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On Optimal Ambiguity Resistant Precoders in
ISI/Multipath Cancellation

Xiang-Gen Xia Member, IEEEand Guangcai Zhou

Abstract—Ambiguity resistant (AR) precoding has recently the feedback channel is not necessary. It is linear (no modulo
been proposed in intersymbol interference (ISI) and multipath  operation is needed); the transmitter or receiver does not

cancellations, where the IS/multipath channel may have fre- paye to know the ISI channel for the equalization, i.e., blind
quency-selective fading characteristics and its knowledge is N - ! ’
equalization is possible.

not necessarily known. With the AR precoding, no diversity is . e . . .
necessary at the receiver. In the precoding, the AR property fora  For the blind equalization with the new precoding technique,
precoder plays an important rule. In this paper, more families and no diversity at the receiver is needed for a single receiver

properties of AR precoders are presented and characterized. In system, and a reduced sampling rate over the baud rate can be
particular, all systematic AR precoders are characterized. More achieved in an antenna array receiver system, which are not

importantly, we introduce the concepts of precoderdistanceand ible for th isting blind lization techni f
optimal precoders, and characterize and construct all optimal POSSIDI€ Tor the existing blind equalization techniques (see for

systematic AR precoders, when additive channel random noise €xample [24]-[41]), without using precoding. For this purpose
is concerned. A necessary and sufficient condition for an AR ambiguity resistant (AR) precoders have been introduced in

precoder to be optimal is given, which is easy to check. With the [22]-[23] for combating the ambiguity induced by the ISI
optimal precoders, numerical simulations are presented to shoW ~hannel. Besides the AR precoder concept, some properties
the improved performance over the known AR precoders in ISI . .

cancellation applications. and a famlly of AR precoders are presented in [22]—[23].

In this paper, we further study AR precoders with more prop-
erties and more AR precoder families. All systematic AR pre-
coders are characterized. More importantly, the concept of the

NTERSYMBOL interference (1SI) and multipath fading arepptimal precoders is introduced when additive channel random
important problems in digital communications. Precodingoise is concerned. The optimality is based on the following
is one of the techniques for the ISI/multipath cancellatiorriterion: the output symbols after the precoding should be as
The conventional precoding techniques [1]-[12], such as Totfar away from each other as possible in the mean-square sense.
linson—Harashima (TH) precoding [1]-[2] and trellis precodin@his criterion is similar to the one in the modulation symbol de-
[3]-[5], may not perform well when the channel signal-to-noissign in communication systems to resist random errors. Given a
ratio (SNR) is not high, and other ISI cancellation techniquggecodeiG(~), a polynomial matrix of the delay variable™?,
[13]-[19], such as decision feedback equalizers, usually sufigs distanceis introduced by using the coefficients of its coeffi-
from the spectrum-null characteristics in frequency-selectiggent matrices. Itis proven that the distance is proportional to the
fading channels. Meanwhile, the conventional precodingean distance of the ISI channel output symbols, which controls
methods require the knowledge of the ISI channel at thiee performance in resisting additive channel random noise. We
transmitter, i.e., a feedback channel is needed. Recently, a nen characterize all optimal systematic AR precoders. A neces-
precoding technique has been introduced in [20]-[23]. Unlikgary and sufficient condition for an AR precoder to be optimal
conventional precoding, the new precoding expands the bafglgiven, which is easy to check. Numerical examples are pre-
width in a minimum amount as an expense. The advantagessefted to illustrate the theory.
the new precoding are the following: when there is no other This paper is organized as follows. In Section |1, we briefly re-
noise but the ISI, it provides an ideal linear finite-impulseall the concept of AR precoders and their applications in the ISI
response (FIR) equalizer at the receiver, whether or not tbencellation. In Section Ill, we present more properties and fam-
ISI channel has spectrum-null; it is channel independent, i.gigs of AR precoders, in particular AR systematic precoders.
We introduce equivalent classes based on the AR property be-
_ e A od Aol . ) tween AR precoders. In Section IV, we introduce the concepts of
T oS0 Marh 1965 ovsed or 2000, T, wefrecoder distance and opimal AR precoders, study some prop-
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precoder channel
binary complex 2(n) y(n)
data jal to| X(n)] ~ ) oaraitel |2
dat seria D
= I‘]:;:Igg/_x(_n;> parallel 9 G(z)—(o carial ™ H(z)
MxK
n{n)

Fig. 1. Single antenna receiver with baud sampling rate.

precoder

binary complex The above necessary condition 2) for an AR precoder means

data[ECC/| data serial to Xin) G(z)ﬂi parallel | that the'pr'ec';odl'n.g has to expand ed_érsamples mtdY sam-

MOD | x(n) ples. This is intuitively clear that certain redundancy is needed to
resist errors. In a bandlimited channel, the minimum bandwidth
expansion is desired. This implies that the optimal paraniéter
should beK = N — 1 given NV in an AR precoder.

) Let G(z) in Fig. 1 take the following form:

NxK

. In
G(z) = G(x
) |:0(1\4—N)><N:| (2)

Y

whereM > N andG(z) are anN x K polynomial matrix. It

¥ has been proven in [22] and [23] that, if the precoders in Figs. 1
O N *—> and 2 take the above forms a@4z) are AR, then under certain
' conditions on the channel order, the input signals in the sys-
tems in Figs. 1 and 2 can be blindly identified from the output
signals, where the ISI channdlg »), H1(2), ..., Hy(2) may
Fig. 2. An undersampled antenna array receiver system. have spectrum-null. In [22]-[23], some closed-form blind iden-
tification algorithms have also been obtained.

In[22], itis proven that the following precodet¥ =) of sizes
all of them are either polynomial matrices or polynomials olf\, % [(N]— 1)21re AR: L o)

the delay variable—*. In what follows, boldface captial letters

denote polynomial matrices. 1 0 0 ... 0 0
Since the two systems in Figs. 1 and 2 can be converted to two yor1 1 0 0 0
multi-input multi-output (MIMO) systems, the existing MIMO 0 —r—1

™
—_
- o
e}

system identification techniques (see for example [35]-[41{}(z)=

can be used. However, based on these results on MIMO system (‘) (:) _7:,_1 1
.. Z

identification, one can at most identify an MIMO system to a o
constant matrix ambiguity. In order to further resist the constant 0 0 - 0 % NX(N2—12)
matrix ambiguity induced from an MIMO system identification (2.

algorithm, ambiguity resistant precoding has been introduce
[22]. A precoderG(z) of size N x K is considered\RIif:

1) G(z) is irreducible, i.e., matribG(z) has full rank for all
complex valueg including z = ~;

2) the following equation forK' x K polynomial matrix
V(z) has only trivial solutio¥ (z) = ok for a nonzero
constanto:

qlﬂ{ an integer- > 0. From known AR precoders, the following
emma is straightforward, which can be used to build more AR
precoders.

Lemma 2: IfanV x K polynomial matrixG(z) is AR, then
polynomial matrixXUG(z)W(z) is also AR for anyV x N non-
singular constant matrix/ and any irreducible polynomial ma-
trix W (2z).

The AR precoders have been generalized in [23}dtyno-
mial ambiguity resistanPAR) precoders, for resisting not only

(21)  constant matrix ambiguities, but also polynomial matrix ambi-
_ ) . guities. The main advantage of using PAR precoders in the sys-
whereL'is an.V x IV nonzero constant matrix agl IS temg in Figs. 1 and 2 is that one can directly identify the input
the K x K identity matrix. signals from the output signals by resolving the channel poly-
For an AR precode(x), the following lemma is proven in nomial ambiguities without using any MIMO system identifi-
[22]. cation algorithm. In the rest of this paper, however, for sim-
Lemmal: IfanV x K, K > 1, G(z) is AR, then: plicity we focus on AR precoders, although an analogous ap-
1) there exists no full-rank constant matdxand invertible proach applies to PAR precoders. Notice that the family in (2.2)
K x K polynomial matriX/( =), such that the first column and Lemma 1 is the only one known so far. It is, however, im-
in matrix EG(2)V(z) is (1, 0, 0, ..., 0)7; portant to know more families of AR precoders and even more
2) N > K. important to know criterions for justifying AR precoders and
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the optimal AR precoders. The following sections are devoteahd
to the study of these problems.
dedy; ;j(z)) < dedg; ;(z)) foranyj < ¢

lll. M ORE PROPERTIES ANDFAMILIES OF AR PRECODERS  and degif(~)) denotes the degree of polynomjdl) of =~

In this section, we want to present more properties and fam-By doing row operations 1)-2) and column operations 1)-3),
ilies of AR precoders. By Lemma 1, every known AR precodékis not hard to see that the known precoder in (2.2) is equivalent
G(z) can be used to generate a class of AR precoders by simfsly
left and right multiplying it with nonsingular constant matrices
and irreducible polynomial matrices, respectively. Clearly, tﬁgz)

precoder in (2.2) generates a class of AR precoders. The ques- 1 0 T 0
tion to ask here is whether there exist other AR precoder classes 0 1 e 0
(or families) that are not generated by the one in (2.2). To study— T T e e (3.3)
this question, we introduauivalent classeer AR precoders. _(N_Ol)(rﬂ) _(N_()Q)(TH) o —(1+1)
Definition 1: Two N x K ambiguity resistant precoders z z R NX(N—1)

G1(z) and G (=) are in the same equivalent class if and onl
if there exist anV x NN nonsingular constant matrik’ and a
K x K irreducible polynomial matri (~) such that

¥n this case, all diagonal elemenys (=) in (3.2) are 1.
Notice that the diagonal matrix in the Smith form decompo-
sition of anN x K irreducible polynomial matrix is always

Go(z) = UGL ()W (). (3.1) [ I } (3.4)

Onv—iyxK
When precoder§s; (z) and G»(z) are in the same equivalent , ] o )
class, they are called equivalent. by using the irreducibility, where the polynomial elementary op-

As a remark, the above equivalence is only for the AR profration 3) for rows is used, which may, however, change the AR
erty, i.e., if one is AR and then the other is also AR when thég;operty foran AR polynom|al matrix. This is exactly the reason
are equivalent, and does not mean the performance equivalejd/ the form (3.2) is already the simplest form for ax K

Examples will be shown in Section V for the performance dif*R Precoder. Unlike the diagonal matrix of an AR precoder in
ference. its Smith form decomposition, the diagonal elemets (2) in

It is known that any polynomial matrix can be diagonalizeliS corresponding form (3.2) may not be nonzero constants, or
by employing the following three elementary row and columfduivalentlyg,, (=) may not be all 1. In other words, the form

operations: in (3.3) may not be true in general. The following are two ex-
1) interchange two rows (or columns); amples:
2) multiply a row (or column) with a nonzero constant; 1 0 1 0
3) add a polynomial multiple of a row (or column) to another 0 2L and | 21 22 (3.5)
row (or column). 273 27241 272 14278

This diagonalization is called the Smith form decomposition .

(see for example [42]). Any of the above elementary operatiok§ich are AR but not equivalent to the form
can be realized by multiplying a certain matrix to the polyno- 1 0
mial matrix at the left or the right side. In particular, the above 0 1
1) and 2) operations correspond to two nonsingular constant ma-

. . . . g3, 1(75) g3, 2(75)
trices and all operations 1)-3) correspond to irreducible polyno-
mial matrices. This means that doing row operations 1) or 2), far any two polynomialgy; 1(z) andgs 2(z) of variablez=1.
any column operations of an AR precoder, does not change trieis implies that other equivalent classes beyond the known one
AR property. Similar to the Smith form decomposition, the folin (2.2) or (3.3) exist.

lowing result is not difficult to see. We next want to characterize a subclass of all AR precoders,
Theorem 1: AnyV x K ambiguity resistant polynomial ma-which are equivalent to the forms in (3.2) with all diagonal ele-
trix G(z) is equivalent to ments 1, i.e.,
g1.1(%) 0 0 0 91,1(2) = g2,2(2) = ... = gi;, Kk (2) = L.
¥ ¥ 0 - 0
3218 3228 g3.3(2) - 0 In this case, due to the property deg,(z)) < ded(g; :(z)) for
o . O (3.2) j < iin Theorem 1, (3.2) becomes
gr,1(2) gk, 2(2) gx,3(2) - gk Kx(2) Iy
Fi(z) Fiy(z) Fs(z) - Fg(2) F(2) (3.6)
whereF',(z) are (N — K') x 1 polynomial matrices whereF(z) is an(N — K) x K polynomial matrix. The pre-
coder in (3.6) is called aystematic precodemwhich is anal-
dedgr 1(2)) < ded gz 2(2)) < --- < dedgx x(2)) ogous to systematic convolutional codes. The following result
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characterizes all systematic AR precoders with form (3.6) wh@aking j = 1, we have

K = N-1,i.e.,the smallest bandwidth expansion and the most
interesting case. en1 +ennFi(z) = (e11 +enFi(2))F1(2)

Theorem 2: An N x (N — 1) systematic precoder St
+ Z (er1 + ean F1(2))Fi(2)-
1 0 0 Pt
0 1 e 0 . o .
G(z) = o L o (3.7) By comparing the coefficients of the two polynomials, we have
i 0 0 ... 1 " epny = Oforanyk = 1,..., N — 1. Hencew;;(z) = e
Gi(z) Galz) - Gy_1(2) is in fact a constant for any, ;7 = 1,..., N — 1. Since
B TR TSN (N1 degFi(2)) > dedFa(z)) > --- > dedFn_1(2)) > 1,
is ambiguity resistant if, and only if, it is equivalent to Li(z), ..., Fy_1(2) are linearly independent. By (3.11),
1 0 N 0 again we have
0 1 - 0 N-1
F(z): (38) GNJ'—FCNNFJ'(Z)I Z Ukij(Z) fijI]., 2, ..., N—1.
0 0 e 1 k=1
B(z) Ba(z) - Envoa(@)d yvoy Hencev;; = e;; = 0 except possibly,; = ¢;; = exy forj =
whereFy(~) are polynomials ot~ such that 1,2, ..., N—1.SinceE is a nonzero matrixy (z) = ady_1
for some nonzero constant This proves the sufficiency. [
deg Fi(z)) > deq Fu(z)) > --- > deq Fn_1(z)) > 1. After we characterize all AR precoders with their equivalent

(3.9) systematic forms in (3.7), we now want to specify all different
Proof: By doing constant elementary operations 1)-3quivalent classes of (3.8). By doing elementary operations, the
and general polynomial column operations 1)-3), it is not hafR precoders in (3.8) can be further simplified as follows.
to see thatG(z) in (3.7) is equivalent taF'(z) in (3.8), with ~ Corollary 1: AnN x (N — 1) precoderG(z) in (3.7) is AR
deq Fi(z)) > deqFy(z)) > --- > dedFn_1(z)) > 0. To ifand only if itis equivalent to

prove the necessity, we only need to show( 1(z)) #0. 1 0 o 0
Assume this is not true. Thefiy 1 (=) is a constant. This does 0 1 .. 0
not satisfy the necessary condition 1) in Lemma 1 for an AR _
F(z)=| - (3.12)
precoder. 0 0 1
We next prove the sufficiency. Leb = (e;;)nxn and F F L F
V(2) = (u3;(2)) v Such thatEG(z) = G(=)V(2), i.e., i(2) Flz) V=12 v
1 0 0 where
e e C1n 0 1 e 0 Tk
H N Fiu() =3 auz™, k=12..,N-1 (313)
eN1 cr eNN 0 0 1 =1
Fi(z) Fo(z) - Fn_1(z) wherer, > 0 andag; # 0 whenry, > 1
1 0 e 0
0 1 0 nEL > N2 > 0 > Mgy, 2 0
11 > N1 > >nv—p1 >0 (3.14)
Fl(Z) FQ(Z) FN_l(Z)
v11(2) viv-1)(%) and the powers infy(z) do not include any leading power
z7"rin Fy(z)forp = k+1,..., N — 1, i.e., the integer
vn—(2) o vy v—1)(2) set{ni;: 1 =2, ..., r;} does not intersect with the integer set
. {ﬂllll:k‘—i-l,...,N—l}fOf/{;:l,Q,...,N—2.
we obtain All AR precoders in (3.7) can be classified as follows.

(3.10) Corollary 2: Two AR precodersin (3.7) are equivalent if and

i iNE(2) =g V,forf', i=1,2,..., N-1 . .
cieinty(2) =vi(z), fori, j only if they can be equivalently reduced to the same form (3.12)

N-1 .
tennFy(z) = J(2)Fu(z), forj=1,2, ..., N1, 'nCorollary1.
engennE;z) kz::l vk () Eilz), forj=1,2, ..., From Corollary 2, one can clearly see that there are many
(3.11) equivalent classes that are not the same as the one in (2.2) or
(3.3).
First, from (3.10) and (3.11), we obtain
IV. OPTIMAL AR PRECODERS
en; +ennFi(z) =(ery + einFi(2)Fi(z) . .
N_1 In Section 1ll, we have found several families of AR pre-
+ Z (exj + exn Fy(2))Fi(z). coders. Although all AR precoders are good enough in theory to
P be used to cancel the ISI without additive noise, AR precoders
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X(z) Y(z) Let
—» G(z) —m H(z)

Qo Qu
G(z) = Z G(n)z™, H(z)= Z H(n)z™"

=0 n=0
n(z) X(z)=) Xz, Y(x)=&> Y(n)z™
Fig. 3. Unified MIMO system. Let " "

V() 2G)X(2) =Y Vin)z™
may have performance difference when there is additive noise in n
the channel. Then the question becomes which AR precodeys . yansform of the precoder output vector sequence, and
“better,” where “better” means better symbol error rate perfor-
mance at the receiver after equalization. In this section, we study U(2) a H(2)V(z) = Z U(n)z™"
a criterion for AR precoders and also optimal AR precoders by -
introducing the distance concept for a precoder.

the z-transform of the ISI channel output vector sequence.

Notice that all X (n), Y(n), V(n), V(n), n(n) are constant

column vectors, whileg7(n), H(n) are constant matrices. To
To study the above question, let us briefly recall the comstudy the mean distance for the output valuedifr.), let

ventional error-control coding theory, see for example [43]. lus use matrix representations for linear transformations. By

error-control coding, inputs, code coefficients and outputs asencatenating all vectors{(n) together, all vectorsV(n)

all in a finite field, such as zero and one, and the coding arittegether, all vectoré/(n) together, all vectorg(n) together,

metic is the finite field arithmetic. Therefore, the “distance&and all vectorst’(n) together, we obtain bigger block vectors

concept is clear, for example the Hamming distance betwedn= (z(n)), V = (v(n)), U = (u(n)), n = (n(n)), and

two finite sequences of Os and 1s. Moreover, the minimum d&-= (y(n)), respectively. Let; and’® denote the generalized

tance between all coded sequences can be calculated fromSpityester matrices, respectively

code itself. The minimum distance controls the performance

A. Distance and Criterion for AR Precoders

of the error rate at the receiver for decoded sequences, when GQc) -+ GO -0

only additive random noise occurs in the channel. Code A is g= : KR :

better than Code B if the minimum distance of Code A is larger | 0 o FQg) - GO)

than the minimum distance of Code B. Tkeyfor this crite- [H(Qy) --- H@O) -+ 0

rion and the above concepts to hold is that all inputs, code co- M= . (4.1)
efficients and outputs are in the saiffirgte field and there is o : ' E '
only additive random noise in the channel. This does not hold L 0 - H(Qm) - H(0)

in the precoding studied in Sections Il and Ill, where at fir
inputs, precoder coefficients and outputs are all in the com-
plex-valued field and then the channel has IS| besides additive V=GX, U=HY, YV=U+n. (4.2)
random noise. Although this is the case, the “distance” of the

ISI channel output values also controls the performance in re-In what follows, for convenience we assume the input signal
sisting additive channel random noise. To the firstissue, the caf») is an i.i.d. random process with mean zero and variance
ventional Hamming distance does not apply, and the Euclideah Thus, random processeg:) andu(n) have zero mean. We
distance for the output signal values after precoding needs tod$g0 assume all coefficients in the ISI chani#(z) are i.i.d.
used. Since it is hard to deal with the minimum Euclidean di#ith mean zero and varianeg; and are independent a{n).
tance concept in the complex-valued field, the Euclidean dijotice that this assumption is only used to simplify the fol-
tance here is in the mean sense when the input signal is mtving analysis and does not apply to the single receiver system
eled as a complex-valued random process. To the second is§uEig. 1, where the corresponding channel maHik) has the

we need to investigate how the Euclidean distance of the outppgeudo-circulant structure [42].

values of a precoder affects the Euclidean distance of the outpuf he mean distances between all values(ef) and all values
values of the ISI channel, which determines the performance@fv(n) are
the precoder in resisting additive random noise.

1/2
To study these issues, let us go back to the systems with ISI A _ 2
in Figs. 1 and 2. By blocking the ISI channels from serial to d =\ ;L [o(m) = v(n)]
parallel, the systems in Figs. 1-2 can be unified into the MIMO ’ 1/2
system shown in Fig. 3, whet¥(z) is the K’ x 1 polynomial A 5
matrix of thez-transform of the input vector&(z) is the N x K du= \ B Z [u(m) —u(n)] (4.3)

AR precoderH(z) is theM x N polynomial matrix of the ISI
channely(z) istheM x 1 polynomial matrix of the:-transform respectively, wheréZ means the expectation. By the assump-
of the additive white noise vectors, alidz) is the M x 1 poly- tions on the coefficients o (z), it is not hard to see the fol-
nomial matrix of thez-transform of the channel output vectorslowing relationship between the mean distamigeof the ISI
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channel output values(n) and the mean distandk of the pre- whereG' means the conjugate transpose of all coefficient ma-

coder output values (or the ISI channel input valugs)): trices ofG(z). Let L be the length of the precoder output vector
sequencé’(n). Then, by (4.1), it is not hard to see that

tracGG") = LEg, > (GG")mn = LDg.  (4.10)

m,n

This can be stated in the following lemma.

Lemma 3: The performance of a precoder in resisting addi-
tive channel white noise is proportional to the mean distance dherefore
the precoder output values. ) )

The above result solves the second issue that arose in the be- dy =20, L(LNEG — Dg). (4.11)
ginning of this section, and we need only to study the mean dis-

Since E; is fixed as the total energy of all the coefficients
tanced, of all the precoder output values for the performancef - . . 2
of resisting additive channel random errors. Based on the ab 0vethe coefficient matrices i6(z), andor;, L, gndN are also
) %xed, based on formula (4.11) for the mean distadiceve have

zggle{‘?s’ we have the following definition for optimal AR P%he following criterion for judging the performance of an AR

Defintion 2: AnN x K ambiguity resistant precodé¥(z) is precoder.

calledoptimalif the mean distancé, of all the precoder output pefmnon 3N x K amb|_gU|_ty re5|§tant precoda(z) IS
' . L . said betterthan N x K ambiguity resistant precodeF'(z) if
values is the maximal among aN x K ambiguity resistant

L Dg < Dy whenEg = Ep, whereDg, Dp, Eqg, and Er
precoders, when the total energy is fixed. )
The squared mean distanégcan be calculated as are defined by (4.8) and (4.9) for precodez) and F(z),

respectively
&2 = Z Ev(m) — v(n)|? Based on formula (4.11) on the mean distadgef the pre-
o, coder output values, we define the distance for a precoder as
9 . follows.
=2(LN 1) zn: E(lv(m)") -2 z#: E(u(m)v*(n)) Defintion 4: For anN x K precoderG(z), its distanceis
(4.5) defined by

. A D¢

where L is the length of the precoder output vector sequence d(G) =N - .

V(n), andN is the precoder size. Lét(m, n) be the correla- ¢

tion function of the random proces$n), i.e., whereD¢ and E¢ are defined in (4.8) and (4.9)
With the above two definitions, the following corollary is
R(m, n) = E(v(m)v*(n)). straightforward.

Corollary 3: AR precodelG(z) is better than AR precoder
F(z) if, and only if, the distance dff(>) is greater than the
R = (R(m, n)) = E(GX(GX)") = GE(xx)Tgl = o2ggt  distance off'(z), i.e., d(G) > d(F).
(4.6) Let us see two examples. Consider the two AR precoders
where means the conjugate transpose. One can see that the ff&t) in (2.2) andF(z) in (3.3). Itis not hard to see thate =
and second term on the right-hand side of (4.5) for the distanke = 2(V — 1), and whenV > 2, we have

Let R be the correlation matrix af(n), i.e.,

d,, are the sum of all the diagonal elements, i.e., the trace of t}&e Gl
matrix GG multiplied by 202, and the sum of all the off-diag- (2)G' (1z) i+l
onal elements of the matrixG* multiplied by242, respectively. _1_1 % 191—1 e 0 0 0
In formula, the squared mean distanrfecan be calculated as ? 2 L ? T 0 0 0
0 27" 2 0 0 0
dy =207 | (LN — 1)trac€GG") — > (GG ) 0 0 0 oal g
mn 0 0 0 - 0 =z7b 1 Jun
=202 <LNtrace{ggT) - Z(gg*)mn) (4.7) and the equation at the bottom of the page. Thus, wtien 2,
m,n Dg = Dp = 4(N — 1). Therefore, whenV > 2
where(GG"),,.. denotes the element at theth row and theath 4N -1)
column of GG*. d(G)=d(F)= N — AN D) =N —2.
We next want to simplifyd,, in (4.7) by using all the coeffi- _ _
cients in the precode®(~). For a precode@(z), define This proves the following corollary. - _
Corollary 4: The AR precoder#’(z) in (3.3) andG(z) in
De 2 sum of all coefficients of all (2.2) have distanced(G) = d(F) = N — 2. In other words,
coefficient matrices of(2)GT(1/2) (4.8) these two precoders are equivalent not or!Iy with respect to the
A . o AR property, but also with respect to the distance property.
E¢ = sum of all magnitude squared coefficients This corollary will be seen by the numerical simulations in
of all coefficient matrices o&F(z) (4.9) Section V, where QPSK is used for the input signals and there
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is only a small performance difference between these two pre-Theorem 4: The mean distandg of the precoder output
coders. This small performance difference is caused from thalues for anV x K precoderG(z) is upper bounded by
specific QPSK modulation scheme, as we will see in Section V,
and the above result holds in general. d, < 0,LV2N\/Eq (4.13)
Since the precoder output vector lendththe precoder size
N, and the input signal variance? are fixed, the following Whereo? is the input signal varianceL is the length of the
theorem is straightforward from (4.11). precoder output vector sequence, afig is defined by (4.9),
Theroem 3: AV x K ambiguity resistant precode¥(z) is i.e., the total energy of all coefficients@¥ ). The upper bound
optimal in all V x K ambiguity resistant precoders if and onlyfor the distance of av x K precoderG(z) is d(G) < N.
if the total sumD¢ of all the coefficients of all the coefficient Now the question is: can the above upper bound be reached?
matrices of the product matri&(»)G"(1/~) is minimal among Clearly the precoders that reach the upper bound in (4.13) are
all possibleN x K ambiguity resistant precode(z) when optimal. In the next subsection, we shall answer this question
the total sumEy of all the magnitude squared coefficients of alPositively. Notice that, when there is no precoding, &%) =
coefficient matrices aoF'(z) is fixed I, we have
We now want to find a family of column operations of a pre-

2
coder so that they do not change the distance prope/>AK _ Z Elo(n)2 = Z Ele(m)|? = LKo® > 0

polynomial matrixl/ () is calledparaunitaryif, and only if E Z v(n)
U()U'(1/2) = Ix. The mean distance of the precoder output values is
For more about paraunitary matrices, see [42], where all parau- 1/2
nitary matrices are characterized by using the lattice factorizag _— Z Elu(m) — v(n)|? = 0,\/2(LK — 1)LK
tion. In [42], instead of usind/’(1/z), the tilde operation no- o '

tationU(z) is used. With paraunitary polynomial matrices, we

have the following result. and the precoder distanced§@) = K — 1 = N — 1 in this
Corollary 5: LetU(z) be a K x K paraunitary matrix. case.

If G(z) is an N x K AR precoder with distancé(G), then

G(2)U(z) is also an AR precoder with distane&G), i.e, B. Optimal Systematic AR Precoders

d(GU) = d(G). If G(2) is an optimalV x K AR precoder,  |n this subsection, we determine all optimal systematic AR

then so isG(2)U (). precoders by using the criterion proposed in Section IV-A. We
Proof: From (4.8), clearly Do = Dgy. Sinceé payve the following result.

the sum of all magnitude squared coefficients of all Theroem 5: AnV x (IV — 1) systematic ambiguity resistant

coefficient matrices of G(z) is equal to the sum of precoderF(z) in (3.8) with

all diagonal elements of the coefficient matrix of the

constant term z~° in the matrix G(z)G'(1/z) and T »
CAHUUN(1/2)G (1)2) = G()G(1/2), we have  Fu(x) =D auz™, i, #0, 1<E<N-1
Eg = Egu . Thus, by Definition 4, we havé(G) = d(GU). O 1=0
Notice that ny>ny > --->ny_1 >1 (4.14)
02LDg =02 Z(ggt)mn is optimal if, and only if
= Z E(v(m)v*(n)) Z ap=-—1,fork=1,2,...,N—-1. (4.15)
m,n =0

2
Moreover, for the above optimal precoder, the mean distalce

=E Z v(n)| 20 (4.12) of the precoder output values and the precoder distai{dé)
are
Using (4.11), the following upper bound for the mean distance
d,, is proven. d, =0, LV2N\/Ep, dF)=N (4.16)
1 0 . 0 LN=1)(r+1)
0 1 . 0 Z(N=2)(r+1)
F(2)F'(1/2) = : : : : :
0 0 . 1 2t
—(N=1)(r+1)  ,—(N=2)(r+1) .. ,—(r+1) N -1 NN
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wheres? is the variance of the input signal is the length of

the precoder output vector sequence, and

N—=1 ng

EF:N_]-J"Z Z|akl|2.

k=1 =0

Proof: By (4.9),EF is clearly the total sum of all the coef-
ficients in all coefficient matrices of the precodg(z). To cal-
culate Dy in (4.8) for F(z), the product matrixd(2)F'(1/z)

IS
F(2)F'(1/z)
1 0 0 Ff(l/z)
0 1 0 F;(l/z)
0 0 1 Fj{_l(l/z)
Fl(Z) FQ(Z) FN_l(Z) Fo(Z)
where
N-1
Fp(1/2) = Y ai?!
=0
and
N-1
Fo(z) = Y Fu(2)Fi(1/2)
k=1
N-1

k=1 1;=0 ;=0

Thus, it is not hard to see that

Nk Nk
* —(l1 -1
E E E al, gy, (L=tz)

Given sizeN, the simplest optimaN x (N — 1) systematic
AR precoders are

1 0 0

0 1 0

0 0 1
—xyT —y T2 . —zTN-1

Nx(N-1)

wheren; > ngs > -+ > ny_1 > 1.

V. NUMERICAL EXAMPLES

In this section, we want to present some examples to illustrate
the theory obtained in the previous sections. Since all numerical
simulations in this section are only used to prove the conceptsin
resisting additive channel random errors, some simplifications
are made. These simplifications include that an MIMO system
identification algorithm has been implemented, i.e., there is only
a nonsingular constant matrix ambiguity in the ISI channel.

We consider the undersampled communication system in
Fig. 2 with five antennas, and downsampling by factor 4. After
a MIMO system identification algorithm is implemented, the
ISI channel matrix becomes 4 x 4 nonsingular constant
matrix. Thus, we simply assume the ISI channel matrix as a
4 x 4 nonsingular constant matrix, and then a white ngige)
is added to the ISI channel output, as shown in Fig. 4(a). Notice
that the4 x 4 ISI channel constant matrix corresponds four
antenna array receivers, where each channel has four-tap ISI
by using the interpretation of the combination of the polyphase
components [42], as shown in Fig. 4(b).

We now consider the following fivé x 3 AR precoders:

N—-1 ng N—-1 np ng
Dp=N-1+ ZZ(GM-FGZI)—F Z Z Zakhazb }1 0 0
k=1 (=0 k=1 {1=0 =0 Gi(2)= | ? 1 0
1( ) 0 —1 1
N-=1]| ng 2 z
=Y > a1 Lo 0 z7']
k=1 [1=0 r1 0 0 T
Therefore, the minimum ofDr over all F(z) in (4.14) is Ga(z)= 8 (1) (1)
reached if, and only if Dy = 0. In other words D is minimal |3 2 1]
if, and only if, (4.15) holds, wher&'x in (4.17) is fixed. 1 0 0
WhenDr = 0, i.e., the precodeF(z) is optimal, the op- 0 1 0
timal mean distance formula (4.16) for the precofi§r) fol- Gs(2)= 0 0 1
lows from (4.11). O 1, o0 5 1, 5 1,
This theorem also implies that there exist AR precoders that __2(2 +277) _2(2 +270) _2(2 +1)
reach the upper bound (4.13), i.&)¢ = 0. By (4.12), the fol- -1 0 0
lowing corollary is straightforward. 0 1 0
Corollary 6: The following statements are equivalent Ga(z)= 0 0 1
1) AnN x K AR precodeiG(z) is optimal [ —272 —272 71
2) Dg = 0, i.e., the total sum of all coefficients of all coef- r 1 0 0
ficient matrices of3(z)G'(1/z) is zera 0 1 0
3) The distance of the precodé(2) is d(G) = N. Gs(2)= 0 0 1
By the above results and Corollary 4, the precod@(s) in laz—3 4+ bz72 cx24dzt —z1
(2.2) andF'(2) in (3.3) are not optimal. The precoder in [20] and
[21] where
W o - E3 S
Onv—ryxK 31 /33

is not optimal either, which is not AR and its distance is zero. c= Y d= 1
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QPSK precoder
modulated
data x(n) X (n V(n)

serial to

)
> parallel [ G(z)

3x1 4x3

.

=

e

(a)
equivalent ISI channel

(b)

Fig. 4. Simplified undersampled antenna receiver system.

By Corollary 2, they are all in the same equivalent class. Byjlasses of AR precoders beyond the known one presented in [22]
Theorem 5, the precodefs,(z) and G;(z) are optimal. All and [23] were found.

Eg, = 6fori = 1,2,..., 5 for all these precoders. Their More importantly, we introduced the concepts of precoder
distances are distanceand optimal AR precoders in justifying an AR pre-
coder. Given anV x K precoderG(z), its distance is defined
d(G1) =d(G2) =4 —2 =2 by Corollary 4 by d(G) = N — D/ Eq, whereDy; is the total sum of all co-
d(G4) =d(Gs) = 4 by Theorem 5 efficients of all coefficient matrices of the mat(2)G" (1/2)
andEq is the total sum of all magnitude squared coefficients of
and all coefficient matrices of the matri&(z). With this distance
definition, anV x K AR precoder is optimal if, and only if, its
d(Gs) = 4— 3(v2+1)?  5-2v2 ~ 1.0858. distance isV. Furthermore, we characterized Al (N —1) op-
6 2 timal systematic AR precoders. With this characterization, one

QPSK modulation is used for the input signal of the precodé able to construpt all possmlg opt!niﬁlx .(N —1) systematic
The linear closed-form equalization algorithm developed if R precoders. Finally, numerical simulations were presented to

[22]-[23] is used for the decoding. For more about closed-forhustrate the theory_and the concepts. Our numerical example_:s
blind equalization, see for example [28]—[30]. Three-hundreSc§1OWeOI that an optimal AR precoder has good performance in

Monte Carlo iterations are used. Fig. 5 shows the QPSK sym §isting both of the channel ISI and additive random noise. The
error rate comparison of these .five .precoders via the SNR ?E ory developed in this paper applies to not only single trans-

the additive channel white noise. Clearly, the two Optimépitting antenna systems, but also multiple transmitting antenna

. _ . Systems, such as space—time precoding.
precodersF4(z) and G5(z) outperform the other nonoptimal . . SRR .
precodersGi(z) for i — 1,2, 3. Sinced(G1) = d(Ga), Notice that the precoding studied in this paper and also in

theoretically these two precoders should have the same syn{lggl]_[zg’] are after th_e symbol madulation is d(_)ne, l.e., the input
error rate performance. From Fig. 5, one can see that it ”a.' ofthe precod|ng.|s co_mplex—valued.Thls presentsacqm—
performance difference between these two precoders is sm ||r|1,at|on' c.)f the modulatlon (first andlthe codmg. (second), V\./h"e
where the small difference is purely due to the specific QP§ € traditional trellis coded modulation (TCM) is the combina-

modulation. The theoretical result obtained in Section IV holi'sggiﬁf thi;" ;23;”}%3?;?:3 tr:C;nEgg?é'?;e(fneggglgﬁosr:n;et:]le
for general modulation schemes as mentioned earlier. g ) ) AKES P . ) (
complex valued field), it is not easy to incorporate with the con-

sideration of the channel ISl (in the complex valued field) can-
cellation. The study in this paper might suggest a new approach
In this paper, we presented more families and propertiesadlled modulated precoding (MPC) to resist both the ISI and
AR precoders for ISI/multipath cancellation. We introduced thde additive random noise. Notice that both MPC and TCM do
concept ofequivalent classefor AR precoders and character-not need to know the ISI channel characteristics, if there are no
ized allN x (N —1) systematic AR precoders. Many equivalenadditional I1SI cancellation methods are used. This brings up an

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on October 04,2023 at 04:14:26 UTC from |IEEE Xplore. Restrictions apply.

VI. CONCLUSION



XIA AND ZHOU: ON OPTIMAL AMBIGUITY RESISTANT PRECODERS IN ISI/MULTIPATH CANCELLATION 755

symbol error rate

- ws: - AR-precoder G2(2)
L+ wx~: - AR precoder G5(z)
—x~(dashed): AR precoder G4(z)

SNR (dB)

Fig. 5. Symbol error rate comparison. Solid line withG; (). Solid line with+: G2 (z). Solid line with O:G(z). Dashed line withx : G4(=). Solid line with
x: Gs(z).
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