefore, we readily have  following simulta- 

neous linear congruences 

ξi 1  ≡ n 1 mod  i 1  , (16) 

where ξ i 1 are the remainders of q i 1 1 i modulo  i 1 for 2 ≤ i ≤ L and 

  can calculated be  in advance. Because of lcm ( 21 ,  31 , · · · ,  L 1 ) = 
M/m 1 and 0 ≤ n 1 < M / m 1 , we can uniquely reconstruct  n 1 by solv- 

ing (16) via the CRT, and then from (13) the other folding numbers 
can be obtained by 

n i = 
n 1 1 i  − q i 1 

 i 1 
(17) 

         for 2 ≤ i ≤ L . the the Therefore, by following  above steps,  folding 

numbers n i are uniquely reconstructed from  the remainders with- 
out first reconstructing N . 

Since the erroneous remainders ˜ r i are only known in place of r i 
in the robust CRT, we naturally use 

ˆ q i 1  


˜ r i −  ̃r 1 

d 1 i 


(18) 

as an estimate of q i 1 , where [ · ] is the rounding function as defined 
  in (11) . the If  remainder error bound less τ in is (8)   than each of 

d 1 i /4 for 2 ≤ i ≤ L , i.e., 

τ < min 
2 ≤i ≤L 

d 1 i 
4 

 , (19) 

it is immediate that [ ( r i −  r 1 ) /d 1 i ] = 0 and 

ˆ q i 1 = 
 r i  − r 1 

d 1 i 
+ 

 r i −  r 1 

d 1 i 

 

= 
r i  − r 1 

d 1 i 
+ 

  r i −  r 1 
d 1 i 

 

= 
r i  − r 1 

d 1 i 

= q i 1 . 

(20) 

One can see that the rounding function used in (18) enables us to 

         completely eliminate the effect the given  of  remainder errors  by 
(19) . Once  ˆ q i 1 are equal to q i 1 , the remainders ξ i 1 of n 1 in (16) are 

accurately determined, and of course we can accurately reconstruct 
n 1 via the CRT as well as the other n  i from (17) for 2 ≤ i ≤ L . It then 

follows from (10) that a robust reconstruction ˆ N of N is ultimately 

obtained. Therefore, (19) gives a condition   on the remainder error 
 bound τ such that a robust reconstruction of  N is obtained. 

Note that the subtractions in (12) are taken with respect to the 
first remainder. It is suggested that  n 1 is selected as a reference to 

be first determined.  In fact, we can arbitrarily select the k th equa- 
tion in (5) to be subtracted from the others analogous to (12) , and 

thereafter, by replacing the index 1 with k in (12) –(20) , we first ac- 
curately determine n k followed by the other folding numbers, pro- 

 vided the remainder error bound satisfies τ  

τ < min 
1 ≤i ≤L 

i  = k 

d ki 
4 

 . (21) 

          So, the we are able to get  largest      possible τ by selecting a refer-

ence n k 0 such that 

min 
1 ≤i ≤L 

i  = k 0 

d k 0 i = max 
1 ≤k ≤L 

min 
1 ≤i ≤L 

i  = k 

d ki  . (22) 

   In the the following, we summarize  closed-form robust CRT algo- 

 Algorithm 1 : Closed-form robust CRT [29] . 

Input: the moduli { m i } L 
i =1 and the erroneous remainders  { ˜ r i } L 

i =1 . 

Output: a reconstruction ˆ N . 

1: Through (22), find the index k 0 of a proper reference. 

2: Calculate ˆ q k 0 i   for 1 ≤ i ≤ L, i  = k 0 : 

ˆ q ik 0 = 


˜ r i − ˜ r k 0 

d k 0 i 


 . (23) 

3:    Calculate the remainders of ˆ q ik 0 k 0 i  modulo  ik 0   for 1 ≤ i ≤
L, i  = k 0 : 

ˆ ξik 0 ≡ ˆ q ik 0  k 0 i mod  ik 0  , (24) 

where  k 0 i are the modular multiplicative inverse of  k 0 i mod- 
ulo  ik 0 . 

4: Calculate ˆ n k 0 via the CRT reconstruction formula for the simul- 

taneous linear congruences: 

ˆ ξik 0 ≡ ˆ n k 0 mod  ik 0 ( )25  

  for 1 ≤ i ≤ L, i  = k 0 . 

5: Calculate ˆ n i   for 1 ≤ i ≤ L, i  = k 0 : 

ˆ n i = 
ˆ n k 0 k 0 i − ˆ q ik 0 

 ik 0 
 . (26) 

6: Calculate ˆ N : 

ˆ N = 

 
1 

L 

L  

i =1 
( ˆ n i m i + ˜ r i ) 

 

 . (27) 

rithm and present the corresponding theorem. 

             Theorem 2 [29] . If an N integer  is assumed to be in the ra ng e 

 0 ≤ N < M and the rema ind er error bound τ satisfies 

τ < max 
1 ≤k ≤L 

min 
1 ≤i ≤L 

i  = k 

d ki 
4 

 , (28) 

where d ki  gcd( m k , m i ), then by Algorithm 1 we can accurately deter- 

mine the fold ing numbers n i , i.e.,  ˆ n i = n i , for 1 ≤ i ≤ L, and hence can 
robustly reconstruct N as ˆ N in (27), from the erroneous re mai nde rs. 

        In particular, when are the moduli   given by m i = m  i 
   for 1 ≤ i ≤ L , where  1  ,  2   , ,    L   are pairwise  coprime, 

Theorem 2 coincides exactly with the result in [25–27] . 

   Example 3.  Let  m 1 = 63 , m 2 = 224 , m 3   = 240 . Based on 
        Theorem 2  , unknown with 0 an  integer N   ≤ N < M  

lcm (m 1 , m 2 , m 3     ) = 10 , 080 can be robustly reconstructed 

       from its erroneous remainders by Algorithm 1  , provided 
     the loss remainder error  bound is  less than  7/4. Without   
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        of generality, let N = 70 0 0 , then its remainders and fold- 
     ing numbers are calculated as r 1 = 7 , r 2 = 56 , r 3  = 40 and 

n 1  = 111 , n 2 = 31 , n 3 = 29 . If the remainders are contaminated with 
errors   r 1 = 0 ,  r 2 = −1 ,  r 3  = −1 , i.e., ˜ r 1 = 7 , ˜ r 2 = 55 , ˜ r 3 = 39 , 

           the condition  (28) is fulfilled and we can use Algorithm 1  to 

robustly reconstruct N : 

 1: Find the index k 0 = 2 such that (22) holds. 

 2: Calculate ˆ q 12  = [ 7(  − 55) / 7] = −7 and ˆ q 32 = [(39 − 55) / 16] = 
−1 from (23). 

 3: Calculate ˆ ξ12  = 4 = (−7 · 2 mod 9) and ˆ ξ32 = 1 = (−1 · 14 
 mod 15) from (24). 

 4: Calculate ˆ n 2 = 31 via the CRT reconstruction formula for (25). 

 5: Calculate ˆ n 1  = 111 and ˆ n 3 = 29 from (26). 
 6: Calculate ˆ N = 6999 from (27). 

     From Theorem 2  , the closely  remainder error bound is  related 

              to the the moduli: the the the gcd of each pair of    larger  gcd is,  

larger the remainder error bound is. Now the question of particu- 
      lar interest  is: For a given set moduli, the   of  can we improve  re- 

          mainder splitting error bound obtained in Theorem 2 by  the set  
            of moduli several so the into  groups  that  gcd in each group be- 

      comes the congruences larger and  system of  in each group is in- 

dependently solved based on the above closed-form robust CRT al- 
          gorithm? To answer this let first  question,  us  review the cascade 

architecture of the CRT [28,29] . 
Suppose that the moduli m 1 , m 2 , , m L are split into s groups, 

  denoted by  {m i, 1 , m i, 2 , · · · , m i L,  i       }   for 1≤ i ≤ s , which are not nec- 

  essarily disjoint, i.e.,   
 s 

i =1 { m i, 1 , m i, 2 , · · · , m i L,  i 
} = { m 1 , m 2 , · · · , m L } 

and  s 
i =1 L i       ≥ L . Analogously, the L remainders  r 1  , r 2   , ,   r L are 

       correspondingly split denoted into  s groups,  by  {r i, 1 , r i, 2 , · · · , r i L,  i } 

for 1 ≤ i ≤ s . Then, it is  shown conclusively that the integer N with 
0 ≤ N < M can be uniquely reconstructed from  its remainders by a 

          two-stage CRT method, the the where  basic idea is first to apply  
CRT to each group and then to apply the CRT across all the groups. 

   In the first stage, we can uniquely reconstruct an integer  N i with 

 0 ≤ N i < η i  lcm (m i, 1 , m i, 2 , · · · , m i L,  i ) via the CRT for each group i , 
   and with reconstructions these obtained  N i   being the remainders 

and η i being the moduli, the following new system of congruences 
is evident: 

N i  ≡ N mod η i (29) 

for 1 ≤ i ≤ s . In the second stage, because of lcm (η 1 , η 2 , · · · , η s ) = M

and           0≤ N < M , we can uniquely reconstruct  N by solving via (29)  
the CRT again. 

Motivated by this cascade architecture of the CRT, we next pro- 
pose a two-stage robust CRT algorithm when the remainders have 

  errors, as shown in Fig. 1  . a We first apply Algorithm 1  to obtain  

robust integer ˆ N i for each group  i, if the remainder error bound τ
satisfies 

τ < G i   max 
1 ≤k ≤L i 

min 
1 ≤ ≤p L i 

p = k 

gcd (m i k,  , m i p,  ) 

4 
 , (30) 

where in case group  i consists of only one  modulus, let G i  m i , 1 /4 

and ˆ N i  is just ˜ r i, 1     . Then, regarding these robust  reconstruc- 

tions ˆ N i        for 1 ≤ i ≤ s as possibly erroneous remainders in (29) , 

           Algorithm 1  is applied and  again across the groups,    a robust re- 
construction ˆ  N of N can be obtained, if τ satisfies again 

τ < G  max 
1 ≤k ≤s 

min 
1 ≤i ≤s 

i  = k 

gcd (η k , η i ) 

4 
 . (31) 

          With this two-stage boost robust CRT algorithm, we may  up the 
 remainder error bound in Theorem 2 that is obtained by applying  

Algorithm 1 to the simultaneous linear congruences (5) as a whole. 
Therefore, we obtain an improved result as stated below. 

 Fig. 1. Flowchart of the two-stage robust CRT algorithm. 

             Theorem 3 [29] . If an N integer  is assumed to be in the ra ng e 

 0 ≤ N < M and the rema ind er error bound τ satisfies 

τ < min (G 1 , G 2 , · · · , G s  , G ) , (32) 

then we can robustly reconstruct N from the erroneous re mai nde rs. 

           Note that viewed special Theorem 2 can be  as a  case of 
             Theorem 3  with s = 1 . the It is due to  fact that when s = 1 , we 

have G 1 = max 
1 ≤k ≤L 

min 
1 ≤i ≤L 

i  = k 

d ki / 4 , G = M/ 4 , and  G 1 < G . 

 Example 4. Let us reconsider Example 3 with the two-stage robust 

CRT algorithm. We split the three moduli into two groups { m 1 } and 
{ m 2 , m 3 }. Based on Theorem 3 , we can robustly reconstruct an in- 

  teger N with 0 ≤ N < M = 10 , 080 , if τ < 16/4. One can see that the 
 remainder error bound  τ <16/4 in is Theorem 3  more than twice 

 that (i.e.,  τ < 7/4) in Theorem 2  for the same moduli butwith  the 

grouping and the two-stage method. Similarly, let N = 70 0 0 , while 
the remainders have relatively large errors  r 1 = 2 ,  r 2 = 3 ,  r 3 = 
−1 , i.e., ˜ r 1 = 9 , ˜ r 2 = 59 , ˜ r 3 = 39 . Since the condition (32) is fulfilled, 
we can use the two-stage robust CRT algorithm to robustly recon- 

struct N : 

 1. By Algorithm 1 for each group, we obtain ˆ N 1 = 9 and ˆ N 2 = 281 . 

          2. By groups Algorithm 1  across the  two  again, we obtain ˆ N = 

7001 . 

         The algorithm can above two-stage robust CRT   be easily gen- 
          eralized (three to a multi-stage  or more stages) robust CRT algo- 

rithm. For instance, if we further split the moduli η 1 , η 2 , , η s in 

the second stage into several groups, then we can develop a three- 
  stage robust CRT algorithm same in the  way as the two-stage ro- 

         bust a CRT algorithm. Although we, by deploying  multi-stage ro- 
bust CRT algorithm, may improve the remainder error bound for a 

given set of moduli, there are certain challenges that are especially 

  difficult to to to overcome, such as how  allocate the moduli   each 
           group and how  many shall groups and stages we  split in order 

         to achieve a best remainder error bound. Interestingly, when the 
    modulus set the case is   considered in [25–27] , the i.e.,  remaining 
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 Fig. 2.  (a)Integer position representation with respect to two moduli, m 1 = 15 and m 2 = 25 ; (b) The remainders of an integer with an error bound  τ . 

factors  i of themoduli  m i = m  i divided by their gcd m are pair- 

wise coprime, it is  proven in  [29] that remainder the  error bound 
     cannot enlarged any- be  by the multi-stage robust CRT algorithm  

more. Apart from these challenges, one might ask  what the largest 
remainder error bound is for a given set of moduli. We will discuss 

it in a geometrical  manner in the next section. 

 5. Geometrical interpretation of robus t C R T 

         In this interpretation section, describe we  an intuitive  for the 

           robust CRT from a geometrical  point of view, which helps us to 
develop a heuristic method and derive some more in-depth results. 

Given a set of moduli m 1 , m 2 , ,   m L , the  CRT says that all in- 
tegers in the range [0, M ) and their remainder vectors are in one- 

         to-one correspondence In with each other.  other words, each in- 

          teger  N∈ [0,  M) with is paired  exactly its own remainder vector 
( r 1 , r 2 , , r L ), and vice versa. Thus, we can represent each integer  

N ∈ [0,  M) a by  unique coordinates point with  being its  remainder 
 vector ( r 1  , r 2   , ,   r L       ) the in  L -dimensional remainder space,   and 

           all are parallel integers  connected a set by   of  line segments, de- 

       noted (1, by  S, with direction   1,  , 1) inside  the hyperrectangle 
[0 , m 1   − 1] × [0 , m 2  − 1] × · · · × [0 , m L  − 1] , where the integers on a 

          line in segment  S share the ( same folding number vector  n 1  , n 2 , 
, n L  ), and all the line segments in S are characterized by differ- 

ent folding number vectors, see, for example, Fig. 2  (a). 

Accordingly, we next see the robust CRT from a geometric per- 
 spective. When the remainders have errors with the error bound τ , 

the point  ( ˜ r 1 , ˜ r 2 , · · · , ˜ r L )         is inside the hypercube of side length 2τ
  centered on the ( point  r  1 , r 2  , ,   r L    ), but the probably not lie on  

line segment that passes through the point ( r 1 , r 2 , , r L ) (e.g., see 

Fig. 2  (b)). Let d min denote the minimum distance between the line 

     segments in apparent if  S. It rapidly becomes  that  the remainder 

 error bound satisfies τ  

τ < 
d min 

2 
√ 

L 
 , (33) 

         the closest the  line segment in S to  point  ( ˜ r 1 , ˜ r 2 , · · · , ˜ r L   )   is ex-
 actly the the ( one that passes through  point  r 1 , r 2 , ,   r L ), which 

        equivalently the means that  folding number vector is accurately 

       determined segment by finding line the closest    in S to the point 
( ̃  r 1 , ˜ r 2 , · · · , ˜ r L         ) , and as a a consequence,  robust reconstruction of 

           N can be obtained. It is worth mentioning here that (33) indeed 
gives the largest remainder error bound for the set  of moduli { m 1 , 

m 2 , , m L }. However, the direct computation of d min is very cum- 

bersome. A relatively efficient calculation is attainable via orthogo- 
           nal line in projections. Since all the  segments  S are parallel,  we 

        can project these onto   line segments orthogonally  a hyperplane 
   through the ( center  m 1  /2,  m 2   /2,   , m L    /2) of the hyperrectangle, 

and then calculate   d min equivalently as the minimum distance be- 

tween these projected  points on the hyperplane, as seen in Fig. 3  . 
        In addition, minimum distance we observe the that     d min in- 

            creases decreases. as the range of N  More precisely, as- if is  N   
sumed to be  ina smaller range [0, R ) than themaximum  possible 

 range [0,  M), i.e.,  R< M , the  number of the line segments in S that 

           connect the 0 all  integers from  to R − 1 becomes  smaller, which 
       implies line that the between minimum distance  these  segments 

becomes larger. An example for a three-modulus  system is shown 
in Fig. 3  . the As  minimum distance increases, the remainder error 

bound increases according to (33) . In short, there exists a tradeoff

between   the range of  Nand the remainder error bound τ . 
   Considering the a robust CRT in  two-modulus system (i.e., L  = 

 2 ), some rough results on the the the tradeoff between  range and  
         remainder been error bound have  obtained in [56] . Inspired by 
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 Fig. 3.  Integerposition representation with respect to three moduli. 

Parhami [56] , our recent work [30] derived the explicit closed-form 

expressions remainder for the the range and   error bound by a hi- 
erarchical structure in a two-modulus system, as briefly stated be- 

low. 

   Given two moduli m 1  and  m 2  with m 1 < m 2  and  m 1  m 2 in 
    a two-modulus system, write m 1 = m  1  and m 2 = m  2  , where 

m  gcd( m 1  , m 2         ), and the notation a  b b means that  is not divisi- 
ble by a . Let σ −1   2 , σ 0   1 , and for  i≥1, 

σi = | σ i −2 | σi −1  , (34) 

where | a | b is a shorthand notation for the remainder of  a modulo 

            b . Based on (34) , there must be an index K ≥0 such that σ −1 > 
· · · > σ K > σ K+1 = 1 . Then, we have the following result. 

         Theorem 4 [30] . If an N integer  is assumed to be in the ran ge 0 ≤
N < min (m 2 (1 + n̆ 2 ,i ) , m 1 (1 + n̆ 1 ,i     ))      and the rem ain der error bound
 τ satisfies 

τ < 
mσi 
4 

(35) 

 for some i, 1 ≤ i ≤ K + 1 , then we can robustly reconstruct N from the 

erroneous remain der s, where n̆  2 ,i and n̆  1 ,i can calcu- be, respec tivel y ,  
lated by the following recursive formulae: 

 i) When K = 0 , we have n̆ 2 , 1 =  1  − 1 , n̆  1 , 1 =  2  − 1 . 

    ii) When K ≥1, we have n̆  2 ,K+1 =  1  − 1 , n̆ 1 ,K+1 =  2    − 1 , and fo r 

1 ≤ i ≤ K , 

n̆ 2 ,i = 

⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 


1 
σ1 


 , if i = 1 ;

1 
σ1 


σ1 
σ2 


 , if i = 2 ;

 
σ2 p 
σ2 p+1 

 
( n̆ 2 , 2 p + 1) + n̆ 2 , 2 p−1   , if i = 2 p + 1 for p ≥ 1 ;

 
σ2 p+1 
σ2 p+2 

 
n̆ 2 , 2 p+1 + n̆ 2 , 2 p    , if i = 2 p + 2 for p ≥ 1 

(36) 

Table 1 
 The tradeoff between the range and the remainder error bound in Example 5 . 

 Level  Valueof σ i Remainder error bound n̈ 1 ,i n̈ 2 ,i Range 

 V σ 1  = 11      τ < (13 · 11) / 4 = 35 . 75    1 1 0≤ N < 468 
IV σ2 = 7     τ < (13 · 7) / 4 = 22 . 75    3 1 0≤ N < 754 
III σ3 = 4      τ < (13 · 4) / 4 = 13    4 3 0≤ N < 1170 
II σ4 = 3     τ < (13 · 3) / 4 = 9 . 75    8 4 0≤ N < 1885 
I σ5 = 1     τ < (13 · 1) / 4 = 3 . 25 28  17  0≤ N < 6786 

and 

n̆ 1 ,i = 

⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 


2 
1 


1 
σ1 


 , if i = 1 ;


2 
1 


1 
σ1 


σ1 
σ2 


+ 


σ1 
σ2 


+ 


2 
1 


 , if i = 2 ;

 
σ2 p 

σ2 p+1 

 
n̆ 1 , 2 p + n̆ 1 , 2 p−1    , if i = 2 p + 1 for p ≥ 1 ;

 
σ2 p+1 
σ2 p+2 

 
( n̆ 1 , 2 p+1 + 1) + n̆ 1 , 2 p   , if i = 2 p + 2 for p ≥ 1 . 

(37) 

        Theorem 4 demonstrates bound that remainder the  error  de- 
         creases system. as the a range increases for  two-modulus  When 

       the the maximum, 0 range increases to   i.e.,  ≤ N < lcm( m 1  , m 2  ) or 

         i = K + 1 in Theorem 4  , the  remainder error bound decreases to 
           the minimum, i.e.,  τ <m /4, which is in   coincidence with the  re- 

sult in Theorem 2  for a two-modulus system. Let us see this  inan 
example below. 

 Example 5. Let m 1 = 13 · 18 and m 2 = 13 · 29 . The lcm of the mod- 

 uli is lcm (m 1 , m 2   ) = 6786 . Based on Theorem 4  , the we have  fol- 
             lowing result in Table 1  , the where  last row, i.e., Level  I, is the 

known result in Theorem 2  . 

     However, for a moduli) multi-modulus (three or more  system, 

         it is  very difficult to derive the the  explicit expressions for  range 
and the remainder error bound as what is done for a two-modulus 

system in Theorem 4  . Motivated by the two-stage CRT method in- 

troduced in the previous section, we propose a suboptimal method 
 to quantify the tradeoff between the range and the remainder error 

bound for a multi-modulus system as follows. First, the moduli are 
      split into and is two groups,  a robust reconstruction  obtained for 
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Table 2 
 The tradeoff between the range and the remainder error bound in Example 6 . 

 Level  Valueof σ i Remainder error bound n̈ 1 ,i n̈ 2 ,i Range 

 III σ 1 = 9    τ < 60 / 4 = 15    4 2 0≤ N < 30 0 0 
II σ2 = 2    τ < 60 / 4 = 15 22   8 0≤ N < 13 , 230 
I σ3 = 1    τ < 30 / 4 = 7 . 5 0 48 19  ≤ N < 29 , 400 

each group according to Theorem 3 . Then, with these two obtained 

    reconstructions the groups, across the from   Theorem 4 is applied   

    two groups. a illustration Let us take  concrete example as an  be- 
low. 

   Example 6.   Let  m 1   = 60 · 2 , m 2   = 60 · 5 , m 3   = 70 · 3 , m 4  = 70 · 7 . 
       The lcm the moduli of all   is M  lcm (m 1 , m 2 , m 3 , m 4 ) = 29 , 400 . 

  We  split the moduli groups: {   into  two     m 1 ,  m 2  } {  and  m 3 , 

m 4   }. Let  m ( )1   gcd (m 1 , m 2  ) = 60 , m ( )2   gcd (m 3 , m 4  ) = 70 , η 1  

lcm (m 1 , m 2    ) = 600 = 30 · 20 , and η 2  lcm (m 3 , m 4 ) = 1470 = 30 ·
49              . We first apply Theorems 2  or 3 to each group and obtain 

 two reconstructions ˆ N 1 , ˆ N 2   . Then, regarding ˆ N 1 , ˆ N 2   as the erro- 
   neous remainders and η 1  , η 2       as the moduli  in (29) , we apply 

         Theorem 4  across the a  two groups and obtain  reconstruction ˆ N 
    as desired. Let  η gcd (η 1 , η 2   ) = 30 , and  1  ,  2   denote the re- 

   maining factors of  η 1  , η 2       divided i.e., by their gcd η,  η 1 = η 1 
and η 2 = η 2 . Therefore, ˆ N is a robust reconstruction of  N, if N is 

 assumed to be in the range 0 ≤ N < min (η 2 (1 + n̆  2 ,i ) , η 1 (1 + n̆ 1 ,i )) 
 and the remainder error bound τ satisfies 

τ < 
min (m ( )1  , m ( )2  , ησ i ) 

4 
(38) 

 for some i, 1 ≤ i ≤ K + 1 , where the values of σ i , K, n̆ 2 ,i , n̆ 1 ,i are de- 

  termined by  1  ,  2         in (34), (36), (37)   . The result is shown in 
             Table 2  , the the where  last row, i.e., Level I, is  known result in 

             Theorem 3  . the 0 One can see that when  range of N is  ≤ N < 
          13 , 230 , the twice remainder error bound can reach 60/4 that is  

as large as that obtained in Theorem 3  . 

 6. Generalizations and open problems 

In this section, we introduce two interesting generalizations of 
         the robust CRT, CRT i.e., robust generalized  for multiple integers 

and robust double-remaindering CRT, and their related open prob- 

lems, respectively. 

 6.1. Robust generalized CRT for multiple integers 

The above robust CRT is studied for estimating the frequency of 

a single harmonic signal  in the model signal  (1) . A  common prac- 

          tice is to estimate multiple frequencies superposition the   of a  of 
      harmonic signals undersamplings. explicitly,  from multiple  More  

     let us consider frequencies ρ   N i       Hz for 1 ≤ i ≤ρ that need to be 
estimated in a superpositioned signal x ( t ): 

x ( )t  = 

ρ 

i =1 
a i  exp ( j2 π N i  t ) , (39) 

 where  a i       are unknown complex coefficients. nonzero   We under- 

    sample  x( t ) with  multiple sampling rates m k   Hz for 1 ≤ k ≤ L , and 
the sampled signal with sampling rate m k Hz is 

x k [ n ] = 

ρ 

i =1 
a i  exp ( j2 π N i n m/  k  ) . (40) 

We then take the m k -point DFT to x k [ n ] and obtain 

X k [ l] = 

ρ 

i =1 
a i  δ(l − r i k,   ) , (41) 

          where δ( l ) 1 takes  when l = 0 0 and  otherwise, and r i, k  are the 

remainders of  N i modulo m k , i.e., r i k,   ≡ N i mod m k . Thus, what can 

be detected from  the with sampled signal  sampling rate m k Hz is  
the following remainder set 

S k  

ρ 

i =1 
{ r i k,  }  { t i k,  : i = 1 , 2 , · · · , ρ k  } , (42) 

where  t i 1 ,k < t i 2 ,k  for 1 ≤ i 1 < i 2 ≤ρk   , and ρ k     ≤ρ is the number of 

      distinct elements,  i.e., cardinality, the  of the set  S k    . Note that the 
correspondence between the  elements in a remainder set and the 

multiple unknown. multiple frequency esti- integers is  Hence, the    
mation equivalently becomes the problem    reconstruction problem 

of the multiple integers from their remainder unordered  sets [18–

21]  , which we call the generalized CRT for multiple integers. 
As an illustrative example, let us consider the case  when three 

          integers are 5,19,192 are  and three moduli   5,7,9. this In  case, the 
            three remainder sets we can detect are {0, 2, 4}, {3, 5}, {1, 3, 5}, 

respectively. The problem is to uniquely reconstruct the three inte- 

gers from these remainder sets and moduli, where the correspon- 
          dence between the three a   integers and their remainders in  re- 

          mainder specified, set is not  for example, remain- in the second   
            der neither remainder set {3, 5}, we know  whether 3 the is   of 

the first, second or third unknown integer modulo 7, nor whether 

         3 three repeats once or twice. One can easily check that another  
        integers 10,12,59 remainder  have the same  sets as above.  So, the  

          range for the the the three uniqueness of  reconstruction of   inte- 
       gers would be much smaller than  [0 , lcm (5 , 7 , 9)) = [0 , 315) , un- 

           like singe integer. the a CRT for    Without loss of generality, as- 

sume that  m 1 < m 2  <  < m L are pairwise  coprime. A best known 
    range for for the generalized CRT  multiple integers proposed was  

 in [57] when  ρ <2 . it, introduce Before stating  let us  some nota- 
 tions. Let be a γ -partition  ofmodulus set M  { m 1 , m 2 , · · · , m L } 

            such of that  M is into decomposed  a union  its γ disjoint sub- 
sets, i.e., M = M  

1 
 

M  
2 

 · · ·
 

M  
γ and M  

i 
 

M  
j = ∅ for any 

        pair and of  i   j with i  = j , where M  
i      can De- be the empty set.  

 fine  b  
i   

m l ∈M  
i 

m l  if  M  
i     is not  empty, and  b  

i   1 otherwise. 

  Then, let   b( )γ  max 
 ∈P 

min 
1 ≤i ≤γ

b  
i   and  c( )γ  min 

 ∈P 
max 
1 ≤i ≤γ

b  
i  , where P

denotes   the set of all γ -partitions of M . Then, we have the follow- 

ing result. 

   Theorem 5. [57] N 1  , N 2   , ,   N ρ     can be uniquely determined from 

their rema ind er sets, if 

max { N 1 , N 2 , · · · , N ρ} < max 

 

min { c( )ρ  , b(2) } , 

 L/ρ  

i =1 
m i , m L 

 

(43) 

 when ρ > 2, and 

max { N 1 , N 2 , · · · , N ρ} < max { b(2) , m L  }  (44)

 when ρ = 2 , where  ·  denotes the ceiling function. 

          The range given the in Theorem 5 is not necessarily  largest 
          one. Let        us give a simple counter example as follows. Consider 

  the case  of two integer determination (i.e.,  ρ =2 ) from their four 
          remainder (i.e., sets   L= 4 ), where are the moduli four   given by 
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m 1 = 17 , m 2 = 19 , m 3 = 20 , m 4       = 21 . the In this case,  range from 
Theorem 5 is max { N 1 , N 2 } < 357, whereas the largest range is eas- 

    ily checked to be max { N 1  , N 2     } < 737. Recently, the largest range 
along with an efficient reconstruction algorithm for the generalized 

 CRT for two integers, i.e.,  ρ =2 , has been studied and/or provided 

in [58] and [59] with the  following theorem. 

    Theorem 6. [59] If m L −1        ≥ 3 , the largest ra ng e fo r uniquely deter- 
mining two integers N 1 , N 2 from their remai nder sets is 

max { N 1 , N 2 } < min 
I Q⊆  

 
 

i ∈I 

m i + 
 

i ∈ I 

m i 

 

 , (45) 

        where  Q= { 1 , 2 , · · · , L } , and the symbol I denotes the complement 

 of I in Q . 

         So largest simple far the  range and any  reconstruction algo- 

rithm for the generalized CRT for multiple (larger than integers 2)  
         are Incidentally, still unknown and would be interesting.  by im- 

        posing additional integers conditions multiple on the   and/or the 
moduli, some different results were proposed in [19, 60–62]  . 

On the other hand, considering that the detected remainders in 

the remainder sets often have in ap- errors due to noise  practical  
plications, there  is an even greater need in the future for robustly 

       reconstructing the the  multiple integers from  erroneous remain- 
         ders, similar to the robust CRT. Recently, the generalized robust 

           CRT for two integers been has  presented in [31] , the under  as- 

sumption that the remaining factors of the moduli divided by their 
gcd are pairwise coprime. Mathematically, let moduli m i = m  i for 

1 ≤ i ≤ L , where  1 ,  2 , ,    L  are pairwise  coprime. Let  τ be the 
remainder error bound, i.e., |  r i k,  | = | ˜ r i k,   − r i k,    | ≤ τ for i = 1 , 2 and 

         1 ≤ k ≤ L . the Then, we have  generalized robust CRT for two inte- 

gers in the following. 

 Theorem 7. [31] If integers N 1 , N 2 are assumed to be in the rang e 

max { N 1 , N 2  } < m · min 
I Q⊆  

 
 

i ∈I 
i + 

 

i ∈ I 

 i 

 

(46) 

 and the rema inde r error bound τ satisfies 

 τ < m/ 8 , (47) 

             where  Q and  I are defined as   in Theorem 6 , then we can robustly 

reconstruct N 1 , N 2 , i.e., | ˆ N i  − N i   | ≤ τ fo r i = 1 , 2 . 

         For a reconstruction algorithm of Theorem 7  , the we refer  
          reader to [31] . the General results for  generalized robust CRT for 

         multiple algorithms integers well as  as fast reconstruction  are of 
great interest for further research. 

          Rem ar k 1. Note that the estimation a  of frequencies of  multi- 

       harmonic signal undersampled  in (39) from multiple  waveforms 
          has in also considered been   the more recent sparse fast Fourier 

         transform (SFFT) [63–71] . the The algorithm in [63,64] relies on  

       combinatorial DFTs properties of aliasing among frequencies  in  
         such that taking by  enough DFTs sub-samples coprime of  with  

          sampling each rates,  frequency is isolated from the others in at 
least half of the DFTs. Then, based on the CRT and majority rule, all 

the frequencies are guaranteed to be recovered. In [65,66] , enough 

DFTs of sub-samples with coprime sampling rates are also needed 
           such that isolated least each frequency is  for at  one DFT,  and 

        then slightly by using  shifted samples distinguish non-aliased to   
          frequencies DFT from aliased ones  in a  and determine the val- 

    ues of the a with non-aliased frequencies,  different algorithm  re- 

       duced sampling and runtime complexities was proposed. In [67–
71]          , with by using aliasing filters  coprime sub-Nyquist sampling 

         rates, the buckets frequency coefficients are split into  such that 
             the bucket the the value in each  is  sum of  values of only the 

        frequency coefficients  that frequen- compose the bucket. the   All   
        cies iteratively estimating are then estimated  by   the frequencies 

from buckets where they do not collide and subtracting them from 
       buckets they the where  do collide, in which  change of the phase 

caused by shifted samples is used to determine the frequency and 

the corresponding frequency coefficient in the bucket  with exactly 
       one frequency The  coefficient.  robust robust CRT and generalized  

CRT we have in paper discussed  this  are different  from the above 
mentioned SFFT based algorithms in a number of aspects: 

 1) The sub-Nyquist  sampling rates (or moduli) are neither limited 
       to being pairwise coprime nor  require specific combinatorial  

structures. 
   2) at shifted points are needed. Additional samplings   slightly    not  

The number  of DFTs or the number of samples required is sig- 

nificantly less. 
 3) All the frequencies (or large integers) are estimated in one shot 

         based proposed de- on the  generalized (robust) from CRT  the  
tected aliased frequency (or remainder) sets. 

     4) The considered respect robustness is  with  to the the errors in  

remainders. 

 6.2. Robust double-remaindering CRT  

Many ambiguity problems in practice can be reduced to the so- 

lution of simultaneous linear congruences. So, the CRT provides an 
        ambiguity double- resolution method. the We next state  (robust)  

  remaindering CRT, which originally arises estimating  from  the ra- 

 dial velocity of a the ground moving target by resolving  so-called 
time-space Doppler ambiguity in multichannel SAR [32] , where the 

         time domain Doppler ambiguity occurs first in each channel and 
        then ambiguity among multi- the spatial domain Doppler  occurs   

channels. We refer the reader to [32] for details. 

In terms of number theory, the double-remaindering CRT opens 
         a brand new mathematical problem, as described below. Let  M 1 , 

M 2 , ,   M L and  N 1 , N 2 , ,   N L be positive integers, where  N i < M i 
for 1 ≤ i ≤ L . Then, a nonnegative integer N can be written as 

N = m i M i + n i N i + r i     , for 1 ≤ i ≤ L, (48) 

 where  r i  with 0  ≤ r i < N i     are called the double-remaindering re- 

mainders for which N is first taken a modulo with a larger positive 
integer M i and then its remainder is taken another modulo with a 

smaller positive integer N i , i.e., 

r i  ≡ (N mod M i ) mod N i  . (49) 

For example, let M 1 = 12 , M 2 = 20 and N 1 = 5 , N 2 = 9 . We can find 

        that  N= 29 and  N= 0 the have  same double-remaindering re- 

 mainders  r 1 = r 2        = 0 . A natural the   question is how large  integer 
 N can be so that it can be uniquely double- determined from the   

  remaindering remainders  r i    for 1 ≤ i ≤ L . Let d i  gcd( M i  , N  i  ) and 
r i = k i d i + | r i | d i   for 1 ≤ i ≤ L , where  |r i | d i   denotes the remainder of 

r i modulo d i . We rewrite (48) as 

N = 


m i 

M i 

d i 
+ n i 

N i 

d i 
+ k i 


d i + | r i | d i  , (50) 

         and then can we  simply double-remaindering regard the  CRT as 

         the CRT. Accordingly,  N can uniquely be  reconstructed from   r i if 
0 ≤ N < lcm( d 1  , d 2   , ,   d L       ). Obviously, the  range we have above 

     is too weak, especially when  M i  and  N i    are anal- coprime. This  
            ysis is and is only a first look for this problem,  further research  

 clearly needed. What any is is more  that we expect to see  devel- 

opment of the robust double-remaindering CRT, when the double- 
remaindering remainders r i for 1 ≤ i ≤ L have errors. 

 7. Conclusion 

In this paper, we have provided an overview on the robust CRT 
        and its in  applications  frequency multiple estimation from  truly 
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        sub-Nyquist samplers. summaries  It  some of the research results 
on this topic from the authors’ group starting from the mid 1990s. 

         It also provides challenging some of the  open problems research  
on this topic. Since the robust CRT problem is a fundamental prob- 

          lem, we believe will that it  have broader applications than   what 

we have mentioned in this paper. 
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