
Quantitative SNR Analysis for ISAR Imaging Using
Joint Time-Frequency Analysis–Short Time Fourier
Transform

V. C. Chen recently presented an inverse synthetic aperture

radar (ISAR) imaging technique using the joint time-frequency

analysis (JTFA), which has been shown having a better

performance for maneuvering targets over the conventional

Fourier transform method. The main reason is because the

frequencies of the radar returns of the maneuvering targets are

time varying and a JTFA is a technique that is suitable for such

signals, in particular a JTFA may concentrate a wideband signal,

such as a chirp, while it spreads noise. We quantitatively study

the signal-to-noise ratio (SNR) in the ISAR imaging using one

of the typical JTFA techniques, namely the short time Fourier

transform (STFT). We show that the SNR increases in the joint

time-frequency (TF) domain over the one in the time or the

frequency domain alone both theoretically and numerically. This

quantitatively shows the advantage of the JTFA technique for the

ISAR imaging.

I. INTRODUCTION

To obtain a high resolution inverse synthetic
aperture radar (ISAR) imaging in the range direction,
the radar transmits a wideband signal (such as linear
frequency modulated (LFM) or stepped-frequency
waveform). The high resolution in the cross-range
direction is obtained by using the Doppler information
of the returned signal. Due to the object’s rotation,
different parts of the object have different velocities
relative to the stationary radar, which are detected
as the Doppler information and used to form the
image of the object. The conventional method for
the Doppler shift detection is the Fourier transform,
which is effective only for stationary frequencies,
i.e., constant speed rotations of a rotating object. In
many circumstances, the rotation speeds are time
varying. In this case, the Fourier transform can not
accumulate the signal of a scatterer but transforms it
to a signal in a wide band, which causes the image of
the target smeared. Based on this observation, Chen,
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et al. [1—5] proposed a new ISAR imaging technique
using joint time-frequency analysis (JTFA) which may
accumulate some radar return signals of a scatterer
with time-varying frequencies, such as chirps, in the
joint time-frequency (TF) plane. Significant ISAR
imaging performance improvement has been shown
in [1—5], where, however, no quantitative analysis is
provided.
It is known that a JTFA maps one-dimensional

signals in the time domain into two-dimensional
signals in both the time and the frequency domains,
see for example [11—12]. Unlike the traditional
Fourier transform that only concentrates narrowband
signals, a JTFA also concentrates some wideband
signals, such as chirps. In the meantime, similar to
the Fourier transform that spreads the noise from
the time domain into the frequency domain, a JTFA
spreads the noise from the time domain into the joint
time and frequency domain. The goal of this work
is two-fold. First, we study the signal-to-noise ratio
(SNR) for the short time Fourier transform (STFT),
one of the most important JTFAs, for analog signals
and calculate the SNR in the STFT domain in terms
of the new definition in [6] for linear chirp signals.
Note that the SNR results obtained in [6] are for
discrete signals. We find the connection between the
SNR for the STFT of analog signals and the one of
discrete signals. It is shown that the SNR in the JTFA
domain increases over the one in either the time or
the frequency domain. Second, we apply the SNR
analysis to the ISAR imaging proposed by Chen, et al.
[1—5] when the STFT is used. One can not only see
that the SNR increases in the ISAR image but also see
that the ISAR image improves over the conventional
Fourier transform technique due to the increase of the
signal mean power in the joint TF domain.
This paper is organized as follows. In Section

II, we formulate the radar return signal model after
the range compression and motion compensation but
before the Doppler processing and then briefly review
the ISAR imaging method proposed by Chen, et al.
[1—5]. In Section III, we describe the SNR analysis
for the STFT and apply it to the ISAR imaging. In
Section IV, we present some simulation results to
show the SNR increase.

II. ISAR IMAGING OF MANEUVERING TARGETS

In this section, we briefly review ISAR imaging
algorithms for maneuvering targets.
In ISAR imaging, the radar is stationary and

transmits wideband electromagnetic waves to a
moving target. The high resolution can be obtained in
the range direction for the high wideband transmitted
signal. After the range compression and the motion
compensation to the received signal, the returned
signal of scatterer P can be finally written as, see for
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example [1—5],
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where AP is the refectivity of scatterer P, T is the
coherent integration time of imaging (slow time
interval length), !0,P and !1,P are the frequency and
the frequency rate of the signal, respectively, which
depends on the target motion with respect to radar
and the position of the scatterer in the target. The
polar format processing is needed, if target size or the
target rotating angle with respect to the line of radar
sight is large [16]. When there is an additive noise, the
returned signal is

s̃(t) = s(t) + n(t): (2)

When there are K scatterers in a range, the received
signal of a range bin after the motion compensation is

s̃(t) =
KX
i=1

si(t) + n(t) (3)

where si(t) are LFM signals that have the same
form as s(t) in (1) but different parameters !0 and
!1. In conclusion, the returned signal of the radar
transmission before the Doppler processing is a linear
combination of LFM signals, which is not because
the transmitted signal is an LFM but because of the
rotation of the target. For detailed derivations, see for
example [14—16].
The conventional ISAR imaging method is to take

the Fourier transform to each range cell’s signal after
the range compression and motion compensation, i.e.,
take the Fourier transform of s̃(t) in (3).
The Fourier transform of s(t) is

M(f) =
APp
2jkjT

£ exp(¡j¼f2(C(Z1) +C(Z2)§ j(S(Z1) + S(Z2)))
(4)

where Z1 =
p
2jkj(T=2¡f=k), Z2 =

p
2jkj(T=2+f=k),

C(Z) =
R z
0 cos(¼=2»

2)d», and S(Z) =
R z
0 sin(¼=2»

2)d»,
see for example [13]. Let B be the frequency deviation
as B =¢f = !1T=2¼. When B is not small, the
received signal has its Fourier spectrum with full
band. In this case, the SNRf of the Fourier transform
technique of the signal is in the order of the one,
SNRt, in the time domain.
As mentioned in the Introduction, the conventional

Fourier transform does not provide a satisfactory
performance for accumulating such a signal si for the
ith scatterer in the frequency domain while the JTFA
does in the joint TF plane. By replacing the Fourier
transform with a JTFA in the Doppler processing, the
ISAR imaging method proposed by Chen, et al. [1—5]
can be described in Fig. 1, where instead of a single

image there are a sequence of images that form an
ISAR image cube.
JTFA is a class of transformations, which includes

STFT, Wigner-Ville distributions (WVD), and
adaptive chirplet transform (ACT), etc. The basic idea
using JTFA in ISAR imaging is to first decompose the
received signal s̃(t) in (3) into several subsignals sm(t),
m= 1, : : : ,M, each of which has some particualar
properties (subsignal has sinusoid-like property to
STFT, and chirp-like property to ACT). Then, WVD
WVDs

m
(t,!) is taken to each of the subsignal sm(t),

m= 1, : : : ,M, since WVD is optimal (in terms of the
concentration) for a single component signal [10—12].
Next, all the WVDs WVDs

m
(t,!) are added to get

a TF distribution TFDs̃(t,!) =
PM

m=1WVDs
m
(t,!)

of the signal s̃(t). Therefore, there is no cross terms
among subsignals in the TF distribution TFDs̃(t,!).
At last, the amplitude and instantaneous frequency of
each scatterer are obtained at a time instant t0 from
TFDs̃(t0,!) to form the image.
In the next section, we analyze the SNR for the

ISAR image formed in Fig. 1 when the STFT is used.

III. SNR FOR ISAR IMAGING USING JTFA

In this section, we focus on the signal model
before the Doppler processing, which is given in
(1)—(3). We first give the new SNR definition and then
calculate the SNR for the STFT for both analog and
discrete LFM signals in (3).

A. New SNR Definition

As mentioned in the Introduction, the conventional
SNR is defined as the ratio of the mean power of the
signal over the mean power of the noise, where the
mean is taken over the whole domain. It is formulated
as follows. Let y[n] be a distorted signal:

y[n] = x[n] + ´[n], 0· n·N ¡ 1 (5)

where the variable n is in a domain, such as the time
domain, the frequency domain, etc., x[n] is a signal
and ´[n] is an additive noise with mean zero and
variance ¾2. The SNR is defined as

SNR=
PN¡1

n=0 jx[n]j2
N¾2

: (6)

Clearly any energy preserving transformation does
not change the above SNR, which is not appropriate
for some signals, such as narrowband signals in the
Fourier transform domain and chirps in the joint
time-frequency transformation domain. A common
characteristic of such signals is that they are not
stationary in the transform domain and therefore the
average taking over the whole domain is not proper.
A new definition was given in [6], which is stated as
follows.
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Fig. 1. ISAR imaging using JTFA.

DEFINITION 1 For the signal x[n] of length N,
0· n·N ¡ 1, let

B ¢
==

½
n : 0· n·N ¡ 1 and

jx[n]j2 ¸ 0:5 max
0·n·N¡1

jx[n]j2
¾

(7)

where the number 0:5 comes from the common 3 dB
bandwidth definition in communications. Then, the
SNR is defined as

SNR
¢
=
P
n2B jx[n]j2
jBj¾2 (8)

where jBj denotes the cardinality of the set B.
The SNR for analog signals can be similarly

defined. Notice that this definition is similar to the
SNR definition in communications, where the signal is
only considered in its bandwidth. Also the SNR using
the ratio of the peak squared magnitude over the mean
noise power is used in some literature, which may
not be valid if the signal contains more than the peak
value, such as the curves in the TF domain. Examples
shown in [6] have illustrated the better indication of
signal and noise levels in various domains. In what
follows, we adopt the above new SNR definition.

B. SNR for STFT and ISAR Imaging

We first consider the STFT for analog LFM
signals in (3). For convenience, let us first consider
single LFM s(t) in (1)—(2), i.e.,

s̃(t) = s(t) + n(t) = Aexp
³
¡j
³
!0t+

!1
2
t2
´´
+n(t)

¡T
2
· t· T

2
(9)

where A is the signal amplitude, and n(t) is the
additive white noise with the following correlation
function

Rn(t,s) = E(n(t)n
¤(s)) = ¾2±(t¡ s)

¡T
2
· t, s· T

2
: (10)

Consider the STFT with the Gaussian window
function

g®(t) =
³®
¼

´1=4
exp

³
¡®
2
t2
´
, ® > 0 (11)

where ® is a parameter. Notice that the above
Gaussian window function is optimal in terms of the
TF localization from the uncertainty principle, see for
example, [11]. The STFT of a signal x(t) is

STFTx(t,!) =
Z 1

¡1
x(s)g®(s¡ t)exp(¡js!)ds

(12)

where x(t) can be either s(t) or n(t) in this context.
Thus, see for example [11, 12],

jSTFTx(t,!)j2 =
Z Z

WVDx(u,v)

¢WVDg
®
(t¡ u,!¡ v)dudv (13)

where WVD stands for the Wigner-Ville distribution.
Since the STFT is a linear transformation, we consider
the STFT for the signal s(t) and the noise n(t)
separately.
It is not hard to see that the WVD of the above

s(t) is

WVDs(t,!) = A
2T sinc

·
(¼!¡!1t¡!0)T
¼(!¡!1t¡!0)T

¸
:

(14)
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Since an ISAR target is usually small, the angle that
a target rotates in the imaging is small (about 1±—3±)
while the imaging time T is usually not too small,
(14) can be approximated as

WVDs(t,!)¼ A2±(!¡!1t¡!0): (15)

The WVD of the window function is, see for
example [11—12],

WVDg
®
(t,!) = 2exp

µ
¡
µ
®t2 +

1
®
!2
¶¶

: (16)

Thus, the STFT of the signal is

jSTFTs(t,!)j2 = 2A2
Z Z

±(v¡!1u¡!0)

£ exp
µ
¡
µ
®(t¡ u)2 + 1

®
(!¡ v)2

¶¶
dudv

=
2A2

p
2¼s

2

µ
®+

1
®
!21

¶ exp
0B@¡ (!¡ t!1¡!0)2

®+
1
®
!21

1CA :
(17)

In this case, the maximum of jSTFTs(t,!)j2 is reached
when ! = t!1 +!0 and the maximum is

max
t,!
jSTFTs(t,!)j2 =

2A2
p
¼r

®+
1
®
!21

: (18)

Therefore, the 3 dB mean of jSTFTs(t,!)j2 in the new
SNR definition (7)—(8) is

mean(t,!)2SjSTFTs(t,!)j2 (19)
where

S =

8>><>>:(t,!) : jSTFTs(t,!)j2 > 0:5
2A2

p
¼r

®+
1
®
!21

9>>=>>; :
(20)

Clearly, using (17)

S =
½
j!¡ t!1¡!0j2 <

µ
®+

1
®
!21

¶
ln2
¾
:

Thus, the 3 dB mean signal power is

mean(t,!)2SjSTFTs(t,!)j2

=
2A2

p
¼r

®+
1
®
!21

1p
ln2

Z p
ln2

0
exp(¡u2)du: (21)

After the 3 dB mean signal power is calculated, let us
calculate the mean noise power. Since the noise n(t)

is stationary, its mean power can be calculated in the
sample space as follows. Using (10) we have

EjSTFTn(t,!)j2 = E
¯̄̄̄Z 1

¡1
n(s)g®(s¡ t)exp(¡js!)ds

¯̄̄̄2
= ¾2

Z
jg®(s)j2 ds= ¾2: (22)

Therefore, by (21)—(22) the SNR in the STFT domain
is

SNRtf =
2a
p
¼A2r

®+
1
®
!21¾

2

=
2a
p
¼r

®+
1
®
!21

SNRt

(23)

where SNRt = A
2=¾2 is the SNR in the time domain

(which is equal to the conventional SNR), and

a=
1p
ln2

Z p
ln2

0
exp(¡u2)du¼ 0:8: (24)

The maximum of the SNRtf in terms of the
parameter ® in the STFT window function g®(t) in
(11) is reached when

®= j!1j (25)

and the maximum is

SNRmaxtf =max
®
SNRtf = 0:8

p
2¼pj!1j ¢SNRt: (26)

For the multiple LFM signal model (3) with K
components with the same mean power, the maximum
of the SNRtf in terms of ® is bounded by

0:8

p
2¼q

max1·i·K j!ij
¢SNRt · SNRmaxtf =max

®
SNRtf

· 0:8
p
2¼q

min1·i·K j!ij
¢SNRt

(27)

i.e., it is between the maximum and the minimum of
the components in (26). Clearly,

when max
1·i·K

j!ij< 1:28¼,

we have SNRmaxtf > SNRt
(28)

i.e., the SNR in the STFT domain is greater than
the SNR in the time domain. The SNR formulas in
(28) also imply that, when the absolute values of the
coefficients, i.e., the accelerations of the scatterers,
!i in the LFM si(t) are not too large, the SNR in
the STFT domain is greater than the one in the time
domain.
It is known that, when the coefficients !i in the

LFM si(t) are small, the bandwidth of s(t) may not
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Fig. 2. Relationship of SNRf and SNRtf with optimal wndow parameter.

Fig. 3. Relationship of SNRtf with window parameter ®. Peak is reached when ®= 16.

be large. In other words, the 3 dB SNR, SNRf , in
the Fourier transform domain may be also greater
than the one in the time domain. This raises the
question: which SNR of SNRtf and SNRf is better?
We next want to compare these two SNRs in the
STFT domain and in the Fourier transform domain.
If the time-bandwith product TB = !T2 is larger, s(t)
has approximately a constant-amplitude spectrum in
!0¡ (B=2)· f · !0 + (B=2). If the time-bandwith
product BT is not large enough the spectrum of s(t)
is spread out of the band !0¡ (B=2)· f · !0 + (B=2)
with high sidelobes. The 3 dB mean power of the
Fourier transform Si(f) of si(t) is, thus, less than or

equal to
Energy of Si

Bi

where Bi is the bandwidth of the si, i.e., Bi = j!ijT,
see for example [13]. Since the Fourier transform
preserves the signal energy, the 3 dB SNR in the
Fourier transform of si(t) is, thus,

SNRf ·
TA2

Bi¾
2

where A2 is the power of si in (1). This provides the
SNR in the frequency domain for the LFM si:

SNRf ·
1
j!ij

¢SNRt:
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Fig. 4. Imaging result with conventional algorithm.

Fig. 5. Imaging result with ®= 2¡2.

Therefore, we have

SNRmaxtf =
0:8
p
2¼pj!ij ¢SNRt ¸ 0:8

p
2¼
q
j!ij ¢SNRf

(29)
i.e.,

SNRmaxtf

SNRf
¸ 0:8

p
2¼
q
j!ij: (30)

This result implies that, when

j!ij> 1=(0:8
p
2¼)2 = 0:2487 (31)

we have
SNRmaxtf > SNRf:

Similar argument applies to the SNR in the
frequency domain for LFM combination s(t) in (3)
by considering the maximum coefficient max1·i·K j!ij.
In conclusion, we have analytically shown that the
SNR of the STFT for LFM is also better than the one
of the Fourier transform when the chirp rate is not
too small, which will be also seen from the numerical
simulations presented in the next section.
All the above analysis is for analog LFM

signals, where the sampling rate is not concerned.
In practical calculations, the analog signals need
to be sampled and thus the sampling rate plays an
important role. The SNR analysis for the discrete
STFT, i.e., the STFT for discrete time signals and
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Fig. 6. Imaging result with ®= 1.

Fig. 7. Imaging result with ®= 21.

rectangular window functions, was recently obtained
in [6] in terms of the sampling rate. It can be stated
as follows. For a multicomponent signal with K
monocomponents, the SNR in the discrete STFT
domain is

SNRdiscretetf ¼DN
K
¢SNRt (32)

where D is a constant, N=T0 is the sampling rate,
and T0 is the window length in the discrete STFT.
We next discuss a relationship between the SNR,
the coefficient j!ij, the sampling rate, and the STFT
window length.

For simplicity, we consider the following sampled
signal

sT

µ
k

N

¶
= exp(j!1(T0k=N)

2),

k = 0,1, : : : ,N ¡ 1 (33)

where N is the sampling rate and T0 is the STFT
window length. We now have the following two cases.

Case 1 Let the coefficient !1 fixed. In this case,
the sampling rate N goes to infinity is equivalent to
the window length T0 goes to zero by absorbing 1=N
into T0 in (33).
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Fig. 8. Imaging result with ®= 22.

Fig. 9. Imaging result with ®= 24.

Case 2 Let the sampling rate N fixed. In this
case, the window length T0 goes to zero is equivalent
to the coefficient !1 goes to zero by absorbing T

2
0 into

!1 in (33).

From the SNR analysis of the discrete STFT for
discrete time signals, the SNR in the STFT domain
goes to infinity, (32), when the sampling rate goes
to infinity. From the SNR analysis of the STFT for
analog signals, the SNR in the STFT domain goes to
infinity, (26), when the coefficient !1 goes to zero.
From the above Cases 1 and 2, these two results are
equivalent, i.e., (32) is equivalent to (26), from the
SNR increase perspective.

All the above SNR analyses apply to the ISAR
imaging in Fig. 1 proposed by Chen, et al. [1—5] when
the STFT is used as the JTFA. Notice that the JTFA
in the ISAR imaging proposed in [1—5] is not limited
to a particular one. A similar SNR increase for using
other JTFA rather than the STFT is also expected due
to the fact that the STFT usually has lower resolution
than other JTFA, such as WVD, do.
Another point we want to make here is that the

above SNR increase in the STFT domain is due to the
mean signal power increase. It is because the JTFA
concentrates the LFM signals better than the Fourier
transform does. This property also indicates that the
better ISAR imaging quality using the JTFA can be
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Fig. 10. Imaging result with ®= 26.

Fig. 11. Imaging result with ®= 28.

achieved over the one using the Fourier transform,
which is seen from the simulation results in the next
section.

IV. SIMULATION RESULTS

Let us present some simulation results. First,
the relationship between SNRf and SNRtf with the
optimal window parameter ® is shown in Fig. 2. It is
shown that the larger the chirp rate of a signal is, the
larger the SNR can be obtained by using the STFT
than by using the Fourier transform. In the simulation,
signal s(t) = expfj(!0t+(!1=2)t2)g is used. For a
given chirp rate !1, the result in the Fig. 2 is obtained

by averaging the results with different !0 as !0 = 5,
10, 15, 20, 25, 30, 35, 40, 45, 50. The simulation
result (solid curve) matches the theoretical result (30)
(dashed curve). Then, the relationship between SNRtf
and the window parameter ® is shown in Fig. 3. In
this simulation, signal s(t) = expf¡j(2t+8t2)g+ n(t)
is used, where time t varies from ¡3 s to 3 s with
sampling rate 333 Hz and signal energy to noise
energy ratio ¡3 dB. From this simulation result,
we can find that the 3 dB SNRtf in the TF domain
reaches the highest value when the window parameter
® matches the signal chirp rate.
We next present some ISAR imaging results (given

from Figs. 4—13) by using the Fourier transform
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Fig. 12. Imaging result with ®= 210.

Fig. 13. Imaging result with optimal parameter ®.

and the STFT with different window parameters.
In these simulations, the radar wavelength is ¸=
0:03 m, pulse repetition frequency is 200 Hz, the
imaging coherent integration time is T = 6 s. The
target consists of three point scatterers, there exist
two scatterers in the 20th range bin with cross axis
¡16 m and 16 m, respectively, and there exists a
scatterer in the 40th range bin with cross axis ¡4 m.
After motion compensation, the target can be treated
as turn-table target with angle rotating velocity
about v(t) = ¸=4¼(8t+ 2

2 t
2). The target rotates with

a constant acceleration. The received signals of the
three scatterers are: s1(t) = exp(¡j16(8t+ 2

2 t
2)), s2(t) =

exp(j16(8t+ 2
2 t
2)) and s3(t) = exp(¡j4(8t+ 2

2 t
2)),

respectively. The return of the 20th range bin has
two linear chirp signals and white Gaussian noise
with SNRt = 0 dB and with the same noise level in
each range bin. The return of the 40th range bin is
also the combination of a linear chirp signal and
noise with the same target reflectivity and noise
level. The rate, initial frequency, and the rate of the
frequency is one fourth of those of the chirp signal
in the return of the 20th range bin. So the signal
in 20th rangebin is spread about 4 time more than
that in 40th range bine. The image of the target by
the traditional range-Doppler method is shown in
Fig. 4. The images of the STFT slice with window
parameters ®= 2¡2, 1, 2, 22, 24, 26, 28, and 210 are
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shown from Figs. 5—12, respectively. We can find that
the imaging quality is high in Fig. 8 and Fig. 9, where
the window parameters are almost the same as the
signal chirp rate, and the SNRs in Figs. 8 and 9 are
higher than that in others. Fig. 13 shows the imaging
result to the same data in Fig. 5 with the optimal
window parameter ®, i.e., the window parameter ®
is chosen as 25 in 20th range cell and ® is chosen as
23 in 40th range cell. For more imaging results of
joint TF algorithm to real data and simulation data,
see [3—5].

V. CONCLUSION

In this paper, we studied the SNR increase for the
ISAR image for maneuvering targets using JTFA,
in particular the STFT, proposed by Chen, et al. in
[1—5]. The 3 dB SNR of the STFT for LFM signals
were analytically calculated. The SNR is theoretically
and numerically shown better than the one using the
conventional Fourier transform ISAR imaging method.
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Track Association and Track Fusion with
Nondeterministic Target Dynamics

Representative track fusion algorithms and track

association metrics are quantitatively compared using a simple

linear-Gaussian—Poisson model, under various degrees of

nondeterministicitity of the target dynamics, i.e., process noises,

and of the initial condition uncertainty. Track fusion algorithms

are compared using an analytical method, while track association

metrics are evaluated by Monte Carlo simulations.
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