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problemsas well.

Inthis paper,atruly sub-Nyquistsampling method for frequency estimation of sinusoidal signalsin noise
is presented. Basically speaking, sinusoidal signals are first sampled at multiple sampling rates lower
than the Nyquist rate, and then arobust Chinese remainder theorem (CRT)is proposed to estimate the
frequencies of interest from the aliased frequencies obtained by taking the discrete Fourier transform of
thecollected samplesin eachundersampled waveform. Compared withcompressed sensing, this method
canbe easilyimplemented fromthe hardware point of view. This paper providesa thoroughoverview of
the existing research results on the robust CRT during the last decade, and discusses some related open
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1. Introduction

Frequency estimation of sinusoidal signals from a finite num-
ber of noisy samples is a fundamental problem in signal process-
ing [1-3] It has wide applications in many fields, such as radar,
sonar, digital communications, and image analysis. Inthe past few
decades, numerous frequency estimation approaches have been
proposed in the literature, including maximum likelihood [4,5]
nonlinear least squares [6] Prony’s method [ 7] MUSIC and ESPRIT
[8,9] just to name a few. In these methods, the signal is usually
assumed tobe sampled ata rate higher than the Nyquist rate, i.e.,
the samplingrateis higher than twicethe highest frequencyofthe
signal. However, in some applications, e.g., detecting high-speed
moving targets ina syntheticaperture radar (SAR)image and esti-
mating the wide-range carrier frequency offsetin a coherent opti-
cal orthogonal frequency division multiplexing (CO-OFDM) system,
the signal to be estimated has intrinsically high bandwidth, and
the traditional Nyquist sampling consequently becomes infeasible
due to high power consumption, great cost, and limited bit resolu-
tion of a high-rate analog-to-digital converter (ADC), or in spatial
domain in, such as, SAR. Therefore, studies on frequency estima-
tion from sub-Nyquist sampling sequences are interesting and im-
portant.
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Compressed sensing (CS), also known as compressive sampling
or sparse sampling, has been proposed in the recent years [10-13}
which basically randomly samples signals with a much smaller
number of samples than that of using the Nyquist sampling if
they are sparse or sparsable in an appropriate transformation do-
main. However, the design of random sampling-based hardware is
still a great challenge [ 14] Another family of statistical frequency
estimation methods based on two truly undersampled signal se-
quences has been proposed in [15-17] where by truly undersam-
pled it means that regular samplers with sub-Nyquist sampling
ratesare used. More specifically, they use two uniformsub-Nyquist
samplers/arrays with sampling periods being coprime to estimate
the signal autocorrelation sequence at Nyquist rate, and from the
estimated autocorrelation sequence the frequencies are estimated.
However, these coprime sampler based methods may require long
time observations of signalsin order to achieve the same autocor-
relation sequence estimation performance as before.

Unlike the above statistical methods, an efficient deterministic
methodbased on the Chinese remainder theorem (CRT), which we
will review in this paper, had been proposed in the earlier past
to estimate frequencies of sinusoidal signals from multiple truly
undersampled waveforms [18-21] starting from the mid 1990s. It
takes the discrete Fourier transform (DFT) of the collected samples
in each undersampled waveform to detect the aliased frequency,
andthenthe frequenciesareestimated fromthese aliased frequen-
cies by using generalized versions of the CRT. Without loss of gen-
erality, letus consider a single harmonic signal

X(t)=aexp(j2T Nt )+w(t), (1)
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where N Hz, the frequency to be estimated, is assumed to be a
positive integer for simplicity, a is an unknown complex coeffi-
cient,and w(f)is an additive white noise. We now exploit multiple
undersampled versions of Xf) with several different but much low
samplingratesm {Hzm ,Hz--- ,m [Hzi.e,

xinl=aexp(j2rtNn/m  )+w {(n/m;) (2)

for 1< i< L Then, for each of the undersampled signalsin (2) the
remainder r; of Nmodulom ; is obtained as the aliased frequency
by performing the m ;-point DFT, if the signal-to-noise ratio (SNR)
isnottoo low. Itis equivalent to solving a system of simultaneous
linear congruencesfor the signal frequency N given the remainders
ri:

r; = Nmodm ; (3)

for 1<i< I, where the sampling rates m i are called the moduli
and 0<r ; <m ;. Once we have collected these remainders, we can
uniquely determine the signal frequency N via the CRT if N is less
than the least common multiple (Icm) of all the moduli [22-24]
In this paper, we are more concerned about the robust problem.
When the SNRis too low, the detected remainders are most likely
subject to error contamination. It is well known that the CRT re-
construction formulais highly sensitive toerrorsin the remainders
in the sense that a small remainder error may produce a large re-
construction error in N In this paper, we first give an overview of
arobust CRT [25-30] that can be precisely applied and provide a
robust solution to (3) or the above frequency estimation problem
when the remainders have errors. What the robust CRT basically
says is that under some conditions on the moduli the reconstruc-
tion error is upper bounded by the remainder error bound. Two
generalizations of the robust CRT are then presented: one is a ro-
bust generalized CRT for multiple integers [31] which aims to es-
timate more than oneinteger (or frequencies of a multi-harmonic
signal) fromthe remainder sets (or sets ofthe detected aliased fre-
quencies in undersampled waveforms), and the other is a robust
double-remaindering CRT [32] which aims to estimate a large in-
teger (or the radial velocity of a ground moving target in a SAR
image) from the so-called double-remaindering remainders (or the
detections after resolving Doppler ambiguity successively in both
time domain and spatial domain). The robust CRT and its gener-
alizations have been found to have many potential applications in
other fields, such as phase unwrapping in radar signal processing
[33-38] and optical interferometry [39-41] wireless sensor net-
works [42-44] and computational neuroscience [45,46]

The rest of this paper is organized as follows. In Section 2
we briefly introduce the CRT. In Sections 3-5 the robust CRT
and its latest results are described in a self-contained manner. In
Section G we present the two generalizations of the robust CRT
and discuss some interesting open problems for future research.

2. Chinese remainder theorem

Before stating the CRT, let us review some basic concepts and
notations from number theory.

i. Fortwoormoreintegersm {,m,,---,m | with[> 2, theirgreat-
est common divisor (gcd), denoted by gcdm 1, my, -, m ),is
the largest integer that divides each of them, and their least
common multiple (lcm),denotedbylcmim  ,m»,---,m p),isthe
smallest integer that is divisible by each of them. Two integers
are said tobe coprimeiftheirged is 1.

ii. Givena positive integer m twointegers aand b are said to be
congruent modulo m written mathematically as a= bmodm,
if their difference a— b is divisible by m (i.e., (a— b)ym is an
integer),wherethenumbermis called themodulus.Ifandonly
if a and m are coprime, there is exactly one solution for x to

the linear congruence ax= 1mod m withxe{1-.- ,m—1}
We call such asolution the modular multiplicative inverse of a
modulo m For example, —5= 9mod 7 and 4 is the modular
multiplicative inverse of 2 modulo7,i.e.,2- 4= 1mod7

iii. For twointegers a and m with m=>0, there exists a unique pair
of integers k and r such that a=km+r and 0<r<m where
the number k is called the folding number, and r is called the
remainderofamodulomThus,ais congruent toitsremainder
rmodulo m i.e., r= amodm, and moreover, if a= bmodm,
thenaand b have the same remainder modulo mForexample,
9= 15mod§ and the remainders of 9 and 15 modulo 6 are
both3.

The earliest congruence problem first appeared in the 3rd-
century book entitled Sunzi Suanjing

“There are certain things whose number is unknown. If we count
them by threes, we have two left over; by fives, we have three left
over; and by sevens, we have two left over. What will be the num-
ber?”

Letting N denote the number of such things, the congruence
problem above can be interpreted as finding N such that its re-
mainders modulo 3, 5,7 are 2,3, 2,respectively, i.e.,

2= N mod3
3= N mod5
2= N mod7 (4)

In the year 1247, a Chinese mathematician Qin Jiushao first pre-
sented a complete solution to simultaneous linear congruences,
whichislaternamed the CRT, in his book entitled Shushu Jiuzhang
The CRT has now evolved into a systematic theorem that exists
ubiquitously in elementary mathematical textbooks.

We next formally introduce the CRT. Let Nbe anonnegativein-
teger,m 1 <m <--- <m | bethe Lmoduli, MAlcmm {,my,---,m )
bethelcm ofallthe moduli,andr  1,r3,---,r | bethel remainders
ofNi.e.,

ri=Nmodm ; or N=n jm;+r; (5)

for 1<i<[ where O<r ;<m;, and n ; are the folding numbers.
GivenN andthemodulim ;,the remaindersr ; canbe uniquely cal-
culated fromdivision.Conversely,giventhemodulim  ; andremain-
ders r ;, N can be uniquely determined modulo M via the CRT as
follows.

Theorem 1 [22] (Chinese remainder theorem). Given the moduli
m; and remaindersr ; in (5) there is a unique solution for N modulo
M, whichis given by
L
N= r;D;M; mod M, (6)
2

whereM ; =M/ ;,D; isthemodularmultiplicativeinverseofM ; mod-
ulow ; (ie,1=D ;M; mod u;)ifu =1,elseD ;=0andpn 1,12,
1 aretaken to be any L pairwise coprime positive integers such that

l_[Ltl Wi =M and p ; divides m ; for each 1< i< L.In particular, if itis
assumed that Nis less than the lcm of all the moduli, i.e., 0< N<M,

thenwe canuniquely determine Nfrom(6)whichisin fact the small-

est nonnegative integer solutionto (5)

When the moduli are pairwise coprime, i.e., the gcd of every
pairofm ; andm j, denoted by

d;j £gedim ;m ;) (7)

is 1, Theorem 1 reduces to the traditional CRT wherein we have
pi=m; for 1<i<Lin the reconstruction formula (6) Another re-
mark we have to make here is that to enforce the uniqueness of
the solution in the CRT, we tacitly admit that N is in the range
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[0, M)in the remainingofthis paper, unless specifically stated oth-
erwise.

Example 1. Let us find the solution to the simultaneous linear
congruences (4) via the CRT. Since the moduliin (4) are pairwise
coprime,we have © 1 =3 3 =54 3 =7.Then, we calculate

1. M=3.5-7=105

2. M1 =35M 2 =21M 3 =15

3.D1 =2D 2 =1,D 3 =1;

4.N= (2-2-35+3-1-21+2-1- 15) mod 105= 23 mod 105

Asaresult, weget N=23

Due to the carry-free property of the modular arithmetic, the
CRT provides an energy-efficient and fast arithmetic operation
throughbreakingdownalarge computationintoaseriesofsmaller
computations that can be performed independently and in par-
allel. Thus, the CRT has offered widespread applications in many
fields such as computing, cryptography, and coding theory, see
[22-24]and references therein.

3. Robust Chineseremainder theorem

In this section, we state the robust CRT that s the focus of this
paper, and compare it withthe Chineseresidue code.

As aforementioned in Introduction, the remainders r ; are de-
tected from noisy data in most signal processing applications,and
therefore, they are usually knowninaccurately. Let 7 =1 ; +Ar ; de-
note the erroneous remainders, where Ar  ; are the remainder er-
rors. If we apply the CRT directly to reconstruct N from the erro-
neous remainders 7; instead ofr ;, thereconstruction formula(6)is
likelytoyield alarge reconstructionerroreven though the remain-
dererrors Ar ; aresmallenough. Toillustrate this point, let uslook
atasimple example.

Example 2. Consider the moduli m 1=16m 3 =24m 3 =4Q The
lcm ofall the moduliis M=24QIn this case, welet 1=16p =
3 3 =5 Wethen calculate M 1=15M ; =80M 3=48andD i =
15D , =2D 3 =2 The CRT says that any integer N in the range

0< N<240 can be uniquely reconstructed from its remainders by

(6) As one knows, all the remainders of N=1 are equal to 1. If

its remainders are subject to small errors &r | =Ar 3 =04 5 =1,
i.e, 71 =1, & =2 f3=1 thenreplacingr ; with 7; in (6) we get
areconstruction N=161, which differs significantly from the true
value N=1.In other words, alarge reconstruction error occurs.

Indeed, alarge reconstruction errorindicates poor performance
of applications. It is, therefore, a matter of great importance to
properly resist the remainder errors, in the sense that a robust
reconstruction can be obtained from the erroneous remainders,
where, and throughout this paper, the term “robust” means that
when the remainders are known approximately within an error
boundz,i.e.,

|ari|=| fi—-n|<t forl<i<, (8)

the reconstruction error is upper bounded by 7, i.e., the recon-
structed integer N of N satisfies

IN—N|< . 9)

We also call it a robust CRT. In either theoretical or applied re-
searches,the robust CRTraises two fundamental problems: 1) How
large can the remainder error bound 7 be for the robustness to
hold? The larger t is, the weaker the condition is required or the
lower SNR is needed. 2) How do we develop a fast and efficient
reconstructionalgorithm?

To the best of our knowledge, the robust CRT first appeared
in resolving the ambiguity in radar signal processing [47,48] Nev-
ertheless, there was no dedicated and systematic approach pro-

posed in [47,48] to well addressing the above two problems un-
til two decades later the robust CRT was independently investi-
gated in [25-30] to estimate a large frequency from multiple un-
dersampled waveforms. Under the assumption that the remaining
factors of the moduli divided by their gcd are pairwise coprime,
i.e,mj =ml" ; for1<i<[whereI" 1, 5, ---,I" | are pairwise co-
prime, it is basically stated in [25-27] that an integer N in the
range [0, M)canberobustly reconstructed,if t islessthanaquar-
ter of the gcd of the moduli, i.e., T <n/4.Especially, a closed-form
reconstruction algorithm was proposed in [27] More recently, by
removing the coprimeness assumption made in[25-27]some im-
proved versions of the robust CRT with a general set of moduli
and the corresponding reconstruction algorithms were presented
in [28-30] Their brief descriptions will be stated in the following
Sections 4and 5respectively.

The key idea for the robust CRT in [25-30] isto accurately de-

termine the unknown folding numbersn ; in(5)first and then re-

constructN as

N 1t

N= | =N (nym; +F) |, (10)
L2,

where pd stands for the rounding function such that
—-B<x-pM<0a (11)

It is straightforward to see that as long as the folding numbers n i
are accurately determined, (10) provides a robust reconstruction,
ie,|N-N|< 1 becauseof N=N+ [yf; &ri/L] andpyr j|<7 for
1< i< L Therefore, the robust CRT turns into a problem of accu-
rately determining the folding numbers n ; from these erroneous
remainders ;.

The Chineseresidue code is well known as another remainder-
error-resistant technique, whichis anerror-correcting code and has
been investigated extensively in the literature [49-52] More pre-
cisely, given V pairwise coprime modulim 1<mj,<---<m y and
an integer L<V, the Chinese residue code has a message space
N={1--, l-[él m; — 1} and encodes a message Ne\ as its
remaindervector(r 1,73,---,7 v).Inthiscode, the remainders form
aredundantrepresentation of N and according to the CRT, if there
are only |(V— D)2 or fewer erroneous remainders, where |- |
denotesthe floor function, then N can be accurately reconstructed
as a unique output in the minimum Hamming distance decoding
algorithm. Remarkably, an alternative decoding algorithm, called
list decoding, was proposed for the Chinese residue code with a
large error rate in [53-55] where the number of erroneous re-
mainders may be larger than |(V — D2| i.e., the number of erro-
neous remainders that the minimum Hamming distance decoding
algorithm can handle, and the decodingalgorithm outputs a small
list of possibilities one of which is accurate. As a note, the robust
CRT considered in this paper is quite different from the Chinese
residue code: In the robust CRT, the moduli are generally not pair-
wise coprime, the reconstruction may be inaccurate but is robust
totheremaindererrors,and allthe remaindersareallowedto have
errors that are not too large.

4. Closed-form algorithm forrobust CRT

Inthe robust CRT setting above, we first present a condition on
the remainder error bound along with a closed-form robust CRT
algorithm [27,29] in this section. We then develop a multi-stage
extension [29] of the proposed closed-form robust CRT algorithm
to further improve the remainder error bound condition. Some il-
lustrative examples are given to verify the results.

As the CRT in Theorem 1 says, an integer N in the range [0,
M) can be uniquely reconstructed from its remainders r L2,
r. with respect to the modulim {,m,, ---,m [ in(5) This N will
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also give the unique foldingnumbersn ; asn ; =(N—r jym ;, which

satisfyO<n ;<Mm ; for1<i<LInwhatfollows, wetry todirectly

reconstructn ; for 1<i< Lfrom theremaindersr 1,7, ---,1 .
Letting the last L— 1 equations in (5) subtract the first one, we

get

nim —nm; =r; — n (12)
for 2<i< L Dividing both sides of (12) by the gcd d 4 of mq and
m;, we get

mly —nily =q4, (13)

where I' 2mHy, Tai2m iy, and q3 =(; —riyd . Next, we
take bothsides of (13) moduloI" ;,andthen have

nly =(i modl‘; . (14)

Sincel" y andT"; are coprime, the modular multiplicative inverse
of I' 4 moduloI" ; uniquely exists, denotedby I' j , and thenitis
not hard to see that the congruence (14) can be simplified to

ni=q f‘,’ modl—‘i . (15)

Accordingto(15)n ; andq; Ty havethe same remainders modulo
I'; for2<i<L Therefore, we readily have the following simulta-
neous linear congruences

& =n; modly, (16)

where£ ; aretheremaindersofq ; Ty modulol’; for2<i<Land
can be calculated in advance. Because of lem(I"  51,I'31,---,"' g )=
M/m; andO<n ; <Mm ¢, we canuniquely reconstructn by solv-
ing(16)viathe CRT,and then from (13)the other folding numbers
canbe obtained by

mly —g;
n= 1l — i
[y
for 2< i< L Therefore, by following the above steps, the folding
numbers n; are uniquely reconstructed from the remainders with-
out firstreconstructing N

Sincethe erroneousremainders j areonly knowninplace ofr ;
in the robust CRT, we naturally use

~ A Fi — F]

= [ — 18
dj |: d; ] (18)
asanestimateofq 3 ,where][- |istheroundingfunctionasdefined

in (11) If the remainder error bound T in (8)is less than each of
dy[4for2<i<lIi.e.,

(17)

. dy
T<min - (19)
itisimmediatethat [(&r;j— Arqydy]=0and
s ri—n N — Ay
di —[ & +7d1’ ]
_ =T +|:N17Ar|i|
dy dy (20)
_n-n
=0
=qi-

One cansee that the rounding function used in (18) enables us to
completely eliminate the effect of the remainder errors given by
(19)Once §; areequaltoq ;,theremaindersé ; ofnq in(16)are
accuratelydetermined, and of course we canaccurately reconstruct
n; viatheCRTaswellastheothern ; from(17)for2<i<LItthen
follows from (10) thata robust reconstruction N of N is ultimately
obtained. Therefore, (19) gives a condition on the remainder error
bound 7 suchthat arobust reconstructionof Nis obtained.

Note that the subtractionsin (12)are taken with respectto the
firstremainder.Itissuggestedthatn ; isselected as areference to

be first determined. Infact, we can arbitrarily select the kth equa-
tionin(5) tobe subtracted from the others analogousto (12)and
thereafter, by replacingtheindex 1 with kin(12}(20)wefirstac-
curatelydeterminen ; followed by the other folding numbers, pro-
vided the remaindererrorbound t satisfies

T <min
kiL
*

So, we are able to get the largest possible T by selecting a refer-

encen y, suchthat

dki
= (21)

min d ; =max min dj;. 22
il koi kel il ki ( )
#* o e 3

In the following, we summarize the closed-form robust CRT algo-

Algorithm1 : Closed-formrobust CRT [29]
Input: themodulifn ;}}, andtheerroneous remainders{ 7}t .
Output:a reconstruction N

1: Through(22), findtheindexk  ofaproper reference.
2: Calculate gy ; forl<i<Lizk o:

. i — T,
qu:[ 7 k } (23)

koi

3: Calculate the remainders of aikofkoi modulo 'y, for 1<i<
L,l#k 0:
&iko = ity i mod T ., (24)
where IT,(Oi are the modular multiplicativeinverseof I"
uloT .

4: Calculate fi, viathe CRTreconstructionformula for the simul-
taneous linear congruences:

&, = i, modT (25)
fori<i<Lizzk o
5. Calculate i for1<i< Lk o
Py Drgi = it
=7

kg mod-

fl; (26)
iky

6. Calculate ¥

N 1l . .
N= |:Z ;(nimi+n)]. 27)

rithm and present the corresponding theorem.

Theorem 2 [29] If an integer N is assumed to be in the range
0< N<M and the remainder error bound T satisfies
dqi

T <max min —+, (28)
Teksl 5:5’-

whered yi2gcdm , m;),then by Algorithm 1 we can accurately deter-
mine the folding numbersn_; i.e, fij =n;, for 1<i<L, and hence can
robustlyreconstruct Nas Nin(27), from the erroneousremainders.

In particular, when the moduli are given by m ;=ml";
for 1<i<I, where ' 1, ', ---, ' | are pairwise coprime,
Theorem 2 coincides exactly withthe resultin[25-27]

Example 3.let m ;=63m ;=224m 3=24Q0 Based on
Theorem 2 an unknown integer N with 0<N<M2
lcm(m 1,m5,m3)=10080 can be robustly reconstructed
from its erroneous remainders by Algorithm 1, provided
the remainder error bound is less than 7/4. Without loss
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of generality, let N=7000 then its remainders and fold-

ing numbers are calculated as r 1 =7r ;=56r 3=40 and
n; =111n 5 =31n 3 =29Iftheremaindersarecontaminatedwith
errors Ar 1 =QN 2 =—1,Ar 3 =—1, i.e., Fl =7, 7'2 =557 ?3 =39,
the condition (28) is fulfilled and we can use Algorithm 1 to
robustly reconstruct N

1: Findthe indexk o =2 suchthat(22)holds.

2: Calculate {1 =[(7—55)7]=—7 and
—1from(23).

3: Calculate 512 =4=(-7-2mod9) and
mod15) from(24).

4: Calculate 7, =31 viathe CRTreconstructionformula for (25).

5: Calculate 7 =111and f3 =29 from (26).

6: Calculate N=6999 from (27).

432 =[(39-55)16]=

£ =1=(-1-14

From Theorem 2, the remainder error bound is closely related
to the gcd of each pair of the moduli: the larger the gcd is, the
larger the remainder error bound is. Now the question of particu-
lar interest is: For a given set of moduli, can we improve the re-
mainder error bound obtained in Theorem 2 by splitting the set
of moduli into several groups so that the gcd in each group be-
comes larger and the system of congruences in each group is in-
dependently solved based on the above closed-form robust CRT al-
gorithm? To answer this question, let us first review the cascade
architecture of the CRT [28,29]

Supposethatthemodulim {,m,,---,m | aresplitintosgroups,
denoted by {m ;3 ,m ,---,m .} for 1<i<s which are not nec-
essarily disjoint, i.e, (Jig i mi .- m i t=m ymy.m g}
and Z’il L; > L Analogously, the L remaindersr 4,75, -+, 17 | are
correspondingly split into s groups, denoted by § i1 7jp .-+ T ,-,Li}
for 1<i< s Then, it is shown conclusively that the integer N with
0< N<M can be uniquely reconstructed from its remainders by a
two-stage CRT method, where the basic idea is first to apply the
CRTtoeachgroup and then to apply the CRT across all the groups.

In the first stage, we can uniquely reconstruct an integer N i with
0<N;<n;&lem(m ;,my .--- ,m ;) viathe CRT foreach group
and with these obtained reconstructions N ; being the remainders
and 7 ; being the moduli, the following new system of congruences
isevident:

N,ENmodn i (29)

for1<i<sInthesecond stage,becauseoflcm(n L2, s)=M
and 0< N<M we can uniquely reconstruct N by solving (29) via
the CRT again.

Motivated by this cascade architecture of the CRT, we next pro-
pose atwo-stage robust CRT algorithm when the remainders have
errors, as shown in Fig. 1. We first apply Algorithm 1 to obtain a
robust integer N; for each group i if the remainder error bound 7
satisfies

ged(m,mip)

7 <G;£max min , (30)
Ekel ; Ep=L; 4
23
where in case group i consists of only one modulus, let G i2m ;|4

and N; is just fi1 . Then, regarding these robust reconstruc-
tions N; for 1<i<s as possibly erroneous remainders in (29)
Algorithm 1 is applied again across the groups, and a robust re-
construction N ofN canbe obtained, if v satisfies again
ged(n .14)

7 .

T <G2max min
kkss ks
*

(31)
With this two-stage robust CRT algorithm, we may boost up the
remainder error bound in Theorem 2 that is obtained by applying
Algorithm 1 tothesimultaneouslinear congruences(5)asawhole.
Therefore, we obtainan improved result as stated below.

Split the moduliinto § groups

{m;,]nm,"ga"'pm,-‘;_i_} for1<i<s

The First Stage

By Algorithm 1 for congruences in each group i,

obtain a robust reconstruction ,

W

The Second Stage
By Algorithm 1 for congruences (29) across the
groups, obtain a robust reconstruction N from

remainders NV,

Fig.1. Flowchartofthe two-stage robust CRT algorithm.

Theorem 3 [29] If an integer N is assumed to be in the range
0< N<M and the remainder error bound T satisfies

7 <min(G 1,G 2,---,G 50, (32)
then we can robustly reconstruct N from the erroneous remainders.

Note that Theorem 2 can be viewed as a special case of
Theorem 3 with s=1 It is due to the fact that when s=1, we
haveG ; =max min dyj4 G=MA and G 1 <G

kel kil

Example4. Letusreconsider Example 3 with the two-stagerobust
CRTalgorithm.We split the three moduliintotwogroups {m 1}and
fn ,, m3}. Based on Theorem 3 we canrobustly reconstructan in-
teger Nwith0< N<M=1008Q if t <16/4.0ne cansee thatthe
remainder error bound t <16/4 in Theorem 3 is more than twice

that (i.e., T <7/4) in Theorem 2 for the same moduli but with the
grouping and the two-stage method. Similarly, let N=7000 while

the remainders have relatively large errors &r | =24 , =34 3 =
—1lie., 71=9 % =59 f3=39Sincethecondition(32)isfulfilled,
we can use the two-stage robust CRT algorithm to robustly recon-
struct N

1. By Algorithm 1foreachgroup,weobtain ~ N; =9and R, =281
2. By Algorithm 1 across the two groups again, we obtain N=
7001

The above two-stage robust CRT algorithm can be easily gen-
eralized to a multi-stage (three or more stages) robust CRT algo-
rithm. For instance, ifwe further split themodulin 1,0 2,1 sin
the second stage into several groups, then we can develop athree-
stage robust CRT algorithm in the same way as the two-stage ro-
bust CRT algorithm. Although we, by deploying a multi-stage ro-
bust CRT algorithm, may improve the remainder error bound for a
givensetof moduli, there are certain challengesthat are especially
difficult to overcome, such as how to allocate the moduli to each
group and how many groups and stages we shall split in order
to achieve a best remainder error bound. Interestingly, when the
modulus set is the case considered in [25-27]i.e., the remaining
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Fig.2. (a)Integerpositionrepresentation withrespectto twomoduli,m

factorsI"; ofthe modulim ; =ml" ; divided by their gcd m are pair-
wise coprime, it is proven in [29] that the remainder error bound
cannot be enlarged by the multi-stage robust CRT algorithm any-
more. Apart from these challenges, one might ask what the largest
remaindererror boundis fora givenset of moduli. We willdiscuss
itina geometrical mannerin the next section.

5. Geometrical interpretation of robust CRT

In this section, we describe an intuitive interpretation for the
robust CRT from a geometrical point of view, which helps us to
developaheuristicmethod and derive some morein-depthresults.

Givenasetof modulim 1,m3,---,m [, theCRT saysthat all in-
tegers in therange [0, M) and their remainder vectorsare in one-
to-one correspondence with each other. In other words, each in-
teger Ne[0, M) is paired with exactly its own remainder vector
1,75, -+, 1 ),and viceversa. Thus, we canrepresent each integer
Ne[0, M) by a unique point with coordinates being its remainder
vector ( 1,7y, ---, T ) in the Ldimensional remainder space, and
all integers are connected by a set of parallel line segments, de-
noted by S, with direction (1, 1, -- -, 1) inside the hyperrectangle
[Qm 1 —1]x[@m 3 —1]x --- x [@m [ — 1] wheretheintegersona
line segment in S share the same folding number vector (1 1, N2,
---,n),andall the line segmentsin S are characterized by differ-
ent folding number vectors, see, for example, Fig. Za).

Accordingly, we next see the robust CRT from a geometric per-
spective.When the remainders haveerrorswiththeerrorbound 7,
the point ( 71,7, -+, f) isinside the hypercube of side length 2r
centered on the point ¢ 1,7, -+, 7 1), but probably not lie on the
line segment that passesthrough the point(  1,ry,---,7 [)(e.g., see
Fig.Ab)).Letd i, denotethe minimum distance betweenthe line

b

25 ! !

15

;1 =15andm ,=25(b)Theremaindersofanintegerwithanerrorbound T.

segments in S. It rapidly becomes apparent that if the remainder
errorbound t satisfies

dmfu

T < Wik (33)
the closest line segment in S to the point ( fq, T, -+, 1) is ex-
actly the one that passes through the point (* 1,7, -+, 1 ), which
equivalently means that the folding number vector is accurately
determined by finding the closest line segment in S to the point
(1,7 ,---, Tr) and as a consequence, a robust reconstruction of
N can be obtained. It is worth mentioning here that (33) indeed
gives the largestremainder error bound for the set of moduli {m 1,
mo, -+, m }.However, thedirect computationofd ,;; isverycum-
bersome.Arelatively efficient calculationis attainable via orthogo-
nal projections. Since all the line segments in S are parallel, we
can project these line segments orthogonally onto a hyperplane
through the center (m /2, m,/2, ---, m [2) of the hyperrectangle,
and then calculated ,;; equivalently as the minimum distance be-
tween these projected points on the hyperplane, as seenin Fig. 3

In addition, we observe that the minimum distance d  ,;, in-
creases as the range of N decreases. More precisely, if N is as-
sumed to be ina smaller range [0, R) than the maximum possible
range [0, M), i.e., R<M the number of the line segmentsin S that
connect all the integers from 0 to R— 1 becomes smaller, which
implies that the minimum distance between these line segments
becomes larger. An example for a three-modulus system is shown
in Fig. 3 As the minimum distance increases, the remainder error
bound increasesaccording to (33) In short, there exists a tradeoff
between therange of Nand theremaindererror bound 7.

Considering the robust CRT in a two-modulus system (i.e., L=
2), some rough results on the tradeoff between the range and the
remainder error bound have been obtained in [56] Inspired by



254 L. Xiao, X.-G. Xig/Signal Processing 150(2018)248-258

Fig.3. Integerpositionrepresentation with respectto three moduli.

Parhami [56]ourrecentwork|30]derived the explicitclosed-form
expressions for the range and the remainder error bound by a hi-
erarchical structure in a two-modulus system, as briefly stated be-
low.

Given two moduli m 1 and m, with m{<m, and m{/m, in
a two-modulus system, write m | =ml" 1 and my =ml" 5, where
magcd(m 1, m ), and the notation gb means that b is not divisi-
blebyaletoc _; 2,0 o=l 1, andfori> 1,

oi =P i2 |y » (34)

where || , isashorthand notation for the remainder of a modulo
h Based on (34) there must be an index K> 0 such that o 1>
- >0 >0k, 1 =1Then, we have the followingresult.

Theorem 4 [30] If an integer N is assumed to be in the range 0 <
N<min(m (14 #iy; ym 1(1+ #y;)) and the remainder error bound
T satisfies

mao;
T<

(35)

forsomei,1< i< K+1,thenwe canrobustly reconstruct N fromthe
erroneous remainders, where 1i,; and fiy; can be, respectively, calcu-
lated by the following recursive formulae:

i) When K=0, we have
ii) When K> 1, we have

fiy =Ty —1 iy =Fp—1
foks1 =1 =1 figgyr =0 2—1, and for

1<i<K
] iris
|7 I3 ] ifi=2
My = a

2 J(ﬁz,, 1)+ figyy . ifi=2p+1forp> 1

“2-»-1Jﬁm1 +ily , ifi=2p42forp> 1
(36)

Table1

Thetradeoff betweentherangeand theremaindererrorboundin Examplea
Level Valueofo ; Remaindererrorbound iy iy Range
\% oq =11 7 <(13-11)4=3%5 1 1 0<N<468
v 0y =7 T <(13-74=275 3 1 0<N<754
111 o3 =4 T <(13-44=13 4 3 0< N<1170
Il 04 =3 T <(13-34=95 8 4 0< N<1885
I o5 =1 T <(13-14=35 28 17  0<N<6786

and

(37)

Theorem 4 demonstrates that the remainder error bound de-
creases as the range increases for a two-modulus system. When
the range increases to the maximum, i.e., 0< N<lcm(n 1, M) or
i=K+1 in Theorem 4 the remainder error bound decreases to
the minimum, i.e., T <m/4, which is in coincidence with the re-
sultin Theorem 2 for atwo-modulus system. Let us see thisinan
example below.

Example5. Letm 1 =13-18andm 3 =13-29Thelcm ofthe mod-
uliis lem(m 1.m,)=6786Based on Theorem 4 we have the fol-
lowing result in Table 1, where the last row, i.e., Level |, is the
knownresult in Theorem 2

However, for a multi-modulus (three or more moduli) system,
it is very difficult to derive the explicit expressions for the range
and theremainder errorbound as whatis done for a two-modulus
system in Theorem 4 Motivated by the two-stage CRT method in-
troduced in the previoussection, we proposea suboptimal method
toquantify thetradeoff betweentherange andthe remaindererror
bound for a multi-modulus systemas follows. First, the moduli are
split into two groups, and a robust reconstruction is obtained for
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Table2
Thetradeoff betweentherangeand theremaindererrorboundinExample6
Level Valueofo ; Remaindererrorbound iy o Range
1 o1=9 T <6(4=15 4 2 0<N<300
Il 0y =2 T <6(4=15 22 8 0< N<13230
I o3 =1 T <3¥=5H 48 19 0< N<29400
eachgroupaccordingto Theorem 3 Then, with these twoobtained where () takes 1 when /=0 and 0 otherwise, and r ik arethe

reconstructions from the groups, Theorem 4 is applied across the
two groups. Let us take a concrete example as an illustration be-
low.

Example 6. Let m ; =60-2 m ,=60-3m 3=70-3m 4=70-7
The Icm of all the moduli is M2lcm(m 1,M32,m 3,m 4)=29400Q
We split the moduli into two groups: {m 1, m 5} and {m
mg}. Letm @ £gedm 1,m2)=6am @ Zgcdm 5;m4)=701n
lem(m 1,m 2)=600=30-20 and n  , 2lem(m 3,m 4)=1470=30.
49 We first apply Theorems 2 or 3 to each group and obtain

two reconstructions Ni,N». Then, regarding Ni, N, as the erro-
neous remainders and n ¢, 7, as the moduli in (29) we apply
Theorem 4 across the two groups and obtain a reconstruction N
as desired. Let n £gcd(n  1,72)=3Q and I 1, I, denote the re-
maining factors of n 1, n » divided by their gcd 7, ie,n 1=nl";
and n , =nI" ;. Therefore, Nis a robust reconstruction of Nif N is
assumed to be in the range 0< N <min(n 2 (14 1y ) 1 (1+ 7ig;))
and the remainder error bound 7 satisfies

|l>%

; 1 2

.- min(m W m @ no ;) (38)
4

forsomei,1< i< K+1, where the valuesofo i.K, Ty, ny; arede-
termined by I 1, " » in (34), (36), (37) The result is shown in
Table 2, where the last row, i.e., Level I, is the known result in
Theorem 3 One can see that when the range of Nis 0< N<
1323Q the remainder error bound can reach 60/4 that is twice
as large as that obtained in Theorem 3

6. Generalizations and open problems

In this section, we introduce two interesting generalizations of
the robust CRT, i.e., robust generalized CRT for multiple integers
and robust double-remaindering CRT, and their related open prob-
lems, respectively.

6.1. Robust generalized CRT for multiple integers

The aboverobust CRTis studied for estimating the frequency of
a single harmonic signal in the signal model (1) Acommon prac-
tice is to estimate the multiple frequencies of a superposition of
harmonic signals from multiple undersamplings. More explicitly,
let us consider p frequencies N ; Hz for 1<i< p that need to be
estimated in asuperpositioned signal x:

0
At)= Zaiexp(jZTN it), (39)
F

where a; are unknown nonzero complex coefficients. We under-
sample Af) with multiple sampling rates m « Hz for1<k<[ and

the sampled signal withsamplingratem | Hzis
P

xibl= 3 aiexp(j2TN in/my) (40)
=1

We thentakethem (-pointDFTtox (fnand obtain

P
Xdl= Za,-(S(l— ) (41)
1

remaindersof N ; modulom y,i.e.,r jx = N; modmy.Thus, whatcan

be detected from the sampled signal with sampling rate m k Hzis
the following remainder set
P
A .
Sk:U{ri,k}é{t ik =120 &} (42)
£

wheret ; <tk for1<iq<iz <pgand p < p is the number of
distinct elements, i.e., the cardinality, of the setS . Note that the
correspondence between the elements in a remainder set and the
multiple integers is unknown. Hence, the multiple frequency esti-
mation problem equivalently becomes the reconstruction problem
of the multiple integers from their unordered remainder sets [ 18—
21}, which we call the generalized CRT for multiple integers.

As an illustrative example, let us consider the case when three
integers are 5,19,192 and three moduli are 5,7,9. In this case, the
three remainder sets we can detect are {0, 2, 4}, {3, 5}, {1, 3, 5},
respectively. The problemis to uniquely reconstructthe threeinte-
gers from these remainder sets and moduli, where the correspon-
dence between the three integers and their remainders in a re-
mainder set is not specified, for example, in the second remain-
der set {3, 5}, we know neither whether 3 is the remainder of
the first, second or third unknown integer modulo 7, nor whether
3 repeats once or twice. One can easily check that another three
integers 10,12,59 have the same remainder sets as above. So, the
range for the uniqueness of the reconstruction of the three inte-
gers would be much smaller than [Qlcm(579))=[Q315), un-
like the CRT for a singe integer. Without loss of generality, as-
sume thatm {<m, <--- <m [ are pairwise coprime. A best known
range for the generalized CRT for multiple integers was proposed
in[57] when p <2 Before stating it, let us introduce some nota-
tions.Let beay -partition of modulus set M £ {mn 1Mo, ,m 1}
such that M is decomposed into a union of its y disjoint sub-
sets,ie, M=M P MF |J---UMT andM P MP =¢forany
pair of i and j with & where M @ can be the empty set. De-
fineb £ m; if M isnotempty,and b 7 21 otherwise.

mpe Iw

Then, leth(y)2max _min bZ and c(y)2min_ max b? , where P
weP kiky ! weP kky |

denotes thesetofall y -partitions of M Then, we have the follow-
ing result.

Theorem 5. [57]| N 1,N,---,N , can be uniquely determined from
their remainder sets, if

L/p1
maxN 1,N2,--- ,N p}<max minfc(p)b(2)} l_[ mi,mp
&1

(43)
when p >2, and
maxN 1,N2,--- ,N p}<maxp(2)m [} (44)
when p =2 where [ ] denotes the ceiling function.

The range given in Theorem 5 is not necessarily the largest
one. Let us give a simple counter example as follows. Consider
the case of two integer determination (i.e., o =2) from their four
remainder sets (i.e., L=4), where the four moduli are given by
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my =17m  =19m 3 =20m 4 =21 In this case, the range from
Theorem 5ismax{N ,N ,}<357 whereasthe largest range iseas-
ily checked to be max{N 1, N,}<737. Recently, the largest range
alongwith anefficient reconstructionalgorithmforthe generalized
CRT for two integers, i.e., p =2 has been studied and/or provided
in[58]and [59] with the following theorem.

Theorem 6. [59] If m 1 > 3 the largest range for uniquely deter-
mining twointegers N 1,N 5 fromtheir remainder sets is

maX{NLN2}<HngQ l_I[mi+Hmi , (45)
E iZ

where Q={1.2- - - I, and the symbol T denotes the complement
of T inQ

So far the largest range and any simple reconstruction algo-
rithm for the generalized CRT for multiple (larger than 2) integers
are still unknown and would be interesting. Incidentally, by im-
posing additional conditions on the multiple integers and/or the
moduli, some different results were proposedin [ 19, 60-62]

Onthe other hand, considering that the detected remaindersin
the remainder sets often have errors due to noise in practical ap-
plications, thereis an even greater need in the future for robustly
reconstructing the multiple integers from the erroneous remain-
ders, similar to the robust CRT. Recently, the generalized robust
CRT for two integers has been presented in [31] under the as-
sumptionthat the remaining factors of the modulidivided by their
gcd are pairwise coprime. Mathematically, letmodulim  ; =ml" ; for
1<i<Lwherel’ 1,I'y,---,I" | are pairwise coprime. Let T be the
remaindererrorbound,i.e.,|Ar il=| T — 1l < T fori=12and
1< k<L Then, we have the generalized robust CRT for two inte-
gers in the following.

Theorem?7. [31]IfintegersN {,N , areassumed tobe inthe range

maxN 1.N} <m- min UFHr H_Fi (46)
E iZ

and the remainder error bound T satisfies
T <mpR (47)

where Q and T are defined as in Theorem G then we can robustly
reconstructN1,N,i.e.,| Nj— Nj|< T fori=12

For a reconstruction algorithm of Theorem 7 we refer the
reader to [31] General results for the generalized robust CRT for
multiple integers as well as fast reconstruction algorithms are of
greatinterest for furtherresearch.

Remark 1. Note that the estimation of frequencies of a multi-
harmonic signal in (39) from multiple undersampled waveforms
has also been considered in the more recent sparse fast Fourier
transform (SFFT) [63-71] The algorithm in [63,64] relies on the
combinatorial properties of aliasing among frequencies in DFTs
such that by taking enough DFTs of sub-samples with coprime
sampling rates, each frequency is isolated from the others in at
leasthalfofthe DFTs.Then, based onthe CRT and majorityrule, all
the frequencies are guaranteed to be recovered. In 65,66} enough
DFTs of sub-samples with coprime sampling rates are also needed
such that each frequency is isolated for at least one DFT, and
then by using slightly shifted samples to distinguish non-aliased
frequencies from aliased ones in a DFT and determine the val-
ues of the non-aliased frequencies, a different algorithm with re-
duced sampling and runtime complexities was proposed. In [67-
71} by using aliasing filters with coprime sub-Nyquist sampling
rates, the frequency coefficients are split into buckets such that
the value in each bucket is the sum of the values of only the

frequency coefficients that compose the bucket. All the frequen-
cies are then estimated by iteratively estimating the frequencies
from buckets wherethey do not collide and subtracting them from
buckets where they do collide, in which the change of the phase
caused by shifted samples is used to determine the frequency and
the corresponding frequency coefficient in the bucket with exactly
one frequency coefficient. The robust CRT and generalized robust
CRT we have discussed in this paper are different from the above
mentioned SFFT based algorithms in anumber of aspects:

1) The sub-Nyquist sampling rates (or moduli) are neither limited
to being pairwise coprime nor require specific combinatorial
structures.

2) Additional samplings at slightly shifted points are not needed.
The number of DFTs or the number of samples required is sig-
nificantly less.

3) Allthe frequencies (or large integers) are estimated in one shot
based on the proposed generalized (robust) CRT from the de-
tected aliased frequency (or remainder) sets.

4) The robustness is considered with respect to the errors in the
remainders.

6.2. Robustdouble-remaindering CRT

Many ambiguity problems in practice can be reduced to the so-
lution of simultaneous linear congruences. So, the CRT provides an
ambiguity resolution method. We next state the (robust) double-
remaindering CRT, which originally arises from estimating the ra-
dial velocity of a ground moving target by resolving the so-called
time-space Doppler ambiguity inmultichannel SAR[32] where the
time domain Doppler ambiguity occurs first in each channel and
then the spatial domain Doppler ambiguity occurs among multi-
channels. We refer the reader to[32] for details.

Intermsof number theory, the double-remaindering CRT opens
a brand new mathematical problem, as described below.Let M 1,
My, ---,M  andN 1,N3, ---,N | be positive integers, where N ; <M ;
for 1< i< L Then,a nonnegative integer N can be written as

N=m iMi +TliN,' +ry, forl<i<lL, (48)

where r; with O<r ;<N; are called the double-remaindering re-
mainders forwhich Nis first takenamodulo with alarger positive
integer M; and then its remainderis taken another modulo with a
smaller positiveinteger N ;,i.e.,

r; = (NmodM ;)modN ;. (49)

For example, letM ; =12M , =20andN ; =5N , =9QWe canfind
that N=29 and N=0 have the same double-remaindering re-
mainders r ; =r =0 A natural question is how large the integer

N can be so that it can be uniquely determined from the double-
remaindering remainders r ; for 1<i<L Letd ;2gcd(M ; N;) and
ri=kd;+F |y, for 1<i<Lwheref ;|; denotesthe remainder of
ri modulod ;. We rewrite (48)as 1

M; N;

N= (m,v—'+n,-—'+k,->d,-+b',-|dv, (50)
d; d; !

and then we can simply regard the double-remaindering CRT as

the CRT. Accordingly, N can be uniquely reconstructed fromr  ; if

0<N<lecm@d 1, d5, ---, d ). Obviously, the range we have above
is too weak, especially when M ; and N; are coprime. This anal-
ysis is only a first look for this problem, and further research is
clearly needed. What is more is that we expect to see any devel-
opment of therobust double-remaindering CRT, when the double-
remainderingremaindersr ; for 1< i< Lhaveerrors.

7. Conclusion

In this paper, we have provided an overview on the robust CRT
and its applications in frequency estimation from multiple truly
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sub-Nyquist samplers. It summaries some of the research results
onthis topic from the authors’ group starting from the mid 1990s.
It also provides some of the challenging open research problems
onthis topic. Since the robust CRT problem is a fundamental prob-
lem, we believe that it will have broader applications than what
we have mentioned in this paper.
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