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n Bandlimited Signals with 
Fractional Fourier Transform 

Xiang-Gen Xia 

Abstract- In this letter, we study bandlimited signals with 
fractional Fourier transform (FRFT). We show that if a nonzero 
signal f is bandlimited with FRFT F, for a certain real a, then it 
is not bandlimited with FRFT F p  for any /3 with ,B # fa + n7r for 
any integer n. This is a generalization of the fact that a nonzero 
signal can not be both timelimited and bandlimited. We also 
provide sampling theorems for bandlimited signals with FRFT 
that are similar to the Shannon sampling theorem. 

I. INTRODUCTION 

HE FRACTIONAL Fourier transform (FRFT) has been 
recently studied and has found some applications in 

solving differential equations [ 11, [2], physics [l], [SI-[13], 
and signal processing [3]-[7]. As a rotation of the traditional 
Fourier transform, it has been used to show that a rotation 
of Wigner (or Radon-Wiper) distribution is still a Wigner 
(or Radon-Wigner) distribution. For more details, see [3]-[SI 
and [14]. We now briefly review its definition and some basic 
properties. 

We borrow the notations used in [4]. For any real Q, let 

KCY(t, U )  = 

, if Q is not a multiple of 7r, 

if Q is a multiple of 27r, 
if af7r is a multiple of 27r. 

(1) 

With this transformation kernel, the FRFT with an angle Q: of 
a signal f is defined as 

00 

( F a f ) ( u )  = s_, f (t)Ka(t ,  (2) 

It is not hard to see that we have (3), which appears at the 
top of the next page. This says that Fann is the identity 
transformation ( F ( z n + l ) T f )  ( t )  = f ( - t ) ,  and Fq is the 
traditional Fourier transform. Moreover, the following rotation 
property (see [2] and 141) holds: 

Fa+p = FaFp.  (4) 

The inverse FRFT is the following: 

(Faf)(u)K-a(u,t)du. (5) 
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The conventional bandlimited signals play an important 
role in communications and signal processing. In this letter, 
we study bandlimited signals with FRFT and their sampling 
theorems. 

II. BANDLIMITED SIGNALS 

Let f E L2(R) and Q be a real number. If there exists a 
positive R, such that ( F a  f ) (u )  = 0 for IuI > Qa,  then f is 
said to be 0, bandlimited with FRFT F, or 0, bandlimited 
with angle Q. With this definition, the following facts are clear. 
When Q = n7r, a signal f is bandlimited with angle Q is equiv- 
alent to that f is bandlimited in the conventional sense. When 
Q = $ + n7r, f is bandlimited with angle Q and is equivalent 
to that f, which is bandlimited in the conventional sense. It 
is known that a signal cannot be timelimited and bandlimited 
simultaneously, i.e., a signal cannot be bandlimited with both 
angles 0 and 4 simultaneously. A natural question arises: Can 
a signal be bandlimited with other two different angles Q and 
p simultaneously? We will answer this question negatively. 
Before going to the result, we briefly review some properties 
for entire functions. 

We first define the order and the type of an entire function. 
Let f (2) be an entire function on the complex plane. Let 

M ( r )  = max I f ( z ) l .  
Izl<r>O 

The order of the entire function f is defined by 

- loglogM(r) 
r-+m logr . p =  lim 

For example, the order of the entire function f ( z )  = 2 8  is 
2. We say that an entire function f with a positive order p 
is of type r if 

- 
lim r -p log M ( r )  = r. 

r++m 

An entire function is said to be an exponential type if its 
order p 5 1 and its type r < 00. It is well known that 
any conventional bandlimited signal is an entire function of 
exponential type, and the bandwidth is its type. 

Lemma 1: Let f and g be two nonzero entire functions with 
orders pf and pg and types rf and rg, respectively. Assume 
that p f  5 pg. Then, the order of the product f g is pg. If 
pf < pg, then the type of f g  is rg. If pf = pg, then the type 
of f g  is max{rf,rg}. 

For a proof of this lemma and more details about entire 
functions, see [15] and [16]. 
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J r m f ( t ) e j $ o t a  e--jutcscadt, if a is not a multiple of 7r, 

if a is a multiple of 27r, 
if a + 7r is a multiple of 27r. 

13 

(3) 

Assume a function f is R, bandlimited with angle a and 
a # n7r for any integer n. Then, by the inverse FRFT in (5) 

Let 

g(t) = J"" ( F , f ) ( u ) e - - 3 ~ C O t " e 3 u t " " " "  du. (7) 

Then, g is conventionally bandlimited, and its order is 1 when 
f is almost surely not zero, and the time variable t i; extended 
to the complex plane. Meanwhile, the function e--3 5 cy has 
order 2 and type when a # nf for any integer n. 
Therefore, by Lemma 1, the signal f has order 2 and type 
I cot ,I if 
and only if p # fa + n7r for any integer n. This implies that 
f cannot be bandlimited with angle p, where p # f a  + n7r 
for any integer n. When f is almost surely not zero, then 
f is an entire function from (6), and therefore, it cannot be 
timelimited, i.e., it cannot be bandlimited with angle a = n~ 
for any integer n. Overall, we have proved the following 
theorem. 

Theorem 1: If a nonzero signal f is bandlimited with angle 
a, then f cannot be bandlimited with another angle ,L?, where 
p # fa + n7r for any integer n. 

When a = f ,  p = 0, Theorem 1 states that if f is 
bandlimited, then f is not timelimited. When a = 0, p = ;, 
Theorem 1 states that if f is timelimited, then f is not 
bandlimited. Therefore, Theorem 1 is a generalization of the 
fact that a nonzero signal cannot be both timelimited and 
bandlimited. 

We next study the sampling theorem for an R, bandlimited 
signal f with angle a # n7r for any integer n. In this case, f 
has the representation (6) or 

-0, 

when a # n? for any integer n. I cot a1 # I cot 

Since g( t )  is R, csc a bandlimited in the conventional sense, 
we may apply the Shannon sampling theorem to g, that is 

'(') = Fg(n*a) R,(csca)(t - nA,) 
sin[R,(csca)(t - nA,)] 

where A, = 7rsina/flt,. Therefore 

Let a1 # nr for any integer n, and a2 be two real numbers 
such that a1 + a2 = a. By the rotation property (4), F,,f 
is R, bandlimited with angle a1 when f is R, bandlimited 
with angle a, where a can be any real number. Therefore, 
the above sampling theorem (7) also applies to F,,f with a 
replaced by a1 

x x(F,,f)(nA,,)ej* 
n 

(9) 
sin[R,(csc al)(t - nA,)] 

X 
R,(cscal)(t - nA,) 

where AaY, = 7rsinal/R,. 

in (8) when a # n.rr for any integer n 
We can also directly apply the FRFT F,, to the both sides 

cot,sin[R2,(csca)(t - nA,)] 
R , ( c s c ~ ) ( ~  - nA,) 

This leads to the following theorem. 
Theorem 2: Let f be R, bandlimited with angle a. When 

a # n7r for any integer n, the sampling theorem (8) is true 
for f .  Let a1 + a2 = a. The sampling theorem (9) is true for 
Fa, f when a1 # n7r for any integer n, where a may be any 
real number. The sampling theorem (10) is true for F,, f when 
a # n7r for any integer n, where a1 may be any real number. 

As special cases of Theorem 2, when a = ;, the identity 
(8) is the Shannon sampling theorem for bandlimited signals; 
when a = 0 and a1 = ;, the identity (9) is the Shannon 
sampling theorem for timelimited signals in the frequency 
domain. 

111. CONCLUSION 

In this letter, we have studied bandlimited signals with 
fractional Fourier transforms. We have shown that a nonzero 
signal cannot be bandlimited with two different angles a and 
p simultaneously when p # f a  + n7r for any integer n. This 
is a generalization of the fact that a nonzero signal cannot 
be both timelimited and bandlimited. We have also provided 
several sampling theorems for bandlimited signals with FRFI'. 

(8) 
sin[R,(csc a)(t  - nA,)] 

X 
O,(csca)(t - nA,) ' 
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