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Our Location at the Center of the East Coast of the United States

. Located near the northern tip of
: Delaware in Newark, the University
': is convenient to East Coast cities,
: '{ including:
e '{ « Wilmington: 20 minutes
'rl  Philadelphia: 50 minutes
| « Baltimore: 1 hour
« Washington DC: 2 hours
VA — « New York City: 2'> hrs
University of Delaware $$hide k317434, BREEBEZRI K% —
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UNIVERSITY 0/ DELAWARE

Famous Alumni

e Joe Biden, President of the
USA.

o Chris Christie, Governor of New
Jersey and potential
presidential candidate.

e Joe Flacco, NFL Super Bowl
MVP (most valuable player).

e Xin Wang, builder of RenRen
Net (A AM)

« Wayne Westerman, inventor of
multi-touch interface.


Presenter
Presentation Notes
In 2012, UD awarded 275 doctoral degrees and 911 master's degrees.
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Famous Faculty

« Dave Farber, Internet pioneer.
Pioneer’s Circle of Internet Hall of Fame

P 2% SE 0k 44 N5k

« Dave Mills, Internet pioneer and
Inventor of the Network Time
Protocol.

e Richard Heck, 2010 Nobel Prize
iIn Chemistry.

RICHARD F. HECK,
PROFESSOR EMERITUS


Presenter
Presentation Notes
In 2012, UD awarded 275 doctoral degrees and 911 master's degrees.
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NIVERSITY of DELAWARE

Innovating in leading
tech sectors

FingerWorks, a company started by
Electrical and Computer Engineering

Professor John Elias and UD alumnus
Wayne Westerman, developed the key

technology in the IPhone’s multi-touch
interface.

“The iPhone would not have been possible
without the engineering solutions of
Professors John Elias and Wayne N o
Westerman of the University of Delaware 2905$App|e/f\\\ﬁl§§7
who developed multi-touch sensing Fingerworks 2/ f&
capabilities” --- Steve Jobs’ biography 20074 HiPhone
TfﬁEIE K1 6EFEHNL X B MiPhoneFF i8]
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From my life in the past 30 years in USA, | do not see anything else is changed for
better, but only electronics has changed dramatically, in particular, communications
and computing devices.
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Electrical Engineering

[Communications Control Computers}

[~

Devices Algagrithms
1

Physics Matherhatics
Chemistry

Signal Processing

Communications

. . Radar and Sonar Biomedical
Signal Processing Signal Processing Signal Processing
Radar/Sonar imaging Medical imaging
<> <>
Fourier transform Radon transform and

Fourier transform



Communications and Math

A S AESLE
Analog Communications Digital Communications
1G 2G, 3G, 4G 2 5G

Complex analysis

Differential equations (€D), |
Linear algebra Transmitter é ' Receiver

> s, p(t—nT)

"

How to design these signals How to design them How to receive them
to be transmitted waveforms

Probability theory
Modern algebra Real analysis Statistics
Combinatorics Functional analysis Linear algebra
Geometry Harmonic analysis
Algebraic geometry Numerical analysis
Number theory A hot topic in 5G now

Algebraic number theory It is YOU to design both of transmitter

and receiver: Math plays a perfect and
truly useful role here



UNIVERSITY ofDELAWARE

VIFRFE RIAGETE

Elementary Math and Modern Communications

B A &9 Rz S T=E Discrete Fourier Transform
(DFT)
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o ﬁi?%ﬁ: zﬁ‘l’iﬁf}:{ Channel: linear convolution
y(n) = h(0)x(n) + h()x(n—=1) +---+ h(L-1)x(n - L)

o IMAECP J5 &KIEERBRIBHER

After removing the CP, it becomes circular convolution
y(n) =h(n) ®x(n)

« DFT 50FDM

DFT
DFT(h(n)® x(n)) = DFT(h(n)) e DFT(x(N))
OFDM

Y (k) =H (k)X (k)
o PEN LLEE: AG/LTE M WIFi

-—
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P

Question:

»
|fﬁ %‘ﬁzg E(J refer to my paper on

Discrete Chirp-Fourier Transform
(DCFT)

IEEE Trans. on Signal Processing, Nov. 2000.
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Digital Communication System Block Diagrarrll_

— 1 transmitter

|
|
: |
. | I
cbmprestion error | : ‘Emaryta: digital
SN | correction i omplex| to
Speech 01101 |coding ! , [napPingj analog
Image 0001111100011 (] x(t)
Video | I I
|
: ! |
! | !
! | |
! | !
decompresgion error ! l binaryto: analog
< correctioft —complex to
Speech 01101 |decoding| I | demappihg digital
Image I : I e
Video 01011q1110001|bl 'y[n] y(t)
. I
' : I receiver

complex value to
complex value channel
V=EX+W

binary to binary
channel



Digital Modulation and Demodulation

Real data, such as speech/image/video, are collected and converted to binary sequences
00110100111000110101100110
01y f\Received

Binary sequences are mapped to complex numbers Value y
Received signal (the step of waveforms is skipped): @

y=X+w P X is |
where x is a transmitted value and takes one of ’ 10 and thus
1,i, -1, -i called a signal constellation (QPSK) represents
and w is the noise 01

How to decide what x is and what x represents?
® The half of the minimum distance between any two constellation points
on the complex plane is the tolerable level of noise

A signal constellation design: to find a finite set of a fixed number of complex numbers
with a fixed sum of all the norms such that its minimum distance is maximized.
= This is related to sphere packing: how to design 6 or more points is still open and
it is conjectured that the equilateral triangular lattice points are optimal

(this was shown asymptotically) ﬁ



Error Correction Coding

O How to correct binary errors? This leads to error correction coding
= The simplest error correction coding: repetition code
1->111; 0->000
Assumed 111 is transmitted but 101 is occurred at the receiver

111
101->111: also compare the distances with the two codewords 111 and 000
find the one that is the closest to the received 101
000
= The distance between binary codewords is called Hamming distance
=" The decoding is also the minimum distance decoding
= This simple code can correct one error but needs to expand three times
NOT a good code (code rate 1/3)
O In practice, one prefers to simple encoding/decoding > This leads to linear codes
x=Gs where s is a binary information vector, G is a binary encoding matrix called
generator matrix, and x is a binary codeword

0 Hamming code: input 4 bits, output 7 bits (code rate is 4/7)
minimum Hamming distance 3

correct one bit error

O Can we do better?? (The above arithmetics are over the binary field)

o r kB O O O Bk

- O B O O +— O

P b O O Frkr O O

P P PP O O O




Finite Fields: A Perfect Application

o Inthe binary coding x=Gs, the generator matrix G has less choices if all the elements
in G are binary, for a fixed rate
* How to include more choices for G?
* Toextend the componentsin G from binary to multi-ary
* The linearity Gs is still kept for easy encoding and possibly easy decoding
0 * For the decoding, not only the multi-ary elements form a ring but also need

( ) division, i.e., they need to form a domain, for convenience, a field.
o

1 _ * For computational benefits, the multi-ary elements are represented by

1 binary vectors

1 * The question becomes: how to construct fields for binary vectors of a fixed size
m:

Galois field GF(2™)

It can be understood that a finite field is to define addition/subtraction and
multiplication/division for binary vectors

How to divide two binary vectors? use polynomials and modulo operation

0 1 is linear in terms of 4-ary operations
1) \1)][(1)] is NOT linear in terms of binary operations
5 |
0 [J 0 its rate is 2/3 if it is treated as 4-ary arithmetics
its rate is 4/3 if it is treated as binary and clearly fails the decoding
1 1 _[J_ l.e., it isimpossible in the binary case
1 1 —>more possible valid code generator matrices G



Reed-Solomon Codes (RS Codes)

O Let a be a primitive element of GF(2™) for a positive integer m (it is a non-zero binary
vector of size m: for example, [0,1,0, ..., 0]7)

O An (n,k) RS code (1960) has the following generator matrix with n=2" — 1

N

a
2

a
0[3

1 a"

oD

partial Vandermonde matrix

Its minimum Hamming distance is n-k+1 that is optimal for (n, k) linear codes

O RS codes are used in all computer memory and hard drivers, and also in many
other communications systems: One of the most useful and famous

error correction codes

O Reed received his Ph.D. in mathematics and was a USC professor (passed away in 2012)
He has another famous code: Reed-Muller codes, where the concept of

majority decoding was first used



Multiple Antennas (% K28 R 4t)

0 What we talked before is for single antenna: (1) T

time/HJ [A]
O What to do for multiple antennas ? 4G, 5G, ... () T
1

= |Instead of designing a set of finite complex scalar
values, such as, 1, i, -1, -i, to maximize its minimum x2(t) T
distance, we need to design a set of matrices called
a space-time code (STC) such that its minimum
absolute value of the determinates of the difference

matrices of any two distinguished matrices in the set XN.(t) T
is maximized, when the total energy is fixed:

space/ = |H]

X (L) ={Xq, X;,--- Xy 0 X; = X are N x N matrices with HX,HZF =N fori= j}
dy i, =min{ldet(X, - X ;)|:0<i= j<L-1}
The goal is to

max{d, .}

When N=2 and L<6, the optimal 2 by 2 STC can be easily obtained by using
2 by 2 orthogonal matrices with spherical packing points
When L=6, it does not hold anymore



) UNIVERSITY ofDELAWARE

Bits to complex number mapping

Every time slot 00 01 11 10

One Tx antenna 1 i 1 [

1st Tx antenna

0 | /
o \
2nd Tx antenna

[EEN

Every two time slots ( 0 (_1 o] [0 1
Two Tx antennas 01 0 -1 10

1sttime slot 2" time slot



Optimal 2 by 2 Code of Six 2 by 2 Unitary Matrices

Wang-Xia’04

O Let

d=-5/2++/22, a=+1-3d/8, b=4/(1-a?)/3
6, =2arccos(d/2—-a), 6,=2r-6,

{—a—bi b—bi} {—a+bi b+bi}
X, = X, =

—b-bi —a+hi —b+bi —a-hi
—a—bi —b+hi —a+bi —b-hi
X2: - - ’X3: - -
b+bi —a+hi b—bi —a-hi

_ Al012 __ ai6,12
X,=e™"°l,, Xe=—€"7"1,
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The best known 2 by 2
Unitary code of size 16
family and is a subset

of group of 32

from parametric code
elements.

el3m

Liang-Xia’02

L=



Another Way to Construct Space-Time Codes

Binary bits are first mapped to complex valued symbols Xiand these Xiare embedded
into an N by N matrix : Example, the well-known Alamouti code:

Xl X2
C=:X-= :scalars x;,X, €8
—-X,* X
2 1

XX = (x| +[x,| )1, foranyx and x,

O Use orthogonal designs (compositions of quadratic forms)
= This leads to orthogonal space-time codes

O Use cyclic division algebra
= This leads to non-vanishing determinate codes
= Heavily involve with algebraic number theory, such as cyclotomic fields



Information bits encoder

are mapped to ‘
' X, X
complex symbols 1 2

|
X; amuX;




Alamoutli Scheme: Fast ML
Decoding and Full Diversity

Signal Model:
Y=CA+W,




IY —CAJg=tr{(Y —~CA)" (Y —CA)}
—tr{Y "Y}-tr{y "CA- ATCY}+tr{AA"C" C}

, > Orthogonality:
2= for any values x, and X..
v" The cross term x,X, can be canceled and x, and x, can be

S || Y —CA 2= f,(x,)+ f,(x,)

v' X, and X, can be decoded separately:
min _=min f;(x) and min f,(x,)

(Xl,Xz)ES X]_ES ZES
v The decoding complexity is reduced from §§&Y
2|S | H




X Y, Y
, ijC C(Y,Y,) = (_; i]
2

_Xz X1

Y1

X, =Y,
_(Xz o yz)* (Xl - Y1)*
» Because of the orthogonality, B has full rank

(B(C,C)"B(C,C)= (%~ Y1 > +|% — ¥, )1,




General Size

" For 11 transmit antennas and k information symbols x1, X2, - , Tk, the
b § orthogonality CHC = (|x1|* + - - + |zx|*) I, provides
— Fast ML decoding:
: L
s 2
e - || Y -CA ||F=Zfi(37i)1
i=1
then the minimization can be done separately
min | 'Y-CA ||F—Zmlnf xi)

{II,IE,...,I;G)EAFE 'IEA

In this case, the decoding complexity of the left term is |A|k. and that of
the right term is k|.A|.

— Full diversity:

(B(C,C)N)(B(C,C") = (|1 —yil> + -+ + |z — y|)




e Motivated by the Alamouti's scheme, Tarokh-Jafarkhani-Calderbank (1999)

proposed space-time block codes from orthogonal designs for any number of

transmit antennas.

— Real orthogonal designs for real constellations, such as PAM.

— Complex orthogonal designs for complex constellations, such as PSK and
QAM.




‘ Space-Time Block Codes from Real Orthogonal Designs I

e A real orthogonal design in variables 1. x5, - , T isap X n matrix C
such that:
— The entries of C are +x1, +x2, - - - , £x}, or their linear combinations

of real coefficients.

-CTC =z +a5+ - +a2)l,.
e 71 is the number of transmit antennas.
e 7 is the time delay in the en/decoding.

e [ is the number of information symbols transmitted.



e The rate of C is defined as R = k/p, which means that p transmission time

slots carry £ information symbols.

— For a given delay p, one wants k as large as possible to have the throughput
(or transmission rate) as large as possible.
— ltis not hard to prove that It < 1,ie., k < p.

Its proof Is given In next slide.
e For agiven n, a small delay p is also desired.

For L=2 transmit antennas:
k=p=2

Rate R=k/p=1




ARGORREICEH R<1ie,k<p
Let C =Zk:Aixi,where A,1=12,..,k,are

real pxn real constant matrices. Consider the
first column of C, (C),:

(C), = Zk:(A)lxi, where (A ), are the first

columns of A.Due tothe orthogonality of C,
k

(C)i (C), =D [x| " Thus

i=1
(C),(C),=0 < x =0,i=12,.,k.
This proves that vectors (A),,1=12,...,k, of
size px1are linearly independent. T here
are at most p linearly independent vectors
In p dimensional space, sok < p.




e For 4 transmit antennas:

] Lo £ L
—dLo Iy —dy L=
Ly =
—.I'3 Iy 1 —.Ir'2
—.L —.r £ £
i 4 3 2 1 |

— Number of transmit antennas n = 4
— Aj — 'li"j — —1
- Rata R=Fk/p=1
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‘ Hurwitz Matrix Equations I

e The real orthogonal space-time block code design is equivalent to the design

of real matrices satisfying the Hurwitz matrix equations:
— Write C'as C' = Ayxy + Agxo + -+ - + Apxp, where A, are some
p X n real constant matrices and x; are indeterminates.

— Then, the orthogonality is equivalent to the following Hurwitz matrix

equations:

ATA; = ILforl <i<k
ATAj+ATA; = Opforl <i#j<k.



‘ Composition of Quadratic Forms I

e The orthogonality is also equivalent to the following [k,n,p] composition

%

formula:

(@24t )R 4 ) = e 2

where X = (z1, - ,xp)andY = (y1.- - .y, ) are systems of

indeterminates and each z; = z;(X,Y) is a bilinear formin X and Y.

o View X.Y, Z as column vectors. Then Z = ('Y and (' is a p X n matrix

whose entries are linear forms of X . Then
(224 - +a)WY'y=2"Z=Y"C'CY.
e Since Y consists of indeterminates, the above equation is equivalent to

CTC = (xf+ - +a3)1,.




‘Mathematical Historical Backg rnund.

e 7-square identities — [:-‘1, 1. n] composition formula, (p = k =

— Complex numbers: o = &1 + 12 and [ = y1 + 12 then
|82 = |af|?:

(27 +x3)(y] + 93) = 21 + 23,

where 2y = x1y1 + Tolyg and zo0 = 1Yo — Tal].

n)



s

— Quaternionic numbers (Hamilton's quaternions 1843) — Euler's formula
(1748): 1 + w21 + x3) + w4k:

2 2 2 2 2 2 2 2
(i +ay+ oy +ay)(yy +yz +y3 +yi) =2

where

Z1 = I1Yy1 + T2Yy2 + T3Y3 + T4Y4
Zg = T1Y2 — X2Y1 + T3Yq — TaY3
zZz = I1Y3 — T2lYyq4 — T3Y1 + T4y

Z4 = I1Y4 + T2Y3 — I3Y2 — T4y




Legendre (1830) showed that 3-square identity is impossible.

8-square identity by Degen (1818) — Octonionic numbers — Cayley
numbers (1845), also Graves (1843).

Hurwitz (1898) showed that an n-square identity exists if and only if
n=1.,2.4,8, which is called “1,2,4,8 Theorem.’

Radon (1922) constructively showed that, an [p,n,p] formula exists over the

real field if and only if n < p(p), where p(p) is the Hurwitz-Radon

function defined as follows: if p = 24212y, for an odd pg and 0 < b < 3

then p(p) = 8a + 2°.

* This result implies that, for any transmit antenna number 711, there exist a degjg
p and ki = p such that the p X n real orthogonal design of rate 1 exists.

% For n-identities, k = n = p.

x n=p(p) =pifandonlyif p =n = 1,2,4, 8. This means that real n x

square orthogonal (' of n variables has and only has sizes 1, 2, 4, 8.




+* For a given transmit antenna number 1, the minimum time delay p is given

p = min 249,
where the minimization is taken over the set
{e,d 1 0<d<4,c>0and 8+ 2 > n}.

For example, Whenn = 2, pis 2; Whenn = 3,4, pis 4; When
n=>5.6.7.8, pis8; and soon.
AL, A2,..., An of sizePxK and B1, B2, ..., Bk of sizeP XN are two

families of Hurwitz matrices if and only if the following two C are real

orthogonal designs C = [Aix Ahx] where X = [x xk]
and C = B,x +---+B X, Two different representatlons

» There are n square Hurwitz matrices A1, A2, ..., An of size PX P by
using Clifford algebra with n < p(p) - k=p - rate=1
* There are p Hurwitz matrices B1, B2, ..., Bk of size pxn with

n< p(p)



The basic problem for real orthogonal designs or real space-time
block codes for PAM signals is solved.

— Hurwitz (1923) independently showed the above result for [k,n,n]
composition formulas over the complex field, where p = n, l.e., square

complex orthogonal designs as we shall see later.

— New proofs of the Hurwitz-Radon theory using representation theory of
Clifford algebra: Eckmann (1943), Lee (1948), Albert (1942), Dubisch
(19486).




— By relaxing the orthogonality of (' into the linear independency, i.e., full

rankness, Adams (1962) showed that the Hurwitz-Radon function bound
still holds for the size of matrix (' by using the Chern class over the vector

fields.

— Classic book: A. V. Geramita and J. Seberry, Orthogonal Designs,
Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and
Appl. Math. 45, Marcel Dekker, New York, 1979.

— A recent book: D. B. Shapiro, Compositions of Quadratic Forms, New

York, De Gruyter, 2000.

— Tarokh-Jafarkhani-Calderbank (1999) nicely linked it to the space-time

coding.



‘ Space-Time Block Codes from Complex Orthogonal Designs I

e A complex orthogonal design (Tarokh-Jafarkhani-Calderbank 1999) in

variables =1, T, - - , T is a p X n matrix (& such that:

— The entries of (+ are complex linear combinations of

Ty, T7,T,To, " , Tk, T;.
- GG = (|oy|2 + - + |zr ) .

e A generalized complex orthogonal design (Tarokh-Jafarkhani-Calderbank

1999) in variables 1, T2, -+ . Tk isa p X n matrix (G such that:
— The entries of (+ are complex linear combinations of
T1,T1,T2,T3, - Tk, Ty.

- GG = D, where D is an n x n diagonal matrix with (i, i )th diagonal
—_— 4 e



element of the form

Liglz|® + Liglaa? 4 - + ik lz]?,

where all the coefficients /; 1,1; 2,-- -, [; i, are strictly positive numbers.

This orthogonality also guarantees the fast ML decoding and the full diversity

as in the real case.
It is not hard to prove that It < 1,i.e., kK < p.

When the diagonal elements in matrix I) are the same, its equivalent

composition formula of quadratic forms becomes the [k,n,p] Hermitian

composition formula:
(1| + -+ |z (g ]® + - 4 lynl?) = 222+ -+ 2]

Hurwitz (1923) constructively showed: If p = n = 2 for an odd b, then
k<a+ 1landk = a + 1 can be achieved.



— |t was |later generalized by Wolfe (1976) to the amicable orthogonal

designs.

— It implies that the complex n X 1 square orthogonal (& of n complex
variables exists only when n = 1, 2, which is different from the real

orthogonal designs even by excluding the one of size 8. This implies that

the rate of a complex square orthogonal space-time code is less than 1 for

more than 2 transmit antennas.

— There is not much known in the literature for non-square complex

orthogonal designs (based on the communications with Shapiro).

— It constructively implies that the complex 4 x 4 square orthogonal (&' of 3

complex variables exists. The construction was explicitly re-given in
Tarokh-Jafarkhani-Calderbank (1999)'s paper. This implies that the rates

of complex orthogonal space-time codes for 3 and 4 transmit antennas

can be 3/4.




— From the amicable designs (the basic idea is similar to the Hurwitz's), the

optimal rates and constructions of square codes (p = n) are obtained:
* R=Fk/p=1whenn =1,2

* R=Fk/p=23/4whenn = 3,4

* R="Fk/p=1/2whenn =5,6,7,8

* R ="Fk/p=>5/16 when9 < n < 16

¥ R —+0asn — o0

~|— The rate 3/4 codes for 3 and 4 transmit antennas can be simplified as (a

few groups have presented in the literature):

1 I9 T3 0
—r5 I 0 i
(4 = _
ry 0 —x] To
0 x3 —x5 —x1

which is equivalent to the one given by Hurwitz in the 20's.




— Using the Hurwitz (1923) construction, the code rate is too small for more

than 4 transmit antennas.

— Half rate, i = 1/2, complex orthogonal space-time codes from rate 1
real orthogonal designs (Tarokh-Jafarkhani-Calderbank (1999)):

Gn

Ch

¥
“n,

where ('}, is arate 1 real k X n orthogonal design. Thus, GG, is: |
2k x n designofrate 1/2, ie., p = 2k.

— Space-Time Codes don't have to be square!




(ii) ATAFATA =0
BB, +B'B, =0,

(i)  A'B,=BIA
X0 X ) :i{'&i Re(x)+1B, Im(xi)}

=1

complex orthogonal design Iff
{Ai,Bi,i=1,...,k} I1s an Amicable design.







'@ Two Questions

¢ Can a non-square p by n complex
orthogonal design have rate 1, 1.e., k=p,
when n>2? If not, what is the bound?

¢ How to construct rate over 2 complex
orthogonal designs?




Rate Upper Bounds for Complex Orthogonal
Designs

> showed that their symbol rates, k/p, Is strictly
less than 1 for more than 2 transmit antennas.

> showed that their symbol rates, k/p, can not
be above ¥ when n>2, and conjectured that their symbol
rates are upper bounded by

For3and 4
transmit antennas

Rates L]
p 4

v first showed that % holds for n>2 when no linear
processing is allowed.

v showed that this conjecture holds when no linear
processing is allowed.
> showed that for a p by n generalized
complex orthogonal design, the rate is upper bounded by 4/5
when n>2.




Two Main Lemmas

if there exist diagonal positive definite matrices E;, i = 1,2, --- . n, such

that its associated matrices 4; and B;, : = 1. -- - , n, satisfy the following

conditions:

A7 Aj + B{B} = 6E;, A!B; +BiA; =0, BA; + A'Bf =0,
(2)

or equivalently,

H
A: B A; B i E; 0
. s . .. | T s e E (3)
B A3 B A 0 E

foralle, 7 =1,---,n, where §;; = lwheni = j and 4;; = U when
i= ],

In particular, { is a complex orthogonal design if and only if (2) or (3) holds
for B =1Tforl < i< n.



¢ Diagonalization Lemma (Wang-Xia): Let A and B be two p = k matrices
and satisfy conditions: A% A + B*B* =T and A% B + B¥ A = 0. Then,
there exist a unitary matrix V" of size p = p and a unitary matrix [7 of size

2k = 2k such that the p = 2k matrix (A, B) can be diagonalized as follows

[ Dy 0 0 0
0 Lie. 0 O
V(A.B)U=x 2 i , (4)
0 0 D, O

i\t] 0 0 D-’Jpxik

where b — s = 2k — p, Dy = diag( A, Ag, -+ AL

D, = diag(py. pig, - o ps) and A2 + pf =1,

1>M= \/’Fizpj =0,2,7=1,2,--- .5 k+ 5=k, and

v = rank( A, B) = k, and furthermare the 2k = 2k unitary matrix 7 has
the following form

where W, ¢ = 1,2, are k& = & matrices.




* (Wang-Xia’03) The above rate upper bounds hold for a
finite QAM (excluding PSK or PAM) signal constellation.

« (Liang 2003, Su-Xia-Liu 2004, Lu-Fu-Xia 2005)
constructed complex orthogonal designs with the above rates
and the constructions by Lu-Fu-Xia 2005 have closed-
forms.



%% Closed Form for COD

Self-Similarity
N Vv

Construct COD B, ,,, B,,; from B_




= Construction Unites for n=2k-1

P, xn COD, numberof nonzero complexvariablesisd,
p,, x1vector,same set of complex variables as B,

d,, x1vector,same set of complex variables as B,

. 0,,,xnCOD,Q, , =B,
numberof nonzero complexvariablesv, . <d

! Oan x1Vvector,Q, , =B,

same set of complex variables as Q,, ,
qm+1n XlCOD QOn — B

same set of complex variables as Qm,n




" A Theorem (Lu-Fu-Xia’05)

Theorem I Let | be a complex orthogonal design and has the form

| |
|
R
where (i) 1 and 1. have the same set of nonzero complex vari-
abdes; (i) 1, and 1, have the same =¢t of nonzero complex vari-

abdes; (iii) L and 1 do not share any common nonzers comp lex

variable. Then, the following |

T !:I'I'_'_ l cly :|

i= also a complex orthogonal design it & — ' — 0 = 0 is even.



Orthogonality among Units

B,()  B,(J) } i Bnu‘)} e o o
|B,(j) (-1)*B,() B,(j) -B,()

{ (i) Ql,nuq

(jln(J) _gn(l)

{Qmm(i) Qmﬂ,n(j)}

Quaan(§) = Qo (i)

B, (i) Ql,n(j)}
Q.. () -B,(@)

B0 Q.0 {ém,n(i) Qmﬂ,n(j)]

6m+1,n (J) o Qm—l,n (I)

Q. () —B,()

All the above matrices are COD




Orthogonal Property among Units

. B, (i) has the same structure of B, but the indices of nonzero complex
variables in B, (i) are from (i-1)d,+1 to id,, where d,, is the number of
nonzero complex variables in B,..

B, with d4 =3 B4( i)

Xgicn+1  Ksgicnye2  X3(in)+3 0

* *

X3(i—1)+2 _X3(i—1)+1 0 X3(i—1)+3

* *

X3(i—1)+3 0 o X3(i—1)+1 X3(i—1)+2

0 X3(i—1)+3 _X3(i—1)+2 _X3(i—1)+1




Inductive Construction for n+1 and

B.() B, (2 B.(3
B,(2 (-D)"B,® Q.4
" 1B,(®) -Q,(4) (-)*B,®
Q.4 BB -B(

. _[Bna) B, (2) }
" 1B,@ (-)'B,@

(1" Q.. (4) ] [(-1)"B, () |

5, - B, (3 5 - 8,2
—Bn(2) " Bn(g)

B, (1) | Q@)

Quun® Q@ Q.03 ] 0,0 Qe @) |
o _|9®@ “Quu® Quu® | o | Q@ o |7
Q@ -Quan® Q.. @ | Qun(® R B NN )
Qi@ Qun®  -Q,,( | —Quuan(4) | Quian (@) |




(@ Orthogonality for New Units

B.() B.(j) {Bmz(i) B (i) }
B,(J) (DB, (i) B...(J) (-1)“B,,,(i)

COD ?

B,() B, B,O (-1)*Q,,(8)
B,(2) (-)*B,() Q.4 B, (7)
B, -Q,(4) (-1)*B,) -B,(6)
Q.4 B, -8B B, (5)
B,(5 B,(6) B,(7) -Q.,(4)
B,(6) (-1)*B,(5) Q.06 (-1*'B,©
— 1B, ~0.® (DB.G) (1B,
Q.08 B,(7) -B,(®)  (-)"'B,(®)]

{Bnﬂ(i) B,...(J) }:
Bn+2(j) (_1)k§n+2(i)

COD




Rate Formula

(o ez = 3o + 0, (
$Omnez = O + 2000 + Qpoger M>0 (2K)!x [k + m(m+1)]
o = P JImaes = (k +m+1)!(k —m)!
( — v (2k —1)!

Vo2 =3Von +Vi, M (k+m)l(k —m —1)!
Winiz =Vaan T2V o Vo mM>0

\VO,n = dn

Vo,2k-1 K+1
Ro1 = = oK
Uo,2k1



Design Examples

20 H .
* |B(2) (1)8(1)

B0 B BE® | |% X %
. _|B@ CDBO QM) | |x, —x 0
1B -Q,(4) -)B@®| .
i 8 8o | |2 0 %
| Y11 1 1 i i 0 X, _Xz_




Design Examples

Xl
2

3

B_{BB(D B,(2) }_
"B (-)*B,@

5

6

X
X
0
X4
X
X
0

COD for 4 antennas
p=6,d=8 R=3/4




|
B

'—I.

o

B,() B(® B
B,(2) (-1)"B,() Q(4)

Bs (3) o 61,3 (4) (_1) ‘ §3 (1)
_Q1,3 (4) és 3) - |§3 (2)

|
B R

k¥ x| O o O

E'-i
=L

=
W ¥

COD for 5 antennas
p=15,d=10,R =2/3




Smaller Size COD for n=4l

n=2k-1,if kis odd, there exists one smaller (half) sizeCODB',,; than B,

B,() B, BB -Q,4
B,(2 -B,® Q.4 B,®
B,(3) -Q,(4) -B,(1) -B,(2
Q.4 B(3 -B( B®

, 1
P n+3 — E pn+3




B B2 BEB -Q@| [x
B(2) -B(1) Q.4 B® |
B(3) -Qu(4) -B(@M) -B(2)| |x,

0

Q1,1 (4) é1 (3) _ él (2) él (1)

COD from our design for 4 antennas: d=3,p=4,R=3/4
coincides with the existing one

Liang’s and Su-Xia-Liu’s: d=6,p=8,R=3/4




* A design example for n=8
transmit antennas.

* In this case, d=35, p=56.
 Rate =d/p=5/8

e This construction is inductive
for all n with closed-forms

 Liang’s and Su-Xia-Liu’s:
d=70,p=112, R=5/8
* These constructions do
not have closed-forms
and computer-aid or
manual help Is needed



COD Construction Comparison

Liang &Su-Xia-Liu Lu-Fu-Xia
d p d p Rate=d/p

1

>

1

1 1 1 1
2 2 2 2
3 4 3 4
6 8 3 4

10 15 10 15
20 30 20 30
35 56 35 56
70 35 56

Pl ]R
rlolnlelole|l@|N|o|als|w|N|R=
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%;ﬁ‘iﬁ Conclusion

’fjiélﬁ Binary field — Finite fields —— Complex number field

Algebra Algebraic number fields

—— Quaternionic numbers —— Octonionic numbers
UYL J\TCHA

Norm identities (Composition formulas)

HX ® yH = HXH HyH Perfect application
I at the transmitter side

Counting: T BLREMREL, %Wf@ﬁ*?ﬁﬁﬁﬂﬁ ©

count accurate%( e ra, count

YA Yelg
T % 2 LR

wayss  [xey[<[x]e]y]
nonaccurately is analysis, cannot count is
When dot is inner product, it is the Schwarz inequality topology/geometry
- matched filter (VCEC S #8) Optimal receiver
When dot is addition, it is the triangular inequality
When dot is multiplication, it is the norm inequality
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Algebra
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Typewritten Text
Analysis

Xiang-Gen Xia
Typewritten Text
count accurately is algebra,

Xiang-Gen Xia
Typewritten Text
count 

Xiang-Gen Xia
Typewritten Text
nonaccurately is analysis, 

Xiang-Gen Xia
Typewritten Text
cannot count is 

Xiang-Gen Xia
Typewritten Text
    topology/geometry

Xiang-Gen Xia
Text Box
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