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ABSTRACT
In a context where the interaction between growingly hetero-
geneous dynamic hardware and sets of complex applications
is intractible to model at compile-time, we acknowledge the
need for a formal way to associate runtime parameter do-
mains with software optimizations. A standard definition of
- and access protocol to - runtime parameters is also neces-
sary for compilers and application developers to adapt their
optimizations to the runtime context. We advocate that the
runtime parameters should concisely represent the interac-
tion between software and the underlying hardware.

We present a generic framework for collecting a useful set
of runtime parameters and creating adaptive optimizations
at all levels of the software stack. Runtime task schedulers
can be leveraged advantageously to form run-time context
information since they have direct access to the tasks that
are running and scheduled. In the presented framework,
high-level information is produced at the task granularity
by the compiler, under the form of “task types,” ensuring
low management overhead.

The approach is validated experimentally using a simple
representation of the run-time context (which we call “run-
time mode”) that focuses on communication-to-computation
imbalance. The software stack element used for validation
is an adaptive data compression engine, which in practice
could be part of the application or the runtime.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; E.3 [Coding and Informa-
tion Theory]: Data compaction and compression; F.2.1
[Numerical Algorithms and Problems]: Computations
on matrices
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1. INTRODUCTION
Dynamic runtime schedulers have experienced broad suc-

cess in efficiently executing ill-balanced, dynamic parallel
programs on multi- and manycore. In particular, task-graph
based runtimes [4, 3, 2, 7] have proven to offer new levels of
load-balancing and scaling capabilities.

In extreme scale systems, increased disparity between wire
and transistor switching speeds aggravates the need for such
schedulers, as new hardware solutions to cope with limited
power envelope increase hardware heterogeneity, in their
functionality (dark silicon) and efficiency (NTV, DVFS).

Scratchpad-based systems also emerge (as seen in GPUs,
Runnemede, Cell, and SoCs) to cope with power constraints
and the lack of cache scalability. Programming scratchpads
requires the explicit specification of data movement in and
out of the scratchpad memory.

Good utilization of scratchpads is achieved when data
transfers are coarse. Hence, to some degree, extreme scale
programs will be characterized by the execution of coarse
data transfers followed by computations sized according to
the amount of transferred data, and so on. Needless to say,
the efficiency of static optimizations is jeopardized in such
variable runtime environments, as their benefit is a direct
(possibly negative) function of the runtime environment.

In this paper, we explore the explicit discrimination of
tasks according to a task type that reflects the utilization
of the underlying architecture. We expose task type knowl-
edge to the runtime schedulers, and allow them to toggle the
software stack between type-specific modes, enabling and
disabling optimizations as a function of the current mode.

In Section 2 we give an overview of the envisioned soft-
ware architecture and of the task types and modes consid-
ered in this paper. We illustrate our adaptive framework
with runtime type experimentally in Section 4 using a data
compression engine presented in Section 3. Finally, Section
5 covers conclusions and future work.



Figure 1: Flow of the scheduler-driven adaptive op-
timization framework.

2. OVERVIEW
The general idea of this paper is to decompose the execu-

tion of programs into tasks of different types, which reflect
a quality of the operations within the task. As depicted in
Figure 1, the types should be generated as annotations to
tasks by the compiler. The runtime scheduler determines a
run-time characterization of the set of tasks currently sched-
uled, which we call “run-time mode.” Determining types at
the task level enables low mode computation overheads.

Useful modes are the ones to which elements of the soft-
ware stack (OS, runtime, application code) can adapt. The
adaptation model we are interested in aims at optimizing
global execution performance and energy efficiency. In this
model, the behavior of the elements of the software stack is
selected as a function of the run-time mode.

An example of this is a type that would discriminate tasks
as a function of their utilization of floating-point operations.
A mode that specifies that the currently scheduled tasks are
low in floating-point operations would allow a numerical li-
brary to use software floating-point emulation in this mode,
increasing the profitability of turning floating-point units off.
Turning the floating-point units off can be performed by the
runtime when the mode represents low utilization. By rep-
resenting a mode with a vector (of modes) v, this system
generalizes to a broad set of optimizations, through the def-
inition of a domain of efficiency D for each optimization o:

v ∈ D(o)⇒ turn o to state x

A vector mode seems general enough to handle the runtime
optimization of dark silicon processors, in which only a sub-
set of specialized hardware parts (as for instance Taylor’s
“conservation-cores” [6]) can be powered on simultaneously
in order to stay within the processor’s power budget.

In this paper we apply this general principle to a simple
and universally applicable set of load types, which discrim-
inates computation from communication. We validate our
model using an adaptive data compression engine.

3. ADAPTIVE DATA COMPRESSION EN-
GINE

The optimization considered here is a transformation of a
tiled array, in which an array in dense representation may
be turned into sparse representation before being processed.
Data tiles are marked accordingly as either sparse or dense.

The cost of optimization is roughly linear in the number of
elements E in the tile, while the benefit is in (E−nnz) where
nnz is the number of non-zeros. Dynamically determining
whether a tile is worth compressing by analyzing the data
has limited profitability since it is also linear in E. Ideally,
we would like compression to occur (mostly) in phases where
nnz is small enough and be omitted in phases where nnz is
larger.

In terms of execution time, the transformation optimiza-
tion is worth applying when the computation time for a tile
is low as compared to its communication time. Compression
is also worth turning off when computations are significantly
more important w.r.t. communications (i.e., when nnz is
large enough). This defines the two transition rules for our
adaptive compression engine, which turns compression on
when the commputation-to-communication ratio goes below
a certain threshold α and turns compression off when the ra-
tio goes above a different threshold β.

Interestingly, the efficiency domain of the compression op-
timization is defined in the product of the computation-to-
communication ratio and of its own state (on or off).

4. EXPERIMENTAL RESULTS
We have validated our approach using matrix-vector mul-

tiplication. To ensure the presence of both sparse and dense
blocks in the input matrix, tests cases were generated by
modifying the Graph500 [1] generator to produce the initial
sparse matrix and overlaying it with dense tiles.

These initial tests were run on four processors using ma-
trices of dimension 2048 and blocks of dimension 128. In
these cases, a block was considered to be a suitable candi-
date for compression if it contained fewer than 128 elements.
We observed speedups ranging between 57% and 68% com-
pared to standard matrix-vector multiplication and speedup
of 15% compared to sparse matrix-vector multiplication.

5. CONCLUSION AND FUTURE WORK
The presented adaptive framework is general in that it

can drive many different software behaviors by modeling
them as optimizations associated with an efficiency domain.
However, it is limited to optimizations that can make use
of the current context. This assumes that the execution
of programs happens in phases in which properties of the
environment don’t change too quickly. We plan to explore
more such optimizations and to extract a small set of widely-
useful task types and modes in the future. We are interested
in automating this process by having a compiler introduce
type annotations for the scheduler. R-Stream [5] is a nat-
ural candidate for this as it natively discriminates commu-
nications from computations and forms parallel task-graph
programs for SWARM, OCR and CnC. We also intend to
quantify phase lengths below which our adaptive framework
wouldn’t be efficient. Finally, since optimizations impact
the environment, we wonder about the collective interaction
among a set of adaptive optimizations, and whether using
some optimizations jointly could jeopardize the phase exe-
cution assumption.
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