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and its Fourier transform is shown in Fig. 5. Comparing with Fig. 3 
(J = 1) and Fig. 4 ( j  = 2), we see the approximalion is also good. 

At last, taking J = 0 and applying algorithm 2 (the algorithm in 
[9]), we obtain the initial value v:, which corresponds to the WS 
coefficients of f ( t )  in VO, as shown in Fig. 6. Comparing it with the 
above results ( J  = 0 in Fig. 3 and j = 1 in Fig. 4), one can see that 
the obvious aliasing occurred at high frequency (0.5 Hz). 

V. CONCLUSION 

In this work, the initialization from WS to DWT has been studied. 
We have formulated the problem and discussed methods for its solu- 
tion. Two algorithms for initialization have been proposed, which are 
more flexible and computationally efficient. They provide significant 
improvement in accurate approximation of WS coefficients over the 
Mallat algorithm [6] and the algorithm in [9], as shown in numerical 
examples. A basic prerequisite for the efficiency of our algorithms is 
that the sampling scheme must maintain the information of signal as 
much as possible. How to choose the best multiresolution subspace 
for initialization is an open problem in our algorithlms. 
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On Characterization of the Optimal Biorthogonal 
Window Functions for Gabor Transforms 

Xiang-Gen Xia 

Abstruct- Gabor transforms have been recognized as useful tools 
in signal analysis. It is known that the solutions for the biorthogonal 
analysis window function y ( t )  given a synthesis window function h(t)  in 
Gabor transforms are not unique in general. Among these solutions, the 
minimum norm solution has already been given by Wexler and Raz in 
the discrete-time case and has been studied by Janssen, Ron and Shen, 
and Daubechies et al. in the continuous-time case. The minimum norm 
solution in the discrete-time case was also proved to be equal to the most 
orthogonal-like solution by Qian and Chen. In this note, we consider 
a general optimal-solution problem, where the minimum norm and the 
most orthogonal-like solutions are two special cases. We prove that these 
optimal solutions in many cases are equal. We also prove that it remains 
true in the continuous-time case. 

I. INTRODUCTION 
Gabor transforms (or expansions) were first proposed by Gabor 

[l] to represent a signal in both the time and frequency domains. 
These have been attracting much attention recently, for example, in 
[2]-[16]. Let h( t )  be a synthesis window function so that 

t ~ ~ ~ , ~ g ( t )  = e--2K3math(t - np) (1.1) 

with n,/3 fixed and m , n  E Z forming a frame for L2(R) (see 
[5]-[ll]). Let s ( t )  be a signal; then 

where Cm,, are constants. Notice that the coefficients Cm,n in (1.2) 
are not unique in general, for example, in the case of np < 1. One 
way to find these Cm,n from a signal s ( t )  is to introduce an analysis 
biorthogonal window function y ( t )  so that 

G , ~  = J s ( t ) Y ~ , ~ o ( t ) d t ,  m 7 n  E z (1.3) 

where * means the complex conjugate. A relationship between the 
synthesis and the analysis window functions h( t )  and y ( t )  was 
established by Wexler and Raz [2] as 

1 y(t)h&,,,,,p(t)dt = a P L , o & , o ,  m, 7 ~ .  E Z. (1.4) 

Known as the Wexler-Raz identity [5], it was rigorously proved by 
Janssen [7] and was generalized by Daubechies et al. [5]. Again, 
notice that the solution y ( t )  in (1.4) given an h( t )  is not unique. 

The least squares choice for Cm,n in (1.2) can be represented 
[51-[111 by 

c ~ , ~  = J s ( t ) i L , , , p ( t ) d t ,  m , n  E z (1.5) 

where -7. = SLL,ph and Sh,cy,p is the frame operato1 
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The minimum norm solution of y(t) in (1.4) is denoted by y ( t ) .  
It was proved that i. = 9 by Janssen [7], Ron and Shen [11], and 
Daubechies el al. [5] using the generalized Wexler-Raz identity. In 
other words, the least squares solution is equal to the minimum norm 
solution. A different formulation for -i. was also found in [5]. We will 
see later, however, that the inversions of linear operators in L2(R) 
are needed. Wexler and Raz [2] and Qian and Chen [3], [4] recently 
studied discrete Gabor transforms, which can be described as follows. 

Let h[z] and y[i] be periodic discrete-time synthesis and analysis 
window functions with period L, respectively, so that 

L-1 

h[i  + m ~ ] ~ ~ ~ ~ ~ y * [ i ]  = S~,OS,,O, 

Z=O 

0 5 m 5 A N -  1, 0 5 n 5 A M -  1 (1.7) 

where M ,  N ,  AM, AN are positive integers, and 
w ~ A N z  ~ e2~nANz/L 

Then 

t = O  

hm,n [z] = h[i - mAM] WzANZ 
Y ~ , ~ [ z ] =  y[z -mAM]WzANz 

where A M  and AN are, respectively, the time and frequency 
sampling interval lengths and M and N are the numbers of sampling 
points in the time and the frequency domains, respectively, M . 
A M  = N .  AN = L, M N  2 L (or A M .  A N  5 L) .  When 
M N  = A M .  AN = L, it is the critical sampling case. Let 

p A M .  AN. (1.10) 

The relationship (1.7) between h[z] and y[i] can be reexpressed by 
the following matrix form 

HPXLY2Xl = P P X l  (1.11) 

where H p x ~  is a p x L matrix with its element at the ( m A M +  n)th 
row and the zth column defined by 

H(mAM + n, z )  = h[z + mN]WLnMz, 0 5 m < AN, 
0 5 n < AM,O 5 z < L (1.12) 

(1.13) 
(1.14) 

By a result in [9], the matrix HPx~ has full rank as long as 
the sequence h generates a discrete frame. In what follows, this 
is always assumed. Notice that, in the critical sampling case, i.e., 
p = AMAN = L, the solution of yLxl  in (1.11) is unique. In the 
oversampling case, i.e., p < L, y ~ ~ l  in (1.11) is not unique. The 
minimum norm solution q [ z ]  of (1.11), i.e., 

YLX 1 = (rl01, Y [ l I , .  . . > Y[L - 1IIT 
p p x 1  = (LO,. . . , o y .  

L-1 

was given by Wexler-Raz [2] as 

where means the complex conjugate transpose. Furthermore, Qian 
and Chen [3] proved that 9 ~ ~ 1  is also the most orthogonal-like 
solution of y ~ ~ l  in ( l . l l ) ,  as follows: 

T - 1  1 - 1  

min Iy[i] - h[i]/'. (1.16) 
t=O + f P X L Y ; ;  x l = l l p x l  i=O 

In this note, we consider the following general optimization 
problem 

T - 1  

where A is a constant L x L matrix. It is clear that, when A is 
the 0 matrix, the solution of the optimization problem (1.17) is the 
minimum norm solution, and when A is the identity matrix I, the 
solution of (1.17) is the most orthogonal-like solution. Let Y~ be 
the solution of the optimization problem (1.17). We will prove that 
yA = when the constant matrix A commutes with the L x L 
matrix H ~ ~ , , ( H ~ ~ ~ H ~ ~ , ) - ~ H ~ ~ ~ .  AS a special case, y A  = 
when A = a 1  for any constant a. In this case, the optimization 
problem reduces to 

L-1 

In other words, all the above optimal solutions for the analysis 
biorthogonal window functions for different constants a are equal 
to the minimum norm solution. 

When some of the eigenvalues of H p  L Hix are close to zero, the 
optimal solution + in (1.15) is not stable. Qian and Chen [4] used the 
singular value decomposition approach to handle this ill posedness. 
In this note, we use the regularization approach. With this approach, 
we are able to estimate the error of the regularized solution and the 
true solution. 

For continuous-time Gabor transforms, we will prove that the 
minimum norm solution ?(t) in (1.4) is also equal to the most 
orthogonal-like solution in (1.4). Specifically, 

where A is an operator on L2(R). See Janssen [8] for a study of A 
as the identity operator. 

This correspondence is organized as follows. In Sectkon 11, we 
discuss discrete Gabor transforms. In Section 111, we study continuous 
Gabor transforms. 

II. O m  BIORTHOGONAL WINDOW 
"ONS FOR DISCRETE GABOR TRANSFORMS 

In this section, we consider the optimization problem (1.17) where 
h[z] is given. There are an orthogonal matrix Q L ~ L  and an invertible 
lower triangular matrix Rpxp such that 

H P X L  = (R~X~,~~~(L-~))&LXL (2.1) 

where O p x ( ~ - p )  is the p x ( L  - p )  all-zero matrix. 

is equivalent to 
Let xA[i] = y[i] - (Ah)[i].  Then the optimization problem (1.17) 

L--1 

where vpxl  = p p x l  - HpXLA*hTXl and h ~ ~ l  = (h[O], . . . ,  
h [ ~  - 1 1 ) ~ .  The solution of (2.2) is the minimum norm solution 
of the system Hpx~(x~xl)* = q p x l ,  which is 

Therefore, the solution y A  for the optimization problem (1.17) is 
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When H ~ X L ( H p ~ ~ H ~ x L ) - l H p x ~ A ~  = A * H J x L  ( H p X ~  

H ~ t x L . ) - l H p x ~ ,  we check the expression 

H i x  L (Hp x L H i x  L)-l H p  x Lh; x 1 .  

By the form of H p  L in (1.12), hr 
Since Rpxp  is lower triangular, 

is the first column of HJ L .  

(2.4) hEx1  = Q L X L ( T I , I , O , . . . , O ) ~  t 

where ~ 1 , 1  is the element at the first row and the first column of the 
matrix R p x p .  By using (2.1) and (2.4), it is not hard to see 

HJx L (Hp x L Hix L ) - l  H p  x L hL x 1 

= &;xL(T1,l,o,. . . ,O)t = hE.<1. 

Going back to (2.3), we have proved the following theorem. 

solving the optimization problem (1.17) can be expressed by 
Theorem I :  The optimal biorthogonal window function -yA 

h , "X  1 1 * = H J X  L ( H P  x L HJx L 1- PP x 1 (2.5) 

when matrix A commutes with matrix H i x L  ( H p x ~  
as in 

HJX L ( ~ p  x L ~ , t ~  L 1-l ~p x LA* 
= A* H: x L ( ~ p  x L H: x L -' Hp x L. 

As a consequence of Theorem 1, the minimum norm solution 
(when A = 0) and the most orthogonal-like solutioln (when A = I )  
of (1.11) or (1.7) are equal. There are many cases of such a matrix 
A in Theorem 1 that are not trivial, i.e., A = a 1  for constants a. Let 

B i? H,'xL(Hpx~H~xL)-lHpX~ 
Then, B is Hermitian and can be diagonized by a unitary matrix 
U :  B = U'AU where A is a diagonal matrix. Thus, all matrixesA = 
UtAIU with diagonal matrixes A1 satisfy the condition in Theorem 
1, i.e., they commute with matrix B. 

Consider the case when some of the eigenvalues of the matrix 
H p x L  H J x  are close to zero. In this case, the inverse of HPxh H J x  
is unstable. This may occur when the synthesis window function 
h[i] has Gaussian shape. Qian and Chen [4] studied this problem by 
using the singular value decomposition method. We now want to use 
the regularization method. This method enables us to estimate the 
error between the regularized solution and the true solution, which is 
continuously dependent on the regularization parameter E .  

From Theorem 1, the optimal solution yA is of the form (2.5). We 
propose the following regularized solution: 

(yLAxi(t))* = H J X L ( H p x ~ H J x L  + EIppXp)-'ppxi (2.6) 

where t > 0 is an arbitrary constant and Ipxp is the p x p identity 
matrix. From [15], we have the following error estimate: 

(2.7) IlYLAX 1 (f) - ?LAX 1 It 5 c E 1 / 2  

where C is a positive constant. 

111. OPTIMAL BIORTHOGONAL WINDOW FUNCTIONS 
FOR CONTINUOUS GABOR TRANSFORMS 

In this section, we study optimal analysis biorthogonal window 
functions y(t) given a synthesis window function h ( t )  as in (1.4). 
Before going through the details, we first introduce some notations. 
For two signals f,g E L 2 ( R ) ,  ( f , g )  denotes the inner product of 
f and g in L2(R) in the usual sense. Tg,,,p denotes the following 
linear operator from L2(R) to Z2(Z2): 

T s , a , p f  = ( ( f , g m a , n p ) ) m , n t Z .  

TS*,O1,p denotes the dual of Tg,O1,p, which maps signals from Z2(Z2) 
to L2(R)as  follows: 

~;,,,pc = Cm,ngmm,np, for c = ( C m , n ) m , n t Z .  

m,n 

Let eo,o = ( C m , n ) m , n ~ ~  denote the sequence in Z2(Z2) where 
CO,O = 1 and Cm,% = 0 for other m,n. 

With the above notations, the Wexler-Raz identity (1.4) can be 
rewritten as 

Th,l/p,l/aY = aPe0,O.  (3.1) 

min / ~ r ( t )  1 2 c ~ t .  (3.2) 

The minimum norm solution problem is 

7 Th,l/@,l/a?'=apeO,O 

The solution 5 for (3.2) was found in 151 as 

-i = c\.PTh*, 1 / p ,1/ O1 (Th , 1 , p , 1 /e T,', 1 /p , 1 / a  1 - eo ,o . (3.3) 

Similar to discrete Gabor transforms discussed in Section 11, we 
consider the following more general optimization problem instead 
of (3.2): 

where A is an operator on L2 (R). Similar to the discussion in Section 
11, we reduce (3.4) into (3.2) by letting zA(t) = y(t) - Ah(t) , as 
follows: 

min / 1 z ~ ( t ) l 2 d t  (3.5) 
Th  1 / 8 , 1 / a x A = ' 7  

where 7 = ape,,, - ATh,l/p,l/O1h. The solution P A  for (3.5) is 

2 A a PT,', 1 /? , 1 / a  (Th , 1 / P,1 /aTh*, 1 /p, 1 / m  7.  

Therefore, the solution yA for optimization problem (3.4) can be 
formulated as 

y A  = P A  + A h  

= Ah - Th, 1 / p  , 1 / a  (Th, 1 /?, 1 / 01 Thr, 1 /PI 1 /e - Th, 1 /P , 1 / a  Ah 
+ OPT;, 1 /p , I  / a  (Th, 1 / p I /aTh*, 1 /p , I  / a  ) - e0 0 .  

It is clear that 

h = ho /p ,o / cx  = Th*,i/p,i/,eo,o. (3.6) 

When operator A commutes with operator T,',l/p,l/a 

easily see that 
(Th, 1 /p, 1 / 0 1  Ti ,  1 / p  ~ I / ) Th, 1 /I3 I 1 / a  3 by using (3.6) we can 

Ah - AT;, 1 /a, 1 /a (Th , I  / p, 1 / a  Th*, 1 / p  ~ 1 / a  ) - T h  , I  /P , 1 / a  0. 

This proves the following theorem. 

can be represented as 
Theorem 2: The solution - y A  for optimization problem (3.4) 

TA = abTl,i/p i / a ( T h b l / P , l / a T h + , i / p  i / ~ ) - l ~ o , O  (3.7) 

when operator A commutes with operator Ti,1Ip l / m  

(Th, 1 / P ,  1 /a 

Theorem 2 implies that the minimum norm solution 9 = yo 
( A  = 0) in (3.3) is also equal to the most orthogonal-like solution 
7' ( A  = I )  where I denotes the identity operator. Therefore, the 
least squares solution, the minimum norm solution, and the most 
orthogonal-like solution are equal. 

1 / p ,  1 / a  I-' Th, 1 / P ,  1 
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IV. CONCLUSION 

In this correspondence, we studied general optimal solutions for the 
biorthogonal analysis window functions given a synthesis window 
function in both discrete and continuous Gabor transforms. The 
common minimum norm solutions and the most orthogonal-like 
solutions are just two special cases. We proved that the optimal 
solutions in many cases are equal. 
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Analytical Formulae for Reconstruction of Certain 
Discrete Signals from Phase Level and Line Crossings 

Andrew E. Yagle 

Abstract- We provide simpIe and explicit formulae for reconstructing 
any member of a class of discrete-time signals from the frequencies 
at which its Fourier phase crosses any specific level of constant phase 
or a linear-phase line with integer slope, provided that the number of 
crossings equals the length of the signal support. Unlike previous closed- 
form solutions, solution of an ill-conditioned system of linear equations is 
not required. The associated uniqueness results reduce, in special cases, 
to previous results for reconstruction from Fourier transform real and 
imaginary part zero crossings. 

1. INTRODUCTION 
The problem of reconstructing a signal from its Fourier phase 

has been studied extensively over the last fifteen years. Reference 
[l] gives the basic uniqueness results for reconstructing a 1-D 
discrete-time finite-support signal from its phase, and two algorithms 
for this reconstruction were proposed. One algorithm was called’a 
closedTfom solution, although it required the solution of a large and 
ill-conditioned linear system of equations (see (2) below). The other 
was an alternating-projections (AP) algorithm, in which the support 
and given phase value constraints were altemately imposed in the time 
and frequency domains. This algorithm was deemed to be preferable 
to the first. 
In [2], another uniqueness result requiring a certain matrix to 

have full rank was obtained. In [3], a time-domain approach to 
reconstruction from specific phase values resulted in a Toeplitz-plus- 
Hankel linear system of equations. In [4], the closely related problem 
of reconstruction from one bit of Fourier phase (sign of the real 
part of the Fourier transform) was briefly discussed, and a solution 
procedure was verbally outlined. Segmentation of the Fourier phase 
was proposed in [3] and [5].  Extension to the 2-D case was made in 
[6] and [7], and the effects of noise were studied in [8]. A review of 
the dual problem of reconstruction of 2-D bandlimited signals from 
zero crossings can be found in [9]. 

The main application of reconstruction from phase is in blind 
deconvolution of an unknown symmetric or Hermitian blurring 
function to determine an unknown signal, when only the supports 
of both unknown functions are known [lO],[ll]. We briefly review 
this below. Other applications are listed in [3],[4], and [7]. 

Two main approaches have been proposed to reconstruct signals 
from their phase. One approach [1]-[3] requires the solution of 
a large and generally ill-conditioned system of linear equations. 
Serious problems can arise, however, due to long computation times, 
storage, access time, and roundoff error from poor conditioning of 
the problem. The other approach [1]-[ll] is to use an AP algorithm 
similar to the one proposed in [I]. Such algorithms are generally 
faster than solving the linear system of equations, but thousands of 
iterations may be necessary to obtain a good approximation to the 
solution. 
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