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On Generalized-Marginal Time-Frequency Distributions 

Xiang-Gen Xia, Yuri Owechko, Bernard H. Soffer, and Roy M. Matic 

Abstract- In this correspondence, we introduce a family of time- 
frequency (TF) distributions with generalized marginals, i.e., beyond 
the time-domain and the frequency-domain marginals, in the sense that 
the projections of a TF distribution along one or more angles are 
equal to the magnitude squared of the fractional Fourier transforms 
of the signal. We present a necessary and sufficient condition for a 
TF distribution in Cohen’s class to satisfy generalized marginals. We 
then modify the existing well-known TF distributions in Cohen’s class, 
such as Choi-Williams and Page distributions, so that the modified 
ones have generalized marginals. Numerical examples are presented 
to show that the proposed TF distributions have the advantages of 
both Wigner-Ville and other quadratic TF distributions, which only 
have the conventional marginals. Moreover, they also indicate that the 
generalized-marginal TF distributions with proper marginals are more 
robust than the Wigner-Ville and the Choi-Williams distributions when 
signals contain additive noises. 

I. INTRODUCTION 

Joint time-frequency (TF) representations have recently attracted 
considerable attention and have been applied in nonstationary signal 
processing, such as speech signal analysis. Several kinds of joint 
TF representations exist including linear transforms such as short 
time Fourier transforms (STFT) [9]-[11], [18], time-scale (wavelet) 
representations [12], [I 81, and bilinear transforms, such as Cohen’s 
class [XI-[ 101 including Wigner-Ville, spectrogram [9]-[ 1 I], [ 181, 
Choi-Williams [ 131, and Zhao-Atlas-Marks [ 141 distributions, as 
well as positive distributions [15], adaptive TF distributions [16], 
distribution series [17], and the affine, hyperbolic, and power classes 
oE TF representations [38]-[39]. TF distributions in Cohen’s class are 
distinguished by different kernels and properties. For TF distributions, 
the marginal properties are important. That is, the integrals of a TF 
distribution along the time f and the frequency I*‘ are the powers 
of the signal in the frequency and the time domains, respectively. 
Satisfaction of the time and the frequency marginals in Cohen’s 
class is equivalent to the property of the kernels B(H. 7 ) :  @(U. T) = 
(3  (8.0) = 1 for all real H and r; see, for example, [ 101. 

It is known that when signals are chirp signals, the TF distributions 
should be concentrated on lines in the TF plane. The question is the 
following. If we have some prior information about a signal, can we 
take advantage of i t  in the design of a TF distribution, or can we 
put some requirements on a TF distribution along these lines? If so, 
how? For dechirping, the Radon-Wigner distribution was proposed 
in [1]-[3], where the Radon transform was used in the Wigner-Ville 
distribution domain. In [4]-[7] and [38] and [39], joint distributions 
for arbitrary variables and unitary transformations of the time and 
the frequency variables were studied. In [38] and [39], generalized- 
marginal TF representations were mentioned in a different way from 
this paper. 

In this correspondence, we want to study TF distributions with 
generalized marginals beyond the usual time and frequency marginals. 
One might ask what the other marginals are. To answer this question, 
we recall the fractional Fourier transform F ,  with angle o! studied in 

Manuscript received June 20, 1995; revised November 3, 1995. The 
associate editor coordinating the review of this paper and approving it for 
publication was Dr. Patrick Flandrin. 

The authors are with Hughes Research Laboratories, 301 1 Malibu Canyon 
Rd., Malibu, CA 90265 USA. 

Publisher Item Identifier S 1053-587X(96)08226-8. 

Fig. 1. Line Lc>. 

[19]-[34], and [41], which i s  a rotation of the time-frequency plane. 
When the angle N is n/2. P ,  i s  equal to the Fourier transform F ,  i.e., 
the FRFT with angle 7r/2 of a signal is its Fourier transform. When 
the angle n i s  0, F ,  is the identity transform, i.e., the FRFT with 
angle 0 of a signal is the signal itself. We now define the following 
generalized-marginal property. Let P (  t. j be a TF distribution of a 
signal s ( t ) .  Let L,, denote a straight line on the time-frequency plane 
through the origin with angle o! (see Fig. 1). Let L c v ( u )  denote one 
member of the family of all parallel lines of L,, parameterized by a 
real number (I (see Fig. 1) .  We call P(f.dj a generulized-marginal 
time$requency distribution if the line integrals of P ( f .  -.) along the 
lines L,, ( U )  for k = 1.2.. ’ .  .4 are the powers of the FRFT with 
angles + x / 2 .  k = 1 .2 . ’  . . . :Y. of the signal s, respectively. In 
other words, 

P ( t .  d) t1.r = l(F<xL+T/2.s)( II j 12 .  k = 1 .2 . .  ’ ’ . A- 

P( t .d)  d s =  l F c r i + n / 2 s / 2 .  

(1) 
, i, n k ( c o  

Lk 
or simply, 

I . =  1 . 2  :... :Y. 

It is clear that when (11 = 0 . 0 2  = n/2,  and -Y = 2, the above 
generalized marginals are the conventional marginals. In addition, the 
angles n~. may be chosen to be close to the angles of chirp signals 
in the TF plane. 

In this correspondence, we will study TF distributions with kemels 
8(8. T) in Cohen’s class, which are generalized-marginal TF distri- 
butions (1).  We show that a TF distribution with kernel q ( 0 .  T j  in 
Cohen’s class is a generalized-marginal one (1) if and only if its 
kernel c j ( Q .  T )  is equal to 1 on the lines that are perpendicular to 
Lek, X .  = 1.2. . . . . A\7. and pass through the origin. This implies that 
the Wigner-Ville distribution satisfies all the generalized marginals, 
and it is the only one in Cohen’s class with this property. We then 
modify existing TF distributions with the conventional marginals in 
Cohen’s class so that the modified ones are generalized marginal. We 
then present some numerical examples of generalized-marginal TF 
distributions, which show that they combine the advantages of the 
Wigner-Ville and other bilinear TF distributions. Our numerical ex- 
amples also show that the generalized-marginal TF distributions with 
proper marginals are more robust and cleaner than the Wigner-Ville 
and Choi-Williams distributions when signals are disturbed by ad- 
ditive noise. 

This correspondence is organized as follows. In Section 11, we 
study generalized-marginal TF distributions in Cohen’s class. In 
Section 111, we present numerical examples. 
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11. BILINEAR GENERALIZED-MARGINAL 
TIME-FREQUENCY DISTRIBIJTIONS 

In this section, we first briefly review fractional Fourier transform 
and then study generalized-marginal time-frequency distributions. 

A. Fractional Fourier Transform 
Basically, the FRlT is a rotation of the time-frequency plane. For 

any real a,  the fractional Fourier transform F ,  with angle a is 
defined by 

(FcYs) ( U )  

5(uu.), I .+U), 

if a is a multiple of 2 ~ .  
if a + A is a multiple of 27r. 

Additionally, one can see that Finn is the identity transformation 
( F ( L 7 z + l ) w ~ ) ( t )  = s ( - / ) ,  and FwiP is the traditional Fourier trans- 
form. Moreover, the following rotation property holds: F,+,j = 
F,Fn; see 1191 and [20]. For more properties, see, for example, 

With the FRFT, it was proved in [21]-[23], [28], [29] that a rotation 
of a Wigner-Ville distribution is still a Wigner-Ville distribution as 
follows. 

Let Pw(t ,  w )  denote the Wigner-Ville distribution of a signal s ( t ) ,  
i.e., 

1191-1341, 1411. 

Let a be an angle and (t, 6) be a rotation of (/, w )  with angle a: 

t x =  tcoscu + w s ina ,  

6 = - t s i n a  + W C O S ( X  

Pw(i , ; i )  = P~~( txcoscu- ( j s incu , t ^ s ina+ jco5a ) .  

(4) 

and 

Then, see, for example, [22] 

Equation (5) tells us that the rotation Pw(t", G) of the Wigner-Ville 
distribution PW ( t ,  w )  of a signal s is the Wigner-Ville distribution 
of the signal F,s. It was also proved in [%4] that a rotation of a 
Radon-Wigner distribution is also a Radon--Wigner distribution by 
using the FRET technique. Rotations of TF distributions in Cohen's 
class were studied in [32]. It is known that a Wigner-Ville distribution 
satisfies the conventional marginal properties for (Y = ~ / 2 , 0 .  Thus 

and 

B. A Necessary and Suficient Condition 
We now derive a necessary and sufficient condition for a TF dis- 

tribution in Cohen's class to have the generalized-marginal property. 
A TF distribution for a signal s ( t )  in Cohen's class is defined by 

where A(8, T) is the generalized ambiguity function of the signal 
s ( t )  with a kemel d ( 0 , r ) :  

A ( 0 . r )  = $ ( O , T )  s U + - s U - c J o u  du .  J' ( %> * (  2 )  

The TF distribution F(t ,u , )  can be also written as 

. s(u + S ) s * ( i i  - S )  do dr du. (8) 

Then, P( t ,  w.) is a generalized-marginal TF distribution if and only 
if the following holds. Let 

t =  t cos CY + w. sin N .  

w =  -t sin a +  U, cos ci; 
t = t cos  o: - G sin (I. 

? sin (I + j cos a. 

or 

Then, the condition (I)  is equivalent to 

P(icos a h  - j sin e h .  ?sin o h  + z cos ckk) c!? 

= I(Fa,+,/2s)(Li')12, k = 1 . 2 . .  . .~i\-. (9) 
s 

In other words, a TF distribution P( t ,  w.) is generalized marginal if 
and only if it satisfies (9). We now focus on the TF distributions 
P ( t ,  w )  in (8) and one angle o in (9). Let us see what the left-hand 
side of (9) with angle CL for P(t .w)  in (8) is. 

P(? cos cy - G sin a. ?sill a + j cos a )  cl? 

- - 2 JJ e - j z r ( sm  cy tan a+cos a ) - j u r  t an  c\ 

.I' 
cos e 

. ~ ( - T t , , i , . . ) s ( u + 5 ) s * ( 1 / -  5) d r i l u  

= J.';rd(-.sinN.rcosa) 

. A, ( -T sin a; T cos N )  d~ 

where A, is the ambiguity function of s. It was proved (see, for 
example, [37]) that 

A , ( - T s ~ I ~ ~ . T c o ~ c o . )  = 4~ ( T . O ) .  
a + ? i / 2 s  

Therefore, 

~ ( t ^ c o s  e - 2 sin a; t s in  a +  2 cos a )  d t  

4(-r sin a; r cos a )  

.I 

s 
J 

= .I'. e J ( " - G ) r  
. / F n + . x / z ~ (  U )  l 2  dv (IT. 

Therefore, the generalized-marginal property 

P( tcos  CY - G siu a; ?sin Q + ;I cos a )  d? 

= IFm+,/2s(G)12 

holds if and only if 

d ( - r s i n N , r c o s a )  ( 1 ~  = h ( u  - 3 )  ,J ( 1 L  -6) r 

i.e., 4(-r  sin N,  T cos n) = 1. 

forward to generalize it to several angles C X ~  for k = 
Therefore, we have proved the following main result. 

Theorem 1: A time-frequency distribution P ( t , w )  in (8) in Co- 
hen's class with a kemel dj0. T )  is a generalized-marginal time- 
frequency distribution with angles m k .  k = 1 . 2 . .  . . . K. as in (9) 
if and only if 

Although the above discussion is for one angle only, it is straight- 

In other words, o is 1 on the lines perpendicular to the lines 
L,, . k = 1.2 . .  . . . Y .  passing through the origin. 

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 06,2023 at 01:59:01 UTC from IEEE Xplore.  Restrictions apply. 



2884 

Name Kernel + ( O ,  7)  

Margenau- Hill cos(o.5eT) 

Kirkwood-Rihaczek e0.5j8r 

sin a8r  
aOr sinc 

Page e0.501r1 

Choi- Williams e o  
-- e2 9 
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I 

Generalized-Marginal 4(6, T )  with angles cyk, 1 5 k 5 N .  

e 0 . 5 j n k N _ 1 ( B c o s a k + 7 s i n a k )  

sin[an;-_, - ( ~ c o s a k + T  sinak)]  

a nr-l (0 cosoIk+T s i n a k )  

cos[0.5 njcv,l(~ cos ark + T sin a k ) ]  

0.5jnt:=, l o C O S o I k l  + T s i n a k l  I n ~ ~ = 1 ( B c o s a k 2 + T s i n a k 2 )  e 
e- 2 nf=, (0 cos a k + r  sin a k  12 

-50, 0 

relative freq. 
-150 -100 -50 0 50, 100‘ 150, -0.5 

absolute time 
0.5 

G- 

c 
.$ 0 
m al - 

-100 -50 0 50 100 
-0.5 

absolute time 

Fig. 2. Wigner-Ville di5tribution for the test signal si ( t ) .  

With this result, one can easily modify the well-known kemels 
so that the corresponding modified TF distributions are generalized 
marginals. We now list them in Table I. The motivation for this 
modification is similar to the one for existing distribution kemels 

Notice that there are some overlaps between the generalized- 
marginal Page distributions in Table I and the multiform, tiltable 
exponential distributions (MTED) proposed in [40]. 

Theorem 1 also tells us that the Wigner-Ville distribution satisfies 
all marginal properties for all angles because G ( H . 7 )  = 1 for all 
real 0 and 7 .  There is, however, a tradeoff between the number 
of generalized marginals one wants to impose and the freedom of 
choosing a kemel ~ ( H . T )  in Cohen’s class. As more generalized- 
marginals arc required, there is less freedom in choosing kernels. 

c91-[111, ~ 3 1 ,  ~141, m i ,  [401. 

111. NUMERICAL EXAMPLES 
In this section, we want to show some numerical examples 

for the existing TF distributions, such as the Wigner-Ville and 
Choi-Williams distributions with o = 12B2 and their corresponding 
generalized-marginal TF distributions in Table I. 

We test three signals. The first one is s ~ ( n )  = eo  5J(0 .11n)2  for 
-G4 5 71 5 64 and 0 otherwise. Its Wigner-Ville and Choi-Williams 
distributions are shown in Figs. 2 and 3. Two generalized-marginal 
TF distributions modified from the Choi-Williams distribution arc 
presented with two sets of angles. The first set of angles has only 
c u i  with tann-1 = 0.1l2. Its corresponding kemel d(0, T )  is shown 
in Fig. 4. The modified Choi-Williams distribution with this kemel 
is shown in Fig. 5. The second set of angles has the above a 1  
and the two conventional angles n2 = 0 and 0 3  = n/2. The 
corresponding kernel d(0. T) is shown in Fig. 6 and the modified 
Choi-Williams distribution is shown in Fig. 7. One can see that the 
modified Choi-William distributions with generalized-marginals are 

40 -. 

10 - 

r 1  /- c 5  

absolute time 

-1M) -50 0 50 100 
absolute time 

Fig. 3. Choi-Williams distribution for the test signal s l ( t )  

tau. theta 

loo> 50 

-1.5 -1 -0 5 0 0.5 1 1 5  
theta 

Fig. 4. Generalized marginal kernel @ ( e ,  T )  modified from the 
Choi-Williams kernel with only one angle t an01  = 0.1l2.  

as good as the Wigner-Ville distribution while they are cleaner than 
the Choi-Williams distribution. 

The reason why the angle is choosen so small is because of the 
nature of chirp signals and the sampling in the calculations. If the 
sampling is not dense enough, the calculation will not be accurate 
due to the quadratic term t2 in chirp signals unless the instantaneous 
frequencies, or equivalently the angles, are small enough. Without 
loss of generality, in the following numerical examples, we only 
use small angles with the limited sampling rate for simplicity in 
calculations. 

The second test signal is s2 (n )  = s l ( n )  + r / ( n ) ,  where 11 is 
Gaussian noise with maximum magnitude 0.2. Figs. 8-9 show its 
Wigner-Ville and Choi-Williams distributions. Figs. 10 and 11 show 
its modified Choi-Williams distributions with a single angle 01 as 
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I 

relative freq 

-50 ,I 
0 50 100 -150 -100 -50 

absolule lime 
0 5 , -  I 

-50 I' , 0 

relative freo. 
-150 -100 -50 0' 50' 100- 150' -0.5 

absolute time 
0 5 , -  I 

-100 -50 0 50 100 
absolute time 

-0.d' " 
-100 -50 0 50 100 

absolute time 

-0.5" ," ' 

Fig. 5.  
4 for the test signal . S I .  

Generalized marginal TF distribution with the kernel shown in Fig. Fig. 8. 
s i  with additive Gaussian noise. 

Wigner-Ville distribution for the test signal , s 2 ( t )  of thc chirp signal 

1 

0.5 

0 
200 0.5 

2 

relative freq. 
100 150 

tau theta 
absolute time 

100 

50 

2 0  

-50 

-100 

-1.5 -1 -0.5 0 0.5 1 1 5  -100 -50 0 50 100 
theta absolute time 

Fig. 6. Generalized marginal kernel @ ( O .  T )  modified from the Fig. 9. Choi-Williams distribution for the lest signal . s : ! ( t )  of the chirp 
Choi-Williams kernel with angles ta i ioL = O.1l2 , ( t2  = 0.n3  1 ~ / 2 .  signal ,SI with additivc Gaussian noise. 

-50 ,I,/' fl 

relative 
-150 -100 -50 0 50 100 150 45 

absolute time 
0.5 

U 

I 

$ 0  
m - 
a, 

-100 -50 0 50 100 
-0.5 

absolute time 

freq 

,' 

0 

0' 50- 100/ 150- -0.5 -150 -100 -50 

0.5 

relative freq. 
.. 

absolute time 
0.5 

U - 
g o  
I 

- 
a, 

-100 -50 0 50 100 
absolute time 

-0.5 

Fig. 7. Generalized marginal TF distribution with the kernel shown in Fig. Fig. 10. Generalized marginal TF distribution with angle n I = 
6 for the test signal .SI. arctai10.11~ for the test signal s2.  

t x i  (11 = 0.112. and 0.09'. We can see that the contours are much 
cleaner than the ones for the Wigner-Ville and the Choi-Williams 
distributions and are quite stable in terms of small change of the 
angle 01. 

IV. CONCLUSIONS 
In this paper, we have generalized the conventional marginal prop- 

erties to generalized-marginal properties by introducing generalized- 
marginal time-frequency (TF) distributions. We have characterized 

all generalized-marginal TF distributions in Cohen's class and mod- 
ified the existing well-known TF distributions so that the modified 
ones have generalized-marginal properties. Numerical examples have 
been presented to show the performance of generalized-marginal 
TF distributions. They indicate that the TF distributions may have 
better performance by choosing proper generalized marginals and 
are stable in terms of small changes of angles in the generalized 
marginality. Numerical examples for noisy signals have been also 
given. They show that the generalized-marginal TF distributions 
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150-  

l U O - -  

5)  

0 -  , ’  L 5  

-50 7‘ , 0 
-150 -100 -50 0 50, 100- 150’ -05  

relative freq 

absolute time 
0.5 

is - 
.g 0 
- 

-100 -50 0 50 100 
-0.5 

absolute time 

Fig. 11. Generalized marginal TF  distribution with angle 01 = 
arctan0.09’! for the test signal s y .  

with proper marginals are much cleaner than the Wigner-Ville 
and the Choi-Williams distributions. We believe that the proposed 
generalized marginal TF distributions have potential applications in 
multicomponent chirp signal detections. Future work on this direction 
would be interesting. 

ACKNOWLEDGMENT 

The authors would like to thank the reviewers for  their comments 
and suggestions that improved the clarity of this manuscript. 

REFERENCES 

J. C. Wood and D. T. Barry, “Radon transformation of time-frequency 
distributions for analysis of multicomponent signals,” IEEE Trans. 

ing, vol. 42, pp. 3166-3177, Nov. 1994. 
~, “Tomographic time-frequency analysis and its application to- 
ward time-varying filtering and adaptive kernel design for multicom- 
ponent linear-FM signals.” IEEE Trans. S i g i d  Processing. vol. 42, pp. 
2094-2104, Aug. 1994. 
~, “Radon transformation of the Wigner spectrum.” So(,. Photo- 
Opficul Instrum. Eng.: Advanced Architectures, Algorit1zm.s Signal Pro- 
cetsing, vol. 1770, pp. 358-375, 1992. 
L. Cohen, “A general approach for obtaining joint representations in 
signal analysis and an application to scale,’‘ in Pro(,. S P f L  Advanced 
Signul Processing Algorithms, Archilechtures Implenzent. 11 (F. T. Luk, 
Ed.), vol. 1566, 1991, pp. 109-133. 
~, “Scale representation,” IEEE Truns. Signal Processing, vol. 41, 
pp. 3275-3292, Dec. 1993. 
R. G. Ba-aniuk and D. L. Jones, “Warped wavelet bases: Unitary 
equivalence and signal processing,” in Proc. lEEE Itit. Conf A ~ O L I S I .  
Speech Signal Proce.s.sing, 1993, pp. 320-323. 
~, “Unitary equivalence: A new twist on signal processing,” ZEEE 
Trans. Signal Processing, 1993. 
L. Cohen, “Generalir.cd phase-space distribution I‘unctions,” J .  Malh.  
Phys., vol. 7, pp. 781-786, 1966. 
__ , “Time-frequency distributions-A review,” Proc. IEEE, vol. 77, 
pp. 941-981, July 1989. 
~, Time-Frequency Analy.sr.s. Englcwood Clifrs., NJ: Prentice-Hall, 
1995. 
F. Hlawatsch and G. F. Bourdeaux-Bartels, “Linear and quadratic time- 
frequency signal representations,” IEEE Signal Prore.ssing Mag., vol. 9, 
pp. 21-67, Apr. 1992. 
0. Rioul and M. Vetterli, “Wavelets and signal procecsing,” IEEE Signal 
Processing Mag., vol. 8, pp. 14-38, Oct. 1991. 
H. I. Choi and W. J. Williams, “Improved time-frequency representation 
of multicomponent signals using exponential kernels,” IEEE Tt-ans. 
Acoust. Speech Signcil Proce.s.sing, vol. 37, pp. 862-871, June 1989. 
Y. Zhao, L. E. Atlas, and R. J .  Marks, “The use of cone-shaped kernels 
for generalized time-frequency representations of nonstationary signals,” 
IEEE Trans. Signal Processing, vol. 38. pp. 1084-1091, July 1990. 

[IS] P. J. Loughlin. J. Pitton, and L. E. Atlas, ”Construction of positive time- 
frequency distributions,“ IEEE Trczns. Signal Processing, vol. 42, Oct. 
1994. 

[ 161 R. Baraniuk and D. L. Jones, “Signal dependent time-frequency analysis 
using a radially Gaussian kernel,” Signal Proc 
263-284, 1993. 

[17] S. Qian and D. Chen. “Decomposition of the Wigner-Ville distribution 
and time-frequency distribution series,” IEEE Trans. Signal Processing, 
vol. 42, pp. 2836-2842, Oct. 1994. 

11 81 ~, Introduction to .Joint Time-Frequency Representations. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1996. 

1191 V. Namias, “The fractional order Fourier transform and its application to 
quantum mechanic?,” J .  In.st. Math. Appl., vol. 25, pp. 241-265., 1980. 

1201 A. C. McBride and F. H. Kcrr, “On Namias’ fractional Fourier trans- 
forms,” M A J .  Appl. Maih., vol. 39, pp. 150-175, 1987. 

1211 L. B. Almeida, “An introduction to the angular Fourier transform,” lEEE 
Proc. A w u t . ,  Speech Signal Processing, Minneapolis, MN, Apr. 1993. 

[22] ~, “The fractional Fourier transform and time-frequency represen- 
tations,” IEEE Trcins. S i p a l  Procc.ssing, vol. 42, pp. 3084-3091, Nov. 
1994. 

[23] A. W. Lohmann. “Image rotation, Wigner rotation and the fractional 
Fourier transform,” ./. Opt. Soc.. Amer. A ,  vol. 10, pp. 2181-2186, 1993. 

[24] A. W. Lohmann and B. H. Soffer, “Relationships between the 
Radon-Wigner ancl fractional Fourier transforms,” J .  O p .  Soc. Amer. 
A ,  vol. I I ,  pp. 1798-1801, 1994. 

[25] D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transformations 
and their optical implcmcntation: I,” J .  Opt. Soc. Am. A vol. IO, 1875- 
1881, 1993. 

1261 H. M. Ozaktas and D. Mendlovic, “Fractional Fourier transformations 
and their optical Implementation: 11,” J .  Opt. Soc. Amer. A ,  to appear. 

[27j -, “Fourier transforms of fractional order and their optical interpre- 
tation.” Opt. Cornmun. vol. 101, pp. 163-169, 1993. 

[28] H. M. Ozaktas. B. Barshan, D. Mendlovic, and L. Onural, “Convolution. 
filtering, and multiplexing in fractional Fourier domains and their 
relationship to chirp and wavelet transforms,” J .  0171. Soc. Amer. A ,  
vol. 11, pp. 547-559, 1994. 
0. Sc_ger-, “ILlodel building and re~toration with applicaiions in confocal 
microscopy,” Ph.D. Disscrtation no. 30 I ,  Linkoping University, Sweden, 
1993. 
T. Alieva, V. L6per. and L. B. Almeida, “The angular Fourier transform 
and wave propagation,” submitted to Phys. Rev. Lett. 
T. Alieva, V. Lbpez, F. Aguill6-L6pez, and L. B. Almeida, “The angular 
Fourier transform in optical propagation problems,” J.  Modern Opt., vol. 
41. pp. 1037-1040, 1994. 
H. M. Ozaktas, N. Erkaya, and M. A. Kutay, “Effect of fractional Fourier 
transformation on time-frequency,” submitted to IEEE Signal Proces.~ing 
Letf.. 
X.-G. Xia, “On hand-limited signals with fractional Fourier transforms,” 
IEEE Signal Processing Lett., vol. 3, no. 3, p. 72-74, Mar. 1996. 
A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, “The fractional Fourier 
transform,” Tech. Rep., Faculty of Engineering. Tel-Aviv Univ., Apr. 
1995. 
S. Kay and G. F. Boutlreaux-Bartels, “On the optimality or the Wigner 
distribution for detection,” in Proc. ZEEE lnf. Con$ Acou.st., Speech 
Signul Processing, 1985, Tampa, FL, pp. 1017-1020. 
P. Flandrin. “A time-frequency formulation of optimum detection,” 
IEEE Trans. Acou.st., Speech Signcil Processing, vol. 36, pp. 1377-1 384, 
Sept. 1988. 
H. L. Van Trees, Detection, Estimation, and Modulation Theor}), Part 
I l l .  New York: Wiley, 1971. 
F. Hlawatxh and H. Bolcskei, “Displacement-covariant time-frequency 
energy distributions,” in Proc. fEEE ICASSP-95, Detroit, MI, May, 
1995, pp. 1025-1028. 
A. Papandreou, F. Hlawatsch, and G. F. Boudreaux-Bartels, “A unified 
framework for the scale covariant affine, hyperbolic, and power class 
quadratic time-frequency representations using generalized time-shifts,” 
in Proc. IEEE ICASSP-95, Detroit, MI, May 1995, pp. 1017-1020. 
A. H. Costa and G. F. Boudreaux-Bartels, “Design of time-frequency 
representations uring il multiform, titable exponential kernel,” IEEE 
Trum. Signul Processing, vol. 43. pp. 2283-2301, Oct., 1995. 
A. 1. E. M. Jansscn, “On the locus and spread of pseudo-density 
functions in the time-frequency plane,” Phi l ip  J .  Res., vol. 37, pp. 
79-1 I O ,  1982. 

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on September 06,2023 at 01:59:01 UTC from IEEE Xplore.  Restrictions apply. 


