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Abstract—Robust Chinese remainder theorem (CRT) has been
recently investigated for both integers and real numbers, where the
folding integers are accurately recovered from erroneous remain-
ders. In this paper, we consider the CRT problem for real num-
bers with noisy remainders that follow wrapped Gaussian distri-
butions. We propose the maximum-likelihood estimation (MLE)
based CRT when the remainder noises may not necessarily have
the same variances. Furthermore, we present a fast algorithm for
the MLE based CRT algorithm that only needs to search for the
solution among elements, where is the number of remainders.
Then, a necessary and sufficient condition on the remainder errors
for theMLECRT to be robust is obtained, which is weaker than the
existing result. Finally, we compare the performances of the newly
proposed algorithm and the existing algorithm in terms of both
theoretical analysis and numerical simulations. The results demon-
strate that the proposed algorithm not only has a better perfor-
mance especially when the remainders have different error levels/
variances, but also has a much lower computational complexity.
Index Terms—Chinese remainder theorem (CRT), phase un-

wrapping, residue number system, robustness.

I. INTRODUCTION

T HE traditional Chinese remainder theorem (CRT) is to re-
construct a positive integer from its remainders modulo

a series of integer moduli, which has tremendous applications
[4], [7], [17], [21]. In some applications, such as, phase unwrap-
ping in radar imaging in [28], real numbers need to be recon-
structed from their remainders. One obvious way to connect the
real number reconstruction problem with the integer reconstruc-
tion problem from their remainders is to reconstruct its integer
part from the remainders using the CRT and then the fractional
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part can be any fractional number between and 0.5. How-
ever, it may not be optimal, in particular when the remainders
have errors in practice.
For the traditional CRT when all the moduli are pair-wisely

co-prime, it is not robust in the sense that a small error in its
remainders may cause a large reconstruction error. Recently ro-
bust CRT has been studied in [5], [12]–[14], [25], [28]–[30],
[32], where it basically says that when all the moduli have a
common divisor , if the remainder errors are within the range
of , a robust CRT for integers is possible and it is also gen-
eralized to real numbers in [25], and an improved version for in-
tegers called multi-stage robust CRT is found in [29]. The basic
idea of the robust CRT for integers and reals is to accurately
determine the unknown folding integers from the erroneous re-
mainders. A different probabilistic approach to deal with noises
in CRT is proposed in [23], where the primemoduli are required.
A lattice based method is proposed in [15] to estimate a real un-
known distance using the phase measurements taken at multiple
co-prime wavelengths. There are many applications of robust
CRT, see, for example, [3]–[6], [8]–[15], [20], [22]–[34].
In this paper, we use the approach recently studied in

[5], [12]–[14], [25], [28]–[30], [32], i.e., uniquely recover
the folding integers from noisy remainders. Although real
number reconstruction has been considered in [25] from noisy
real-valued remainders, it may not be optimal in general, i.e.,
it is not the maximum-likelihood estimation (MLE) when the
remainder noises have different variances, which is usually the
case since their remainder noise variances may be proportional
to the moduli [8], [15], [24]. In this paper, the MLE is proposed,
where the remainder noises may not necessarily have the same
variance. We prove that the MLE can be obtained by only
searching for the optimal among elements, where is the
number of remainders and therefore it has a fast algorithm. As
it is the MLE, compared with [25], it has a better performance,
due to its fast algorithm, it also has a much lower computational
complexity. Another contribution of this paper is that we obtain
a necessary and sufficient condition on the remainder errors
for the MLE to be robust, which is weaker than what we have
previously obtained in [25].
The remaining of this paper is organized as follows. In

Section II, we first recall the basics of robust CRT for both
integers and reals. In Section III, we present the MLE and its
fast algorithm. In Section IV, we present a necessary and suffi-
cient condition for the MLE to be robust. We then calculate the
probability of the robust MLE CRT. Lastly, in Section V, we
present some simulation results to verify the obtained theory.
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II. MAXIMUM LIKELIHOOD ESTIMATION BASED ROBUST CRT
FOR REAL NUMBERS

In this section, we first briefly recall the basics of robust CRT
for both integers and reals. Then we propose the MLE based
robust CRT for real numbers, where the remainder errors are
assumed to followwrapped normal distributions with zero mean
and possibly different variances.

A. Problem of Interest, CRT, and Robust CRT
Let be a real number, be positive integers

called moduli with , and be
remainders of modulo as follows:

(1)

where , denoted by , are unknown
integers called folding integers for . This remain-
dering problem for a real number only makes sense when the
folding numbers are integers in (1). Clearly, the traditional
remaindering problem for an integer is a special case here.
After saying so, when and are not small, reals and in-
tegers and can approximate each other well and it may
be more convenient to study one of the integer and real remain-
dering problems than to study the other. Furthermore, the above
real number reconstruction problemmay occur in some applica-
tions, such as phase unwrapping in radar imaging [28] as men-
tioned in Introduction.
If all the moduli are co-prime and is a positive in-

teger less than the product of the moduli, then integer can
be uniquely reconstructed by CRT. If the moduli are non-pair-
wise co-prime, integer can also be uniquely reconstructed by
an extended CRT if and only if is less than the least common
multiple (lcm) of all the moduli [18].
The problem we are interested in this paper is to robustly and

optimally recover a real number from its erroneous remain-
ders, where remainders are real numbers with errors, denoted as
, i.e.,

(2)

denote errors and are independent each other. In order to re-
sist errors, we consider a special remainder redundancy, where
the gcd of all the moduli is larger than 1 and the remaining
integers factorized by the gcd of all are co-prime. The robust
remaindering problem is how to robustly estimate from the
erroneous remainders modulo , which has many applica-
tions in engineering, see, for example [10], [11], [27], [33].
The basic idea of the robust CRT for integers and reals in the

recent studies [12]–[14], [25], [28], [29], [32] is to accurately
determine the unknown folding integers in (1), which may
cause large errors in the reconstruction if they are not correctly
determined. Hence, the problem is transformed to determine the
folding integers from these noisy remainders. Once are de-
termined, the unknown real number can be estimated as [25]:

(3)

If is an integer, its estimate is then a rounded integer of
in (3).

In order to determine the unknown folding integers , a
searching based robust algorithm is proposed in [28], followed
by [12]–[14]. It is proved in [14] that if the remainder error
bound is smaller than a quarter of , i.e., , where

is the greatest common divisor (gcd) of all the moduli, then
can be accurately determined. Therefore, we know from (3)

that the estimation error of is bounded by , i.e.,

(4)

In addition, a fast searching algorithm was proposed in [14],
where the number of searches is sharply reduced. However,
the computational complexity is still high when the number of
moduli is large. A closed-form robust CRT and its improved
version for both integers and reals are proposed to estimate the
folding integers in [25], where the remainder difference op-
eration is used and no searching is needed. It is noted that the
reference remainder is arbitrarily selected for the closed-form
robust CRT. By using the statistically optimal selection process
of the reference remainder, the probability of the successful ro-
bust estimation is improved greatly [25]. Most recently, a more
simpler form of the robust CRT for integers is proposed in [30],
where the estimate of a positive integer is obtained from the
erroneous remainders directly.
The above algorithms and conclusions are based on the as-

sumption that the remainder errors have the same level/variance,
where the error absolute values are within , i.e.,

and (5)

This may not be practical in applications since different quan-
tizations (different moduli) may contain different noise levels.
Take the distance measurement (ranging) system as an example.
For the phase measurement, which is interpreted as a distance
measurement, the associated noise is proportional to the related
wavelength [8], [15], [24]. In this paper, we assume that for
each , the error follows a wrapped normal distribution with
mean zero and variance , and the variances may be different
from each other and may be related to the moduli. In the ro-
bust CRT for reals in [25], the remainder noises are assumed to
follow Gaussian distribution with the same variance. It is noted
that the optimal reference remainder that is subtracted from the
other remainders is based on the reference common remainder,
which can only be appropriately determined in the case when
the noise variances are the same. When the remainder noises
have different variances, the method of determining the refer-
ence common remainder in [25] may be ineffective, which may
lead to a wrong selection of the optimal reference remainder.
More details can be seen later. Motivated by this, we propose
the MLE based robust CRT and its fast algorithm, where the es-
timate of the common remainder [18] is optimal from the erro-
neous remainders with possibly different error variances. To de-
scribe it, we begin with the congruence problem proposed in (1).
Let be the gcd of all the moduli , and let ,

where , are assumed relatively co-prime, i.e.,
for , . Define . Let

for , and let the
modular multiplicative inverse of modulo be , i.e.,

(6)
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where denotes the set of integers. From (1), we have

That is, all remainders modulo have the same value,
named common remainder [18], denoted as . Let

(7)

and let . Subtracting and then dividing
from congruence (1), we have

(8)

According to the classical CRT formula, can be uniquely
reconstructed as

(9)

if and only if . Therefore, can be uniquely
reconstructed by

(10)

B. Maximum Likelihood Estimation Based Robust CRT for
Reals
Before considering the MLE problem, we first introduce a

circular distance function that is useful for the following deriva-
tion. For real numbers and , the circular distance of to
for a non-zero positive number is defined as

(11)

where

(12)

and stands for the rounding integer, i.e., for any , where
denotes the set of all reals, is an integer and subject to

(13)

It is not hard to see that for any real and integer , we have

(14)

Note that in the above, the non-absolute-valued is
used for convenience but is in fact the distance ef-
fectively involved in the following optimizations and is the real
version of the Lee distance [2]. For any real numbers , , and
, where , we have the following properties, which are

not hard to see.
Property 1

(15)

Property 2

(16)

Property 3

(17)

Property 4

(18)

Property 5 If , then

(19)

Property 6

(20)

We now consider the erroneous remainders described by (2).
According to [16], the probability density function (pdf) of the
wrapped normal distribution with mean and variance for
for a given is

That is,

where , . By the definition of the
circular distance in (11), we have

(21)

where . For convenience, we denote

for . Since are independent for a given
, their joint pdf for a given is

(22)

As is usually much larger than , the terms of in
(21) are much smaller than the term of . That is, are

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on July 02,2020 at 19:32:30 UTC from IEEE Xplore.  Restrictions apply. 



3320 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 13, JULY 1, 2015

much smaller than for . Hence, we can approxi-
mate (22) as

(23)

Clearly, the error of the joint pdf for a given is

Given erroneous remainders , parameter , and
moduli , we now show how to robustly reconstruct

by the MLE. From (23), we obtain the approximation of the
log likelihood function

(24)

The MLE maximizes with respect to the unknown real
number , which yields the following minimization
problem

(25)

where is simplified as ac-
cording to Property 1 in (15). Then, is the MLE of . In
Fig. 1, we show the right-hand side of the log likelihood function
in (23), where , , ,
and to are 0.5, 0.8 and 1, respectively. By (25), we have

.
Notice that the argument variable in the minimization

problem in (25) is real and may take any real value in the
interval . Thus, in general, solving the minimization
problem (25) may have a high computational complexity. In
the next section, we will propose a fast algorithm that has a
much lower computational complexity.

III. FAST MLE ALGORITHM

From (7) in Section II, one can see that the common
remainder is significant to the estimation of and conse-
quently . In the noise free case, can be determined from
any remainder modulo . But, for noisy remainders of

modulo , their remainders modulo , i.e.,

(26)

may be different from each other due to the errors. In order
to obtain the optimal estimate of , intuitively the common
remainder should be optimally determined. As are
folded real numbers, we can not estimate by simply averaging
them. Instead, we define a special averaging operation of as

(27)

Fig. 1. The log likelihood function (24).

where again takes real values in the interval . After the
common remainder is estimated above, we can use

as an estimate of , i.e.,

(28)

Recall that stands for the rounding integer defined in (13).
Then, can be reconstructed as

(29)

Therefore, can be reconstructed by

(30)

The following result says that obtained from the above
algorithm is indeed the MLE when the estimate of common
remainder is (27).
Theorem 1: Assume that all moduli are

pair-wisely co-prime. If , then in (30) is the
MLE of , that is, .

Proof: Clearly, congruence (29) means

Hence, there exist integers such that

According to (30) and Property 1, the circular distance of to
for can be written as

From Property 2 and (28), we have

From the definition of the circular distance in (11), we have
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As , from Properties 1, 5 and the
definition of in (26), we obtain

(31)

On the other hand, for a real number , ,
let

(32)

where and . From Properties 1, 3 and
(32), we have

(33)

According to the definition of the circular distance, we obtain

(34)

It follows from (33) and (34) that

(35)

According to the definition of in (27), we have

(36)

Combining (31), (35) and (36), we obtain

It follows from (24) that

This proves the theorem.
From Theorem 1, we know that the MLE of depends on

the estimate of the common remainder. Note that the estimate of
the reference common remainder of the improved robust CRT
proposed in [25] is only the special case in the above when all
the variances in (27) are equal. Thus, when the variances

in (27) are not equal, which is the case when the remainder
noises do not have the same variance, the method in [25] is no
longer optimal. A detailed comparison will be given later.
For the computational complexity, the optimal searching of

the unknown real number among all the reals in the range
is reduced to the searching of the common remainder

among all the reals in the range of . Although the
searching region is significantly reduced, since is usually
much larger than , it still has infinite possibilities, i.e., in-
finitely many reals in the range of . Next, we propose
a novel fast algorithm to obtain the optimal estimate, where

the optimal one is in a finite set with candidates that is
independent of .
Let

(37)

Then, and . So, we can view
as the weights of the remainders later. Note that is a
constant when all the variances of the noise are known. Hence,
the optimal estimate in (27) can be rewritten as

(38)

Then, we have the following result.
Theorem 2: The optimal estimate in (38) belongs to the

following set:

(39)

where is a permutation of the set such that

(40)

and is the weight of .
Proof: Let , and

Then, we have

For , we obtain

Hence,

Since

and
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we have

Similarly, . Clearly, is not differentiable at
. Since and , is not the local

minimum point. This means that the optimal estimate is not
in , i.e.,

(41)

Since is differentiable in except , we have

This leads to

(42)

We have two cases below.
Case 1
Since , we have . From
(41), we have , implying either

or . Define

if

otherwise.

Then, (42) can be rewritten as

Consequently,

and hence

(43)

Note that . Then, for and the
right-hand side expression in (43) has the same value, i.e.,

Thus, .

Case 2
In this case, either or

. Similarly, we define

if

otherwise.

Then (42) can be rewritten as

That is,

Hence,

(44)

Similarly, for and the right-hand side
expression in (44) has the same value. Thus, . This
proves the theorem.

Theorem 2 tells us that for a given erroneous remainder se-
quence , the optimal estimate of the common re-
mainder belongs to the finite set of elements in (39).
Hence, the optimal estimate in (38) can be simplified as

(45)

where has only elements.
Comparison With the Improved Robust CRT in [25]: In

the fastMLE algorithm, the key processes to have the robustness
and better performance are the common remainder estimation
and the remainder rounding after canceling described in (27)
and (28), respectively. The improved closed-form robust CRT
in [25] also involves with estimation and canceling the op-
timal reference remainder from the other remainders, where the
optimal reference remainder has the minimum circular distance
for between the estimate of and the remainders. Recall
that the estimate of proposed in [25] is based on the assump-
tion that all the remainder errors have the same variance and it
is determined by

(46)

When the remainder errors have the same error variance, i.e.,
, the two estimates, (27) and (46) are the same.

When the remainder errors have different variances, the two es-
timates are different. Hence, the estimate of obtained by (46)
is not optimal when the remainder error variances are different,
which may lead to a wrong selection of the optimal reference
remainder. For the obtained fast MLE algorithm here, the es-
timate of in (27) is always the optimal one when either the
remainder errors have the same variance or different variances.
So, the proposed fast MLE algorithm has a better performance
than the improved closed-form robust CRT in [25]. Another ad-
vantage of the proposed algorithm is that it has a lower com-
plexity, since the algorithm in [25] estimates by searching all
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the reals in the range of , while the proposed algorithm
in this paper determines the optimal estimate of from a finite
set of elements that is independent of .

IV. ROBUST MLE
In this section, we present a necessary and sufficient condition

for the MLE to be robust. Then, we calculate the probability of
the robust MLE CRT.

A. Robust Estimation
We first consider the condition of the remainder errors that

leads the MLE to be a robust estimation, i.e., if for all
, then . Suppose that the estimation

error of is :

(47)

where . Note that (29) is equivalent to

That is,

Similarly,

Hence, (47) can be rewritten as

(48)

According to (2) and (7), we have

(49)

Let the error of the common remainder be

(50)

Combining (48), (49) and (50), we obtain

(51)

Since , we have

(52)

Plugging (52) into (51), using (14), we have

That is,

(53)

If

(54)

then we obtain from (53) that

By the definition of the rounding operation in (13), we obtain

(55)

From and , we can obtain that
the error bound for the robust estimation of satisfies

(56)

which coincides with the result obtained in [14].
From the above analysis, we see that (55) is a necessary con-

dition for a robust estimation. Thus, in what follows, in order to
discuss the robustness of the MLE based robust CRT, we sup-
pose that (55) is always satisfied. Let be a permutation of the
set satisfying

(57)

and the weights in the corresponding order be .
Then, we obtain from (55) that

(58)

and we have the following result.
Lemma 1: If , then the set in (39)

can be rewritten as

(59)
Proof: Note that from (26),

(60)

where denotes the floor operation. Let .
Then, we obtain from (57) that

From (58), we have . Hence,

(61)

We have two cases below.
Case 1 The inequality in (61) is strict.
In this case, we have

It follows from (60) that
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which means that in (57) and in (40) are the same
permutation. Hence,

Case 2 The inequality in (61) is an equality.
Let be the subscript of the errors satisfying

Due to (61), there only exists one such in the above inequality.
Then,

if
if

It follows from (60) that

(62)

Since , we obtain from (62) that

According to (57), we have

which means that

(63)

Thus,

(64)

If , then we obtain from (63) that

Hence, (64) can be simplified as

If , then we obtain from (63) that

Hence, (64) can be simplified as

This proves the lemma.
Lemma 1 gives another expression of the candidate set of the

optimal estimate of the common remainder . It is noted
that the two weights, and , may be not equal because
of the different sorting ways. For a given erroneous remainder
sequence of modulo and the variances, we can deter-
mine only by (39) but not (59). This is because the common
remainder is unknown and needs to be estimated. However,
(59) is helpful to analyze the estimation error of , which will
be seen in the following theorems. For convenience, we denote
the remainder error set as

(65)

and the weighted average of the remainder errors as

(66)

Then, we have the following results.
Theorem 3: If the weighted average error in (66) satisfies

and

(67)
holds for any subset of and is the complement
of in , then the optimal in (38) has the form

(68)

Moreover,
if
if
if .

(69)

The proof of this theorem is in Appendix A.
Theorem 3 gives a condition of the remainder errors and their

weights when the optimal estimate of the common remainder
is . As discussed above, the estimate of the common
remainder is in the set with elements described in (39) or
(59). Clearly, belongs to the set . Next theorem
shows that is a necessary condition for the
robust estimation of . It also shows that the condition in (67) is
the necessary and sufficient condition for the robust estimation
of .
Theorem 4: Let the weighted average remainder in (66)

satisfy , and be a real number in the range
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. Then, for the above MLE of , we have
that

(70)

holds if and only if

(71)
holds for any subset of , where is its complement.
The proof of this theorem is in Appendix B.
The condition in (71) or (67) looks complicated and strong.

In fact, when
(72)

it is not hard to see

and

hold for any subset of . This tells that the above simpler
condition (72) implies the condition (71) and therefore leads to
the following robustness of the MLE.
Corollary 1: If for all , and ,

then .
Clearly, when for , . Thus,

from Corollary 1, . This coincides with
the robustness we have obtained previously in [25] but the result
obtained in Corollary 1 is stronger than the robustness.

B. Probability of the Robust Estimation
Now, we calculate the probability of the robust MLE estima-

tion of from erroneous remainders for a given real number ,
where the remainder errors are assumed to follow wrapped
normal distribution with mean zero and variances . As
are usually much larger than , we approximate the distribu-
tions of as normal distributions in the following.
Theorem 4 shows that can be robustly recovered if and

only if its remainder errors satisfy (71). Note that the equal sign
of the left-hand side in (71) has no effect on the probability for
continuous random variables. Then, (71) can be substituted by

(73)

Next, we consider two cases depending on the number of re-
mainders, i.e., and . Note that the case of is
trivial and the probability is

(74)

where .
1) : In this case, (73) is equivalent to

(75)

Let , where ,

, and .

Then, (75) can be simplified as

(76)

As the noises for different remainders, , and are
independently and identically normal distributed random vari-
ables for a given , is a random vector with normal dis-
tribution. Let . Then the covariance ma-
trix of , , is a singular matrix since the determinant of
the matrix is 0, which is because the sum of all the column
vectors of is the zero vector. Hence, the joint pdf of does
not exist [1]. But the characteristic function of exists, i.e.,

, where . Ac-
cording to the inversion formula [19], we have

(77)

where is specified by (73).
For , i.e., , (77) can

be simplified as

(78)

2) : In this case, (73) is equivalent to the following
equation shown at the bottom of the next page, where

.
As are independent of each other for a given
, the joint pdf of is

(80)
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where the covariance matrix ,
, and . Then, the proba-

bility can be expressed as

(81)

where the integral region is specified by (73) or (79).
When the remainder errors have the same variance, i.e.,

or , we obtain the simpler
form of (81) for and as follows.

In this case, condition (73) or (79) is equivalent to

(82)

Let

(83)

Then, (82) can be simplified as

(84)

As are independent of each other for a given ,
follow normal distributions withmean zero and variance .

Then, the joint pdf of is

(85)

Thus,

(86)

Fig. 2. Integral region of (84).

where the integral region is specified by (84). By carefully ex-
amining the region , it can be obtained by subtracting
eight times and adding twelve times as shown in Fig. 2,
where , and are

and

respectively. Then, (86) becomes

(87)

(79)
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In this case, (81) can be simplified as

(88)

V. SIMULATION RESULTS
In the simulations, , moduli from to are 2,

3, 5, 7, 11, 13, 17, 19, 23, 29. Real number is uniformly dis-
tributed between and . The remainder errors follow
wrapped normal distributions with zero mean and variances ,
and the standard deviation is assumed to be proportional to
a fraction of the modulus [8], [15], i.e., , where
is a small positive factor. We call the process of determining
as a trial. In each trial, if is robustly determined, the trial

is passed, otherwise the trial is failed. By Theorem 4, we can
express the trial fail rate (TFR) as

(89)

The root mean square error (RMSE) of is

(90)

where denotes the expectation. We obtain from Theorem
4 that the RMSE for the fast MLE algorithm is

(91)

We first consider the TFR and RMSE performances of the
fast MLE algorithm and the improved closed-form robust CRT
[25], where the moduli are 2, 3, 5, 7, 11, and the total number
of trials is 10000 for each algorithm. We say that a test succeeds
if is robustly determined, i.e., its estimate satisfies

where is a small nonnegative number. Otherwise, the test is
failed and the TFR is given by (89). In Figs. 3(a) and 3(b), we
show the TFR performances of the two algorithms versus the
factor when and 1.2, respectively. The figures show
that the fast MLE algorithm has a better performance than the
improved closed-form robust CRT in [25] when the remainders
have different error levels, which is in agreement with theoret-
ical analysis in Section IV. The improvement becomesmore sig-
nificant when the error level becomes smaller.
In Fig. 4, we compare the performances of the two algorithms

by investigating their RMSE versus the factor . The theory
curve for RMSE is based on (91). Fig. 4 shows that the RMSE of
the two algorithms decrease linearly when is larger
than 40, i.e., . It also shows that if , the
RMSE of the proposed fast MLE algorithm matches the theo-
retical values very well as predicted by (91), but the improved
closed-form robust CRT in [25] has a gap with the theoretical
values, no matter how small is.
In Fig. 5, we show the TFR performance versus the number of

remainders , where all the variances are set to be equal. In the

Fig. 3. TFR versus for different methods: (a) ; (b) .

Fig. 4. RMSE versus for different methods.

Fig. 5. TFR versus number of remainders .

simulation, we set and 2.5, respectively. The theory
curves are based on (78), (87), (88) in Section IV and (92) in
[25]. As analyzed in Section III, the two algorithms, fast MLE
algorithm and the improved closed-form robust CRT, have the
same performance because the remainders have the same error
level. The results also demonstrate that the TFR of the improved
closed-form robust CRT in [25] does not match the theory ob-
tained in [25] for a small , which is due to the assumption of
large used in [25] in the derivations of the theoretical perfor-
mance analysis. For the proposed fast MLE algorithm, the sim-
ulation and the theory are always matched very well no matter
is small or large.
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VI. CONCLUSION
In this paper, we have proposed an MLE based reconstruc-

tion of a real number from its smaller erroneous remainders
modulo several moduli. We have proved that the MLE solution
can be obtained when the estimation of the common remainder
is optimal, where the remainder errors may not necessarily have
the same variances. Instead of searching the common remainder
from the infinite possibilities, we have obtained a novel method
that finds the optimal common remainder by searching a finite
set of elements, where is the number of remainders. This
provides a fast algorithm for the MLE based reconstruction that
only needs to search for the optimal among many elements.
Based on the proposed algorithm, we have obtained a necessary
and sufficient condition on the remainder errors for the MLE to
be robust, which is weaker than the existing known result. Sim-
ulations are provided to verify the efficiency of the proposed
algorithm and the correctness of the theoretical analysis. Com-
pared with the improved closed-form robust CRT in [25], it not
only has a better performance especially when the remainders
have different error levels/variances, but also has a much lower
computational complexity.

APPENDIX

A. Proof of Theorem 3
Proof: Otherwise, by Lemma 1, the optimal estimate is

for some with
. Let

Then, we obtain from the definition of the optimal estimate
in (38) that

(92)
Let for any . Then, we obtain from (67)
that

Since , we have

Consequently,

(93)

Recall that for . Hence,

(94)

Then, all the remainder errors can be categorized by two sets,
and its complement set , with

and

Note that the optimal estimate satisfies as pre-
viously shown in the proof of Theorem 2, where is the
objective function in the right-hand side of (38) as defined in
the beginning of the proof of Theorem 2. That is,

Then,

Note that . By (2), (7), and (26) and
Property 1 in (15), we have

By re-organizing the right-hand side of the last equation above,
we have

(95)

Note that

From (93), we have
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which leads to

Hence,

(96)

By (95), we can simplify (96) as

According to (92), , that is,

then we have

Here, we use the equations

and

Thus,

and then

which contradicts with (67). Thus, .
By the definition of in (50), we can get (69) directly.

B. Proof of Theorem 4
Proof: We now show the sufficiency. Note that in this case

the conditions of Theorem 3 are satisfied. According to the three
cases of in Theorem 3, we have ,

and , respectively.
In the case when , we obtain from (2), (7),

(13) and (28) that

As shown in the proof of Theorem 3, (71) can lead to

Hence,

and then

Therefore,

Similarly, in the cases when and ,
we can get the same conclusion (70). This completes the proof
of the sufficiency.
We next show the necessity. Let in (47), then (55) is

equivalent to

(97)

Suppose that there exists a nonempty set
satisfying

That is,

and then

(98)
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Let , and let

Then, we have

According to Property 6 in (20), we obtain

It follows from (98) that
(99)

According to the definition of in (27), we obtain that
is not the optimal estimate , i.e.,

(100)

On the other hand, we obtain from (30) and (70) that

Hence,
(101)

Clearly, (100) contradicts with (101).

In the case when

we let

then the same contradiction occurs. Therefore, the remainder
errors satisfy (71). This completes the proof of the necessity.
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