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On Optimal Ambiguity Resistant Precoders in
ISI/Multipath Cancellation

Xiang-Gen Xia, Member, IEEE,and Guangcai Zhou

Abstract—Ambiguity resistant (AR) precoding has recently
been proposed in intersymbol interference (ISI) and multipath
cancellations, where the ISI/multipath channel may have fre-
quency-selective fading characteristics and its knowledge is
not necessarily known. With the AR precoding, no diversity is
necessary at the receiver. In the precoding, the AR property for a
precoder plays an important rule. In this paper, more families and
properties of AR precoders are presented and characterized. In
particular, all systematic AR precoders are characterized. More
importantly, we introduce the concepts of precoderdistanceand
optimal precoders, and characterize and construct all optimal
systematic AR precoders, when additive channel random noise
is concerned. A necessary and sufficient condition for an AR
precoder to be optimal is given, which is easy to check. With the
optimal precoders, numerical simulations are presented to show
the improved performance over the known AR precoders in ISI
cancellation applications.

I. INTRODUCTION

I NTERSYMBOL interference (ISI) and multipath fading are
important problems in digital communications. Precoding

is one of the techniques for the ISI/multipath cancellation.
The conventional precoding techniques [1]–[12], such as Tom-
linson–Harashima (TH) precoding [1]–[2] and trellis precoding
[3]–[5], may not perform well when the channel signal-to-noise
ratio (SNR) is not high, and other ISI cancellation techniques
[13]–[19], such as decision feedback equalizers, usually suffer
from the spectrum-null characteristics in frequency-selective
fading channels. Meanwhile, the conventional precoding
methods require the knowledge of the ISI channel at the
transmitter, i.e., a feedback channel is needed. Recently, a new
precoding technique has been introduced in [20]–[23]. Unlike
conventional precoding, the new precoding expands the band-
width in a minimum amount as an expense. The advantages of
the new precoding are the following: when there is no other
noise but the ISI, it provides an ideal linear finite-impulse
response (FIR) equalizer at the receiver, whether or not the
ISI channel has spectrum-null; it is channel independent, i.e.,
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the feedback channel is not necessary. It is linear (no modulo
operation is needed); the transmitter or receiver does not
have to know the ISI channel for the equalization, i.e., blind
equalization is possible.

For the blind equalization with the new precoding technique,
no diversity at the receiver is needed for a single receiver
system, and a reduced sampling rate over the baud rate can be
achieved in an antenna array receiver system, which are not
possible for the existing blind equalization techniques (see for
example [24]–[41]), without using precoding. For this purpose
ambiguity resistant (AR) precoders have been introduced in
[22]–[23] for combating the ambiguity induced by the ISI
channel. Besides the AR precoder concept, some properties
and a family of AR precoders are presented in [22]–[23].

In this paper, we further study AR precoders with more prop-
erties and more AR precoder families. All systematic AR pre-
coders are characterized. More importantly, the concept of the
optimalprecoders is introduced when additive channel random
noise is concerned. The optimality is based on the following
criterion: the output symbols after the precoding should be as
far away from each other as possible in the mean-square sense.
This criterion is similar to the one in the modulation symbol de-
sign in communication systems to resist random errors. Given a
precoder , a polynomial matrix of the delay variable ,
its distanceis introduced by using the coefficients of its coeffi-
cient matrices. It is proven that the distance is proportional to the
mean distance of the ISI channel output symbols, which controls
the performance in resisting additive channel random noise. We
then characterize all optimal systematic AR precoders. A neces-
sary and sufficient condition for an AR precoder to be optimal
is given, which is easy to check. Numerical examples are pre-
sented to illustrate the theory.

This paper is organized as follows. In Section II, we briefly re-
call the concept of AR precoders and their applications in the ISI
cancellation. In Section III, we present more properties and fam-
ilies of AR precoders, in particular AR systematic precoders.
We introduce equivalent classes based on the AR property be-
tween AR precoders. In Section IV, we introduce the concepts of
precoder distance and optimal AR precoders, study some prop-
erties, and characterize all optimal systematic AR precoders. In
Section V, we present some simulation results. Finally, in Sec-
tion VI, we conclude this paper.

II. AR PRECODERS VIAISI CANCELLATION

A precoded single receiver system and undersampled antenna
array receiver system are shown in Figs. 1 and 2, respectively,
where in Fig. 1 and in Fig. 2 are precoders, ,

are the ISI channel transfer functions, and
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Fig. 1. Single antenna receiver with baud sampling rate.

Fig. 2. An undersampled antenna array receiver system.

all of them are either polynomial matrices or polynomials of
the delay variable . In what follows, boldface captial letters
denote polynomial matrices.

Since the two systems in Figs. 1 and 2 can be converted to two
multi-input multi-output (MIMO) systems, the existing MIMO
system identification techniques (see for example [35]–[41])
can be used. However, based on these results on MIMO system
identification, one can at most identify an MIMO system to a
constant matrix ambiguity. In order to further resist the constant
matrix ambiguity induced from an MIMO system identification
algorithm, ambiguity resistant precoding has been introduced in
[22]. A precoder of size is consideredAR if:

1) is irreducible, i.e., matrix has full rank for all
complex values including ;

2) the following equation for polynomial matrix
has only trivial solution for a nonzero

constant :

(2.1)

where is an nonzero constant matrix and is
the identity matrix.

For an AR precoder , the following lemma is proven in
[22].

Lemma 1: If an , , is AR, then:

1) there exists no full-rank constant matrixand invertible
polynomial matrix , such that the first column

in matrix is ;
2) .

The above necessary condition 2) for an AR precoder means
that the precoding has to expand eachsamples into sam-
ples. This is intuitively clear that certain redundancy is needed to
resist errors. In a bandlimited channel, the minimum bandwidth
expansion is desired. This implies that the optimal parameter
should be given in an AR precoder.

Let in Fig. 1 take the following form:

where and are an polynomial matrix. It
has been proven in [22] and [23] that, if the precoders in Figs. 1
and 2 take the above forms and are AR, then under certain
conditions on the channel order, the input signals in the sys-
tems in Figs. 1 and 2 can be blindly identified from the output
signals, where the ISI channels , may
have spectrum-null. In [22]–[23], some closed-form blind iden-
tification algorithms have also been obtained.

In [22], it is proven that the following precoders of sizes
are AR:

...
...

...
...

...

(2.2)
for an integer . From known AR precoders, the following
lemma is straightforward, which can be used to build more AR
precoders.

Lemma 2: If an polynomial matrix is AR, then
polynomial matrix is also AR for any non-
singular constant matrix and any irreducible polynomial ma-
trix .

The AR precoders have been generalized in [23] topolyno-
mial ambiguity resistant(PAR) precoders, for resisting not only
constant matrix ambiguities, but also polynomial matrix ambi-
guities. The main advantage of using PAR precoders in the sys-
tems in Figs. 1 and 2 is that one can directly identify the input
signals from the output signals by resolving the channel poly-
nomial ambiguities without using any MIMO system identifi-
cation algorithm. In the rest of this paper, however, for sim-
plicity we focus on AR precoders, although an analogous ap-
proach applies to PAR precoders. Notice that the family in (2.2)
and Lemma 1 is the only one known so far. It is, however, im-
portant to know more families of AR precoders and even more
important to know criterions for justifying AR precoders and
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the optimal AR precoders. The following sections are devoted
to the study of these problems.

III. M OREPROPERTIES ANDFAMILIES OF AR PRECODERS

In this section, we want to present more properties and fam-
ilies of AR precoders. By Lemma 1, every known AR precoder

can be used to generate a class of AR precoders by simply
left and right multiplying it with nonsingular constant matrices
and irreducible polynomial matrices, respectively. Clearly, the
precoder in (2.2) generates a class of AR precoders. The ques-
tion to ask here is whether there exist other AR precoder classes
(or families) that are not generated by the one in (2.2). To study
this question, we introduceequivalent classesfor AR precoders.

Definition 1: Two ambiguity resistant precoders
and are in the same equivalent class if and only

if there exist an nonsingular constant matrix and a
irreducible polynomial matrix such that

(3.1)

When precoders and are in the same equivalent
class, they are called equivalent.

As a remark, the above equivalence is only for the AR prop-
erty, i.e., if one is AR and then the other is also AR when they
are equivalent, and does not mean the performance equivalence.
Examples will be shown in Section V for the performance dif-
ference.

It is known that any polynomial matrix can be diagonalized
by employing the following three elementary row and column
operations:

1) interchange two rows (or columns);
2) multiply a row (or column) with a nonzero constant;
3) add a polynomial multiple of a row (or column) to another

row (or column).

This diagonalization is called the Smith form decomposition
(see for example [42]). Any of the above elementary operations
can be realized by multiplying a certain matrix to the polyno-
mial matrix at the left or the right side. In particular, the above
1) and 2) operations correspond to two nonsingular constant ma-
trices and all operations 1)–3) correspond to irreducible polyno-
mial matrices. This means that doing row operations 1) or 2), or
any column operations of an AR precoder, does not change the
AR property. Similar to the Smith form decomposition, the fol-
lowing result is not difficult to see.

Theorem 1: Any ambiguity resistant polynomial ma-
trix is equivalent to

(3.2)

where are polynomial matrices

deg deg deg

and

deg deg for any

and deg denotes the degree of polynomial of .
By doing row operations 1)–2) and column operations 1)–3),

it is not hard to see that the known precoder in (2.2) is equivalent
to

(3.3)

In this case, all diagonal elements in (3.2) are 1.
Notice that the diagonal matrix in the Smith form decompo-

sition of an irreducible polynomial matrix is always

(3.4)

by using the irreducibility, where the polynomial elementary op-
eration 3) for rows is used, which may, however, change the AR
property for an AR polynomial matrix. This is exactly the reason
why the form (3.2) is already the simplest form for an
AR precoder. Unlike the diagonal matrix of an AR precoder in
its Smith form decomposition, the diagonal elements in
its corresponding form (3.2) may not be nonzero constants, or
equivalently may not be all 1. In other words, the form
in (3.3) may not be true in general. The following are two ex-
amples:

and (3.5)

which are AR but not equivalent to the form

for any two polynomials and of variable .
This implies that other equivalent classes beyond the known one
in (2.2) or (3.3) exist.

We next want to characterize a subclass of all AR precoders,
which are equivalent to the forms in (3.2) with all diagonal ele-
ments 1, i.e.,

In this case, due to the property deg deg for
in Theorem 1, (3.2) becomes

(3.6)

where is an polynomial matrix. The pre-
coder in (3.6) is called asystematic precoder, which is anal-
ogous to systematic convolutional codes. The following result
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characterizes all systematic AR precoders with form (3.6) when
, i.e., the smallest bandwidth expansion and the most

interesting case.
Theorem 2: An systematic precoder

(3.7)

is ambiguity resistant if, and only if, it is equivalent to

(3.8)

where are polynomials of such that

deg deg deg
(3.9)

Proof: By doing constant elementary operations 1)–3)
and general polynomial column operations 1)–3), it is not hard
to see that in (3.7) is equivalent to in (3.8), with
deg deg deg . To
prove the necessity, we only need to show deg .
Assume this is not true. Then is a constant. This does
not satisfy the necessary condition 1) in Lemma 1 for an AR
precoder.

We next prove the sufficiency. Let and
such that , i.e.,

we obtain

for (3.10)

for

(3.11)

First, from (3.10) and (3.11), we obtain

Taking , we have

By comparing the coefficients of the two polynomials, we have
for any . Hence,

is in fact a constant for any . Since
deg deg deg ,

are linearly independent. By (3.11),
again we have

for

Hence except possibly for
. Since is a nonzero matrix,

for some nonzero constant. This proves the sufficiency.
After we characterize all AR precoders with their equivalent

systematic forms in (3.7), we now want to specify all different
equivalent classes of (3.8). By doing elementary operations, the
AR precoders in (3.8) can be further simplified as follows.

Corollary 1: An precoder in (3.7) is AR
if and only if it is equivalent to

(3.12)

where

(3.13)

where and when

and

(3.14)

and the powers in do not include any leading power
in for , i.e., the integer

set does not intersect with the integer set
for .

All AR precoders in (3.7) can be classified as follows.
Corollary 2: Two AR precoders in (3.7) are equivalent if and

only if they can be equivalently reduced to the same form (3.12)
in Corollary 1.

From Corollary 2, one can clearly see that there are many
equivalent classes that are not the same as the one in (2.2) or
(3.3).

IV. OPTIMAL AR PRECODERS

In Section III, we have found several families of AR pre-
coders. Although all AR precoders are good enough in theory to
be used to cancel the ISI without additive noise, AR precoders
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Fig. 3. Unified MIMO system.

may have performance difference when there is additive noise in
the channel. Then the question becomes which AR precoder is
“better,” where “better” means better symbol error rate perfor-
mance at the receiver after equalization. In this section, we study
a criterion for AR precoders and also optimal AR precoders by
introducing the distance concept for a precoder.

A. Distance and Criterion for AR Precoders

To study the above question, let us briefly recall the con-
ventional error-control coding theory, see for example [43]. In
error-control coding, inputs, code coefficients and outputs are
all in a finite field, such as zero and one, and the coding arith-
metic is the finite field arithmetic. Therefore, the “distance”
concept is clear, for example the Hamming distance between
two finite sequences of 0s and 1s. Moreover, the minimum dis-
tance between all coded sequences can be calculated from the
code itself. The minimum distance controls the performance
of the error rate at the receiver for decoded sequences, when
only additive random noise occurs in the channel. Code A is
better than Code B if the minimum distance of Code A is larger
than the minimum distance of Code B. Thekey for this crite-
rion and the above concepts to hold is that all inputs, code co-
efficients and outputs are in the samefinite field and there is
only additive random noise in the channel. This does not hold
in the precoding studied in Sections II and III, where at first
inputs, precoder coefficients and outputs are all in the com-
plex-valued field and then the channel has ISI besides additive
random noise. Although this is the case, the “distance” of the
ISI channel output values also controls the performance in re-
sisting additive channel random noise. To the first issue, the con-
ventional Hamming distance does not apply, and the Euclidean
distance for the output signal values after precoding needs to be
used. Since it is hard to deal with the minimum Euclidean dis-
tance concept in the complex-valued field, the Euclidean dis-
tance here is in the mean sense when the input signal is mod-
eled as a complex-valued random process. To the second issue,
we need to investigate how the Euclidean distance of the output
values of a precoder affects the Euclidean distance of the output
values of the ISI channel, which determines the performance of
the precoder in resisting additive random noise.

To study these issues, let us go back to the systems with ISI
in Figs. 1 and 2. By blocking the ISI channels from serial to
parallel, the systems in Figs. 1–2 can be unified into the MIMO
system shown in Fig. 3, where is the polynomial
matrix of the -transform of the input vectors, is the
AR precoder, is the polynomial matrix of the ISI
channel, is the polynomial matrix of the -transform
of the additive white noise vectors, and is the poly-
nomial matrix of the -transform of the channel output vectors.

Let

Let

the -transform of the precoder output vector sequence, and

the -transform of the ISI channel output vector sequence.
Notice that all are constant
column vectors, while are constant matrices. To
study the mean distance for the output values in , let
us use matrix representations for linear transformations. By
concatenating all vectors together, all vectors
together, all vectors together, all vectors together,
and all vectors together, we obtain bigger block vectors

, , , , and
, respectively. Let and denote the generalized

Sylvester matrices, respectively

...
...

.. .
. . .

...

...
. . .

. . .
. . .

... (4.1)

Then

(4.2)

In what follows, for convenience we assume the input signal
is an i.i.d. random process with mean zero and variance

. Thus, random processes and have zero mean. We
also assume all coefficients in the ISI channel are i.i.d.
with mean zero and variance and are independent of .
Notice that this assumption is only used to simplify the fol-
lowing analysis and does not apply to the single receiver system
in Fig. 1, where the corresponding channel matrix has the
pseudo-circulant structure [42].

The mean distances between all values of and all values
of are

(4.3)

respectively, where means the expectation. By the assump-
tions on the coefficients of , it is not hard to see the fol-
lowing relationship between the mean distanceof the ISI
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channel output values and the mean distance of the pre-
coder output values (or the ISI channel input values) :

(4.4)

This can be stated in the following lemma.
Lemma 3: The performance of a precoder in resisting addi-

tive channel white noise is proportional to the mean distance of
the precoder output values.

The above result solves the second issue that arose in the be-
ginning of this section, and we need only to study the mean dis-
tance of all the precoder output values for the performance
of resisting additive channel random errors. Based on the above
analysis, we have the following definition for optimal AR pre-
coders.

Defintion 2: An ambiguity resistant precoder is
calledoptimalif the mean distance of all the precoder output
values is the maximal among all ambiguity resistant
precoders, when the total energy is fixed.

The squared mean distancecan be calculated as

(4.5)

where is the length of the precoder output vector sequence
, and is the precoder size. Let be the correla-

tion function of the random process , i.e.,

Let be the correlation matrix of , i.e.,

(4.6)
where means the conjugate transpose. One can see that the first
and second term on the right-hand side of (4.5) for the distance

are the sum of all the diagonal elements, i.e., the trace of the
matrix multiplied by , and the sum of all the off-diag-
onal elements of the matrix multiplied by , respectively.
In formula, the squared mean distancecan be calculated as

trace

trace (4.7)

where denotes the element at theth row and the th
column of .

We next want to simplify in (4.7) by using all the coeffi-
cients in the precoder . For a precoder , define

sum of all coefficients of all

coefficient matrices of (4.8)

sum of all magnitude squared coefficients

of all coefficient matrices of (4.9)

where means the conjugate transpose of all coefficient ma-
trices of . Let be the length of the precoder output vector
sequence . Then, by (4.1), it is not hard to see that

trace (4.10)

Therefore

(4.11)

Since is fixed as the total energy of all the coefficients
of the coefficient matrices in , and , , and are also
fixed, based on formula (4.11) for the mean distance, we have
the following criterion for judging the performance of an AR
precoder.

Defintion 3: ambiguity resistant precoder is
said betterthan ambiguity resistant precoder if

when , where , , , and
are defined by (4.8) and (4.9) for precoders and ,
respectively.

Based on formula (4.11) on the mean distanceof the pre-
coder output values, we define the distance for a precoder as
follows.

Defintion 4: For an precoder , its distanceis
defined by

where and are defined in (4.8) and (4.9).
With the above two definitions, the following corollary is

straightforward.
Corollary 3: AR precoder is better than AR precoder

if, and only if, the distance of is greater than the
distance of , i.e., .

Let us see two examples. Consider the two AR precoders
in (2.2) and in (3.3). It is not hard to see that

, and when , we have

...
...

...
...

...
...

and the equation at the bottom of the page. Thus, when ,
. Therefore, when

This proves the following corollary.
Corollary 4: The AR precoders in (3.3) and in

(2.2) have distances . In other words,
these two precoders are equivalent not only with respect to the
AR property, but also with respect to the distance property.

This corollary will be seen by the numerical simulations in
Section V, where QPSK is used for the input signals and there
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is only a small performance difference between these two pre-
coders. This small performance difference is caused from the
specific QPSK modulation scheme, as we will see in Section V,
and the above result holds in general.

Since the precoder output vector length, the precoder size
, and the input signal variance are fixed, the following

theorem is straightforward from (4.11).
Theroem 3: An ambiguity resistant precoder is

optimal in all ambiguity resistant precoders if and only
if the total sum of all the coefficients of all the coefficient
matrices of the product matrix is minimal among
all possible ambiguity resistant precoders when
the total sum of all the magnitude squared coefficients of all
coefficient matrices of is fixed.

We now want to find a family of column operations of a pre-
coder so that they do not change the distance property. A
polynomial matrix is calledparaunitaryif, and only if

For more about paraunitary matrices, see [42], where all parau-
nitary matrices are characterized by using the lattice factoriza-
tion. In [42], instead of using , the tilde operation no-
tation is used. With paraunitary polynomial matrices, we
have the following result.

Corollary 5: Let be a paraunitary matrix.
If is an AR precoder with distance , then

is also an AR precoder with distance , i.e.,
. If is an optimal AR precoder,

then so is .
Proof: From (4.8), clearly . Since

the sum of all magnitude squared coefficients of all
coefficient matrices of is equal to the sum of
all diagonal elements of the coefficient matrix of the
constant term in the matrix and

, we have
. Thus, by Definition 4, we have .

Notice that

(4.12)

Using (4.11), the following upper bound for the mean distance
is proven.

Theorem 4: The mean distance of the precoder output
values for an precoder is upper bounded by

(4.13)

where is the input signal variance, is the length of the
precoder output vector sequence, and is defined by (4.9),
i.e., the total energy of all coefficients in . The upper bound
for the distance of an precoder is .

Now the question is: can the above upper bound be reached?
Clearly the precoders that reach the upper bound in (4.13) are
optimal. In the next subsection, we shall answer this question
positively. Notice that, when there is no precoding, i.e.,

, we have

The mean distance of the precoder output values is

and the precoder distance is in this
case.

B. Optimal Systematic AR Precoders

In this subsection, we determine all optimal systematic AR
precoders by using the criterion proposed in Section IV-A. We
have the following result.

Theroem 5: An systematic ambiguity resistant
precoder in (3.8) with

(4.14)

is optimal if, and only if

for (4.15)

Moreover, for the above optimal precoder, the mean distance
of the precoder output values and the precoder distance
are

(4.16)

...
...

...
...

...
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where is the variance of the input signal, is the length of
the precoder output vector sequence, and

(4.17)

Proof: By (4.9), is clearly the total sum of all the coef-
ficients in all coefficient matrices of the precoder . To cal-
culate in (4.8) for , the product matrix
is

where

and

Thus, it is not hard to see that

Therefore, the minimum of over all in (4.14) is
reached if, and only if, . In other words, is minimal
if, and only if, (4.15) holds, where in (4.17) is fixed.

When , i.e., the precoder is optimal, the op-
timal mean distance formula (4.16) for the precoder fol-
lows from (4.11).

This theorem also implies that there exist AR precoders that
reach the upper bound (4.13), i.e., . By (4.12), the fol-
lowing corollary is straightforward.

Corollary 6: The following statements are equivalent.

1) An AR precoder is optimal.
2) , i.e., the total sum of all coefficients of all coef-

ficient matrices of is zero.
3) The distance of the precoder is .
By the above results and Corollary 4, the precoders in

(2.2) and in (3.3) are not optimal. The precoder in [20] and
[21]

is not optimal either, which is not AR and its distance is zero.

Given size , the simplest optimal systematic
AR precoders are

(4.18)

where .

V. NUMERICAL EXAMPLES

In this section, we want to present some examples to illustrate
the theory obtained in the previous sections. Since all numerical
simulations in this section are only used to prove the concepts in
resisting additive channel random errors, some simplifications
are made. These simplifications include that an MIMO system
identification algorithm has been implemented, i.e., there is only
a nonsingular constant matrix ambiguity in the ISI channel.

We consider the undersampled communication system in
Fig. 2 with five antennas, and downsampling by factor 4. After
a MIMO system identification algorithm is implemented, the
ISI channel matrix becomes a nonsingular constant
matrix. Thus, we simply assume the ISI channel matrix as a

nonsingular constant matrix, and then a white noise
is added to the ISI channel output, as shown in Fig. 4(a). Notice
that the ISI channel constant matrix corresponds four
antenna array receivers, where each channel has four-tap ISI
by using the interpretation of the combination of the polyphase
components [42], as shown in Fig. 4(b).

We now consider the following five AR precoders:

where
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Fig. 4. Simplified undersampled antenna receiver system.

By Corollary 2, they are all in the same equivalent class. By
Theorem 5, the precoders and are optimal. All

for for all these precoders. Their
distances are

by Corollary 4

by Theorem 5

and

QPSK modulation is used for the input signal of the precoder.
The linear closed-form equalization algorithm developed in
[22]–[23] is used for the decoding. For more about closed-form
blind equalization, see for example [28]–[30]. Three-hundred
Monte Carlo iterations are used. Fig. 5 shows the QPSK symbol
error rate comparison of these five precoders via the SNR for
the additive channel white noise. Clearly, the two optimal
precoders and outperform the other nonoptimal
precoders for . Since ,
theoretically these two precoders should have the same symbol
error rate performance. From Fig. 5, one can see that the
performance difference between these two precoders is small,
where the small difference is purely due to the specific QPSK
modulation. The theoretical result obtained in Section IV holds
for general modulation schemes as mentioned earlier.

VI. CONCLUSION

In this paper, we presented more families and properties of
AR precoders for ISI/multipath cancellation. We introduced the
concept ofequivalent classesfor AR precoders and character-
ized all systematic AR precoders. Many equivalent

classes of AR precoders beyond the known one presented in [22]
and [23] were found.

More importantly, we introduced the concepts of precoder
distanceand optimal AR precoders in justifying an AR pre-
coder. Given an precoder , its distance is defined
by , where is the total sum of all co-
efficients of all coefficient matrices of the matrix
and is the total sum of all magnitude squared coefficients of
all coefficient matrices of the matrix . With this distance
definition, an AR precoder is optimal if, and only if, its
distance is . Furthermore, we characterized all op-
timal systematic AR precoders. With this characterization, one
is able to construct all possible optimal systematic
AR precoders. Finally, numerical simulations were presented to
illustrate the theory and the concepts. Our numerical examples
showed that an optimal AR precoder has good performance in
resisting both of the channel ISI and additive random noise. The
theory developed in this paper applies to not only single trans-
mitting antenna systems, but also multiple transmitting antenna
systems, such as space–time precoding.

Notice that the precoding studied in this paper and also in
[20]–[23] are after the symbol modulation is done, i.e., the input
signal of the precoding is complex-valued. This presents a com-
bination of the modulation (first) and the coding (second), while
the traditional trellis coded modulation (TCM) is the combina-
tion of the coding (first) and the modulation (second). Since the
coding (in finite field) takes place before the modulation (in the
complex valued field), it is not easy to incorporate with the con-
sideration of the channel ISI (in the complex valued field) can-
cellation. The study in this paper might suggest a new approach
called modulated precoding (MPC) to resist both the ISI and
the additive random noise. Notice that both MPC and TCM do
not need to know the ISI channel characteristics, if there are no
additional ISI cancellation methods are used. This brings up an
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Fig. 5. Symbol error rate comparison. Solid line with�:GGG (z). Solid line with+:GGG (z). Solid line with O:GGG (z). Dashed line with�:GGG (z). Solid line with
�: GGG (z).

interesting question: is MPC better than TCM? Two clear ad-
vantages of the MPC studied in this paper over TCM are: 1) the
ISI cancellation capability because the precoding is designed for
cancelling the ISI and 2) possible closed-form linear decoding
algorithms, i.e., fast algorithms, because we are dealing with
the same complex-valued field for all input and output signals
and arithmetic and not a combination of a finite field and the
complex valued field like in TCM. Further studies between the
performance difference of these two different approaches, i.e.,
TCM and MPC, is under our current investigations. Notice that
this paper has not taken a specific modulation scheme into an
account, but provides the feasibility. The theory developed in
this paper holds for a general modulation scheme. To optimally
combine the modulation and the precoding in the MPC similar
to TCM is another research topic in our investigations. More
comprehensive studies in this direction can be found in [44].
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