
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 20, Number 3, Fall 2008

CHANNEL IDENTIFICATION UNDER
DOPPLER AND TIME SHIFTS

USING MIXED TRAINING SIGNALS

XIANG-GEN XIA

Communicated by Charles Groetsch

This paper is dedicated with affection to Professor Zuhair Nashed.

ABSTRACT. Channel identification in the presence of
Doppler is not as well studied as the one free from Doppler due
to the difficulty caused from the time-varying characteristics
of the channel. In this paper, we present a method to identify
channels with both Doppler and time shifts using mixed
training signals. The training signals we use consist of two
parts, where one part is a constant and the other part is a
conventional training signal, such as a pseudo-random signal
or a chirp signal. These two parts in a training signal may
be separated either in the time domain or in the frequency
domain. The constant signal part is used to identify the
Doppler shifts and the other part is used to identify the time
shifts. We provide a necessary and sufficient condition on the
channel identifiability in terms of the time and Doppler shifts
when mixed training signals are used. It can be shown that
the condition holds almost surely in most cases of interest in
practice.

1. Introduction. Doppler and time shifts (or delays or spread) usu-
ally occur in wireless mobile communication systems with high speed
transmission, which often causes problems of channel impairments. Due
to the Doppler shifts of moving vehicles, the channel is usually modeled
as a time variant linear system and is not as well studied as a time-
invariant linear channel is. There has been a tremendous amount of
research on time-invariant linear system identification with both blind
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and non-blind (using training signals) methods1 This is, however, not
equally the case for time-variant linear system identification. Some
researches on this topic have appeared, such as [1-10], and increasing
attention has being paid mainly because of the need of wireless high
speed data communications.

In this paper, we focus on the problem of the channel identification in
the presence of both Doppler and time shifts by using training signals.
Specifically, the following channel model studied in [1] is used. Let x(t)
and y(t) be transmitted and received signals, respectively. Then

(1.1) y(t) =
Np∑
k=1

αkx(t − τk)ejωkt + n(t),

where αk, τk, and ωk are the path coefficient (complex-valued), the
time shift (real-valued), and the Doppler shift (real-valued) of the
kth multipath component in the channel, respectively, and Np is the
number of the total multipath components, and n(t) is the channel
additive noise. The Doppler shifts ωk ≈ 2vωc/c with the carrier
frequency ωc, the velocity v of the moving object, and the velocity c
of light. The channel identification here is to estimate the unknown
parameters {(αk, τk, ωk), 1 ≤ k ≤ Np} through knowledge of the
transmitted and the received signals x(t) and y(t) in (1.1). Most of
the existing methods for the channel identification are based on single
type training signals called pilot signals.

In this paper, we propose to use mixed training signals in the above
channel identification, which have two parts separated either in the
time domain or in the frequency domain. One part of the training
signal is a constant and the other part is a pseudo-random signal or
other type of linear time-invariant (LTI) channel identification training
signals, such as chirps. The constant part is used to identify the Doppler
shifts ωk and the other part is used to identify the time shifts τk. The
corresponding multipath coefficients αk are identified using both parts.
Note that not all channels in (1.1) can be identified with this approach.
A necessary and sufficient condition in terms of the Doppler and time
shifts on the channel identifiability is given. It turns out that almost
all channels (1.1) are identifiable with the approach proposed in this
paper in most cases of practical interest.

1 Since these methods are not used in this paper, they are not cited here.
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This paper is organized as follows. In Section 2, we present channel
analysis and mixed training signal analysis. In Section 3, we present a
necessary and sufficient condition for the identifiability. In Section 4,
numerical simulations are presented.

2. Channel and Mixed Training Signal Analyses. Let us first
analyze the received signal y(t) in (1.1). To analyze the identifiability,
for convenience we assume the additive noise n(t) in the model (1.1)
does not appear, i.e., n(t) = 0. Suppose the transmitted training signal
x(t) is a constant, say 1. Then (1.1) becomes

(2.1) y(t) =
Np∑
k=1

αkejωkt.

If all Doppler shifts ωk, k = 1, 2, ..., Np, are distinct, then, by taking
a discrete Fourier transform of a certain length for a segment of the
received signal y(t), all Doppler shifts ωk and multipath coefficients αk

may be detected. If there are duplications of the Doppler shifts ωk,
all the (distinct) Doppler shifts can still be detected with the method
above, but not all the coefficients αk. For instance, assume ω1 = ω2

and it is not equal to other ωk. Equation (2.1) becomes

(2.2) y(t) = (α1 + α2)ejω1t +
Np∑
k=3

αkejωkt.

In this case, only the sum α1 + α2 of the two coefficients α1 and α2

can be detected, which is not enough to detect their individual values
α1 and α2. However, the Doppler frequencies {ω1, ω2, ..., ωNp} are still
detectable.

Similarly the time shifts τk can be detected in the frequency domain
of (1.1) as follows. Taking the Fourier transform of (1.1) we have

(2.3) Y (ejω) =
Np∑
k=1

αkX(ω − ωk)e−iτk(ω−ωk),

where Y (ejω) and X(ejω) are the Fourier transforms of y(t) and x(t),
respectively. Suppose X(ejω) is a constant, say 1. Then
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(2.4) Y (ejω) =
Np∑
k=1

αke−iτk(ω−ωk).

If all time shifts τk, k = 1, 2, ..., Np, are distinct, all these time
shifts τk and the coefficients αk can be detected by taking an inverse
discrete Fourier transform of (2.4). Similar to the previous time domain
analysis, it is not possible to detect all the coefficients αk when not all
the time shifts τk are distinct. Consider a training signal x(t) that
has two parts either separated in the time domain or in the frequency
domain.

When x(t) has two parts separated in the time domain, it has the
following form:

x(t) =
{

x0, T0 < t < T1,

x1(t), T1 < t < T2,
(2.5)

where x0 is a nonzero constant and x1(t) is a conventional pseudo-
random signal or the delta pulse, i.e., its Fourier transform X1(ejω)
is a constant (flat). In the detection, these two parts are processed
separately.

When x(t) has two parts separated in the frequency domain, it has
the following form:

(2.6) x(t) = x0 + x1(t)ejω0t,

where x0 and x1(t) are as in (2.5) and ω0 is a frequency shift. In this
case, the received signal y(t) is first filtered by using a lowpass filter to
extract the constant part x0 and a bandpass filter to extract x1(t). We,
however, do not want to filter out other information in y(t). Therefore,
the frequency ω0 needs to be at least greater than all the Doppler shifts
ωk, i.e.

(2.7) |ω0| > |ωk|, k = 1, 2, ..., Np.

In what follows, for convenience we use the training signal in (2.5),
i.e., the two parts are separated in the time domain. Without loss of
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generality, for simplicity we assume that the two part information is
available at the same time interval, for example, [0, T ], and

(2.8) y1(t) =
Np∑
k=1

αkejωktx0, t ∈ [0, T ],

and

(2.9) y2(t) =
Np∑
k=1

αkejωktx1(t − τk), t ∈ [0, T ].

The goal here is to identify the unknown parameters {(αk, τk, ωk), 1 ≤
k ≤ Np} from the above equations (2.8) and (2.9). In the following, we
also assume that the sampling interval length of the received signals
y1(t) and y2(t) is small enough so that all the distinct Doppler shifts
ωk in (2.1) and the distinct time shifts τk in (2.4) can be detected by
using the discrete Fourier transform (DFT) and the inverse discrete
Fourier transform (IDFT) as discussed above. Since these two sets of
distinct Doppler shifts and time shifts are obtained from two different
DFT and IDFT, their orders and their corresponding coefficients αk

may be different, which may cause an identifiability problem. To study
this problem, we first have the following straightforward result.

Theorem 1. Let x(t) be a training signal with the two parts as
described above. If either all the Doppler shifts ωk, 1 ≤ k ≤ Np, or
all the time shifts τk, 1 ≤ k ≤ Np, are distinct, then the unknown
parameters {(αk, τk, ωk), 1 ≤ k ≤ Np} are detectable by applying the
DFT in the time domain and the IDFT in the frequency domain to
the two parts of the received data corresponding to the two parts of the
training signal, respectively.

Proof: Without loss of generality, we assume ωk, 1 ≤ k ≤ Np, are
distinct. Thus, αk, ωk, 1 ≤ k ≤ Np, can be detected with the correct
order. Since τk, 1 ≤ k ≤ Np, may have repetitions, only the linear
combinations of αk from the IDFT of (2.9) and the corresponding τk

can be detected. Form the detected αk, 1 ≤ k ≤ Np, from (2.8), the
corresponding τk with the same order of αk and ωk can be determined
by checking the linear combinations of the detected αk.
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In the following section, we want to present a necessary and sufficient
condition on the identifiability of {αk, ωk, τk}.

3. Necessary and Sufficient Condition on the Identifiability.
In this section, we first present a necessary and sufficient condition and
then study the probability that the condition holds.

3.1 Necessary and Sufficient Condition. Since the Doppler shifts
ωk, 1 ≤ k ≤ Np, and the time shifts τk, 1 ≤ k ≤ Np, only take
finite possible values, such as in Hz and μs, respectively, they may have
repetitions. In other words, ωk1 (or τk1) may be equal to ωk2 (or τk2)
for k1 �= k2. Therefore the identifiability problem now arises from the
possible duplications of the Doppler shifts ωk and the time shifts τk as
discussed in (2.2).

Although individuals of ωk and τk may have repetitions, the pairs
(ωk, τk), 1 ≤ k ≤ Np, do not have a repetition and otherwise the
duplicated pairs (or multiple paths) may be grouped together into a
single term (path) in (1.1). Therefore, in what follows we always assume
that all the pairs (ωk, τk), 1 ≤ k ≤ Np, are distinct, i.e., if ωk1 = ωk2 ,
then τk1 �= τk2 ; and if τk1 = τk2 , then ωk1 �= ωk2 .

A general setting of the repetitions of ωk and τk is as follows. Let
I1,..., If be a partition of the integer set

I Δ= {1, 2, ..., Np}

such that all the Doppler shifts ωk for k ∈ Il for any fixed l are equal,
i.e.,

(3.1) ωk = ω̃l for all k ∈ Il,

but ωk in different Il are different, where “partition” means any two
sets Il1 and Il2 for l1 �= l2 do not intersect, i.e., Il1 ∩ Il2 = φ for l1 �= l2,
and the union of all Il is the integer set I, i.e.,

f⋃
l=1

Il = I,
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and each set Il is not empty. Let J1,..., Jg be another partition of the
integer set I such that all the time shifts τk for k ∈ Il for any fixed l
are equal, i.e.,

(3.2) τk = τ̃l for all k ∈ Jl.

We use |S| to denote the cardinality of a set S. Since all pairs (ωk, τk),
k = 1, 2, ..., Np, are distinct as assumed before, the intersection of any
set Il1 and any set Jl2 has at most one element, i.e.,

(3.3) |Il1 ∩ Jl2 | ≤ 1,

but τk in different Jl are different,

Similar to the discussion in (2.2), the following summations can only
be detected from the DFT of y1(t) in (2.8) and the IDFT of the Fourier
transform Y2(ejω) of y2(t) in (2.9):

∑
k∈Il

αk = βl, 1 ≤ l ≤ f,(3.4)

∑
k∈Jl

αk = γl, 1 ≤ l ≤ g,(3.5)

where βl and γl are the detected values, and the two partitions {Il1} and
{Jl2} are not known. The identifiability of {(αk, τk, ωk), 1 ≤ k ≤ Np}
is then reduced to the solvability of these equations (3.4)-(3.5) with
unknown partitions {Il1} and {Jl2}. The following is a necessary and
sufficient condition for the identifiability.

Theorem 2. The parameters {(αk, τk, ωk), 1 ≤ k ≤ Np} are
uniquely determined using the above mixed training signal model if and
only if there does not exist any path k, 1 ≤ k ≤ Np, such that both the
kth Doppler shift ωk and the kth time shift τk have their repetitions.

A necessary and sufficient condition in Theorem 2 can be stated in the
following mathematical way: there do not exist three distinct integers k,
k1, and k2 such that ωk = ωk1 and τk = τk2 . The proof of the necessary
part of Theorem 2 is in the Appendix. To prove the sufficiency part,
we need the following result.
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Lemma 1. There does not exist any path k, 1 ≤ k ≤ Np, such
that both the kth Doppler shift ωk and the kth time shift τk have their
repetitions if and only if there are two subsets I and J of {1, 2, ..., Np}
such that their union is I, that is, I ∪ J = I = {1, 2, ..., Np}, and all
the Doppler shifts ωk for k ∈ I are distinct in the set of all ωk for
k ∈ {1, 2, ..., Np} and all the time shifts τk for k ∈ J are distinct in the
set of all τk for k ∈ {1, 2, ..., Np}.

Proof : We first prove the necessity part. Let F = {l1 : 1 ≤
l1 ≤ f and |Il1 | > 1} and Ic = ∪l1∈F Il1 and G = {l2 : 1 ≤ l2 ≤
g and |Jl2 | > 1} and Jc = ∪l2∈GJl2 . By the condition, Ic and Jc don’t
intersect, i.e., Ic ∩ Jc = φ. Let I and J be the complementary sets of
Ic and Jc of {1, 2, ..., Np}, respectively. Since all ωk, for k ∈ I, and all
τk, for k ∈ J , are distinct, by Ic ∩ Jc = φ we have Jc ⊂ I and Ic ⊂ J .
Therefore, I ∪ J = {1, 2, ..., Np}.

We now prove the sufficiency part. Assume that there exist three
distinct integers k, k1, and k2 such that ωk = ωk1 and τk = τk2 . Then,
the integer k will not be in any integer sets I and J as described in the
lemma, i.e., I ∪ J �= {1, 2, ..., Np}.

Lemma 2. If there are two subsets I and J of {1, 2, ..., Np} such
that their union is I ∪ J = {1, 2, ..., Np}, and all the Doppler shifts ωk

for k ∈ I are distinct in the set of all ωk for k ∈ {1, 2, ..., Np} and
all the time shifts τk for k ∈ J are distinct in the set of all τk for
k ∈ {1, 2, ..., Np}, then {αk, ωk, τk}, k ∈ {1, 2, ..., Np}, can be uniquely
determined.

Proof : Two sets of coefficients βk from (2.8) and the DFT and γk

from (2.9) and the IDFT can be solved. By the condition in the lemma,
it is known that αk = βk for k ∈ I and αk = γk for k ∈ J . Since
I ∪ J = {1, 2, ..., Np}, all the αk can be detected. The rest is the same
as the proof of Theorem 1 by checking the linear combinations of αk

for the order determinations of ωk and τk.

The sufficiency part in Theorem 2 is a consequence of Lemma 1 and
Lemma 2. From Theorem 2 and Lemma 1, it is immediate that the
condition in Lemma 2 is also necessary, i.e., the following corollary



CHANNEL IDENTIFICATION 401

holds.

Corollary 1. The parameters {αk, ωk, τk}, k ∈ {1, 2, ..., Np}, can be
uniquely determined using the mixed training signal model if and only
if there are two subsets I and J of {1, 2, ..., Np} such that their union
is I ∪ J = {1, 2, ..., Np}, and all the Doppler shifts ωk for k ∈ I are
distinct in the set of all ωk for k ∈ {1, 2, ..., Np} and all the time shifts
τk for k ∈ J are distinct in the set of all τk for k ∈ {1, 2, ..., Np}.

3.2 Probability Analysis. In the following, we access the probability
of channel identifiability in the case of four paths, i.e., for the conditions
in Theorems 1-2 to hold, when Np = 4. The condition is in terms
of the Doppler and time shifts ωk and τk. Since in practical digital
processing, these Doppler and time shifts are quantized to finite values.
For convenience, we assume that there are total Md possible different
values of the Doppler shifts and total Mt possible values for the time
shifts. In other words, each ωk may take one of Md different values

(3.6) Drange = {vd,1, vd,2, ..., vd,Md
},

and each τk may take one of Mt different values

(3.7) Trange = {vt,1, vt,2, ..., vt,Mt}.

For example, Drange = {−50Hz,−49Hz, ..., 50Hz} and Trange =
{0μs, 1μs, ..., 100μs}. The two numbers Md and Mt can be determined
when the Doppler spread width fm and the rms time spread width στ

are known for a given channel.

As we mentioned earlier, we have a sufficient condition in Theorem
1 and a necessary and sufficient condition in Theorem 2. These
two conditions coincide for Np = 1, 2, 3. Although the probability
expressions for the conditions in Theorems 1-2 to hold for a general Np

are complicated, in the following we calculate them when Np = 4.

Clearly, the total number of all distinct Np pairs of (ωk, τk) is

(3.8) Ptotal =
(

MdMt

Np

)
.



402 X. XIA

We first consider the condition in Theorem 1, i.e., either all ωk for
1 ≤ k ≤ Np or all τk for 1 ≤ k ≤ Np are distinct. By some calculations,
it is not hard to see that the total number of such Np pairs (ωk, τk) is

(3.9) P1 =
(

Md

4

) (
Mt

1

)
+

(
Md

4

) (
Mt

2

) [
4!

1!3!
+

4!
2!2!

+
4!

1!3!

]

+
(

Md

4

) (
Mt

3

) (
3
1

)
4!

1!1!2!

+
(

Mt

4

) (
Md

1

)
+

(
Mt

4

) (
Md

2

)[
4!

1!3!
+

4!
2!2!

+
4!

1!3!

]

+
(

Mt

4

) (
Md

3

) (
3
1

)
4!

1!1!2!
+

(
Mt

4

) (
Md

4

)
4!.

Therefore, the probability is

(3.10) Probability (either all ωk for1 ≤ k ≤ Np or all τk

for 1 ≤ k ≤ Np are distinct) =
P1

Ptotal
,

where Ptotal is defined in (3.8) with Np = 4 and P1 is defined in (3.9).

The total number of pairs (ωk, τk) that satisfy the necessary and
sufficient condition in Theorem 2 is

(3.11) P2 =
(

Md

4

)
M4

t +
(

Md

3

) (
3
1

)(
Mt

2

)
M2

t

+
(

Md

2

) [(
Mt

2

) (
Mt − 2

2

)
+

(
2
1

) (
Mt

3

)
Mt

]
.

Therefore, the probability for the condition in Theorem 2 is

(3.12) Probability (the necessary and sufficient

condition in Theorem 2 holds) =
P2

Ptotal
,

where Ptotal is defined in (4.3) with Np = 4 and P2 is defined in (4.6).
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To compare the above two probabilities, their corresponding curves
are plotted in Fig. 1, where we set Md = Mt and the x-axis indicates
the variable Md, which is from 4 to 101. One can clearly see that the
probability for the necessary and sufficient condition in Theorem 2 is
above the one for sufficient condition in Theorem 1. When the total
numbers Md and Mt of the possible Doppler and time shifts are large
relative to the total number Np of multipath components in a channel,
the necessary and sufficient condition in Theorem 2 holds almost surely,
i.e., the probability is very close to 1.

4. Numerical Simulations. In the following simulations, we use
Np = 4, and

ωk

2π
∈ Drange = {−50Hz,−49Hz, ..., 50Hz}, k = 1, 2, 3, 4,

and

τk ∈ Trange = {0μs, 1μs, ..., 100μs}, k = 1, 2, 3, 4.

The Doppler and time shifts ωk and τk for k = 1, 2, 3, 4 are randomly
chosen from the above sets Drange and Trange, respectively, such that all
pairs (ωk, τk) for k = 1, 2, 3, 4 are distinct. The multipath coefficients
αk for k = 1, 2, 3, 4 are randomly chosen from Gaussian random
processes with all possible real values.

For the first piece y1(t) of data, the sampling rate is chosen as
1/T = 128, i.e.,

(4.1) y1[l] = y1(l/128) =
Np∑
k=1

αkejlωk/128 +n1(l/128), −63 ≤ l ≤ 64.

For the second piece Y2(ω) of data, the sampling rate is chosen
1/T = 128/(2π), i.e.,

Y2[l] = Y2(2πl/128) =
Np∑
k=1

αkejl2πτk/128 + n2(2πl/128),(4.2)

0 ≤ l ≤ 127.
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Fig. 2 shows the curves of the ratios of the mean square errors (MSE)
of the true ωk, τk, and αk, and their detected values over their mean
powers. The x-axis is the ratios of the mean powers of the multipath
coefficients αk over the variance of the additive noise ni, i = 1, 2, in
(4.1-4.2). In Fig. 2, 10000 Monte Carlo simulations are implemented.

5. Conclusions. In this paper, we proposed a channel identifi-
cation algorithm using a mixed training signal, where the channel has
both the Doppler shifts and time shifts. The mixed training signals
consist of two parts with one part constant and the other part a con-
ventional training signal, such as a pseudo-random signal. These two
parts of the signals may be separated either in the time domain or in
the frequency domain. The constant part can be used to detect the
Doppler shifts while the other part can be used to detect the time
shifts. Both parts are used to detect the corresponding coefficients
and the synchronization between the detected Doppler and time shifts.
A necessary and sufficient condition was given for the channel identi-
fiability based on the mixed training signal approach. A probability
analysis for the identifiability was presented. It turns out that almost
all channels of practical interests are identifiable. Finally, some simple
numerical examples were presented.

Appendix: The Necessity Proof of Theorem 2 The linear
equations in (3.4 - 3.5) can be expressed by the following matrix form:

(5.1) A

⎡
⎣

α1
...

αNp

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β1
...

βf

γ1
...

γg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where A is an f + g by Np matrix with only 0 and 1 entries as follows
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1
...

af

b1
...

bg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where al = (al(k))1≤k≤Np , 1 ≤ l ≤ f , with

al(k) =
{

1,if k ∈ Il,

0,otherwise,

bl = (bl(k))1≤k≤Np , 1 ≤ l ≤ g, with

bl(k) =
{

1,if k ∈ Jl,

0,otherwise,

where |Il1 ∩ Il2 | ≤ 1 for 1 ≤ l1 ≤ f and 1 ≤ l2 ≤ g. Clearly
the identifiability or the solvability of {αk, ωk, τk} implies that the
expression (5.1) of the vector (β1, . . . , βf , γ1, . . . , γg)T for (3.4 - 3.5)
is unique. Thus, to prove the necessity in Theorem 2, we need to prove
that the constraint |Il1 ∩ Il2 | ≤ 1 and the uniqueness of the expression
(5.1) for (3.4 - 3.5) implies the condition in Theorem 2.

Suppose the condition in Theorem 2 does not hold. In other words,
there are three distinct integers k, k1, k2 such that ωk = ωk1 and
τk = τk2 . In the following, we prove that the expression (5.1) for (3.4 -
3.5) is not unique. Without loss of generality, we assume k < k1 < k2.
Then there exists the following submatrix A0 in the matrix A:

A0 =

⎡
⎢⎣

0 0 1
1 1 0
1 0 1
0 1 0

⎤
⎥⎦ .

Consider the subsystem of (5.1):

A0

⎡
⎣ αk

αk1

αk2

⎤
⎦ =

⎡
⎢⎣

βf1

βf2

γg1

γg2

⎤
⎥⎦ .

Consider
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U =

⎡
⎣ 1 0 −1

0 0 1
0 1 1

⎤
⎦ and U−1 =

⎡
⎣ 1 1 0

0 −1 1
0 1 0

⎤
⎦ .

Let

Ā0 = A0U =

⎡
⎢⎣

0 1 1
1 0 0
1 1 0
0 0 1

⎤
⎥⎦

and

⎡
⎣ ᾱk

ᾱk1

ᾱk2

⎤
⎦ = U−1

⎡
⎣ αk

αk1

αk2

⎤
⎦ .

Then,

Ā0

⎡
⎣ ᾱk

ᾱk1

ᾱk2

⎤
⎦ = A0

⎡
⎣ αk

αk1

αk2

⎤
⎦ =

⎡
⎢⎣

βf1

βf2

γg1

γg2

⎤
⎥⎦ ,

where ωk1 = ωk2 and τk = τk2 . This gives a second distinct expression
of (5.1) for (3.4 - 3.5). Thus, the necessity is proved.

Since all pairs (ωk, τk) for 1 ≤ k ≤ Np are distinct, each product set
Il1 ×Jl2 has at most one pair. Since Il, 1 ≤ l ≤ Np, and Jl, 1 ≤ l ≤ Np,
are two partitions of I, it is clear that

∪Np

k=1{(ωk, τk)} ⊂ ∪f
l1=1 ∪g

l2=1 Il1 × Jl2 .
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