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Abstract. Fastest Fourier Transform in the West (FFTW) is an adap-
tive FFT library that generates highly efficient Discrete Fourier Trans-
form (DFT) implementations. It is one of the fastest FFT libraries avail-
able and it outperforms many adaptive or hand-tuned DFT libraries. Its
success largely relies on the huge search space spanned by several FFT
algorithms and a set of compiler generated C code (called codelets) for
small size DFTs. FFTW empirically finds the best algorithm by measur-
ing the performance of different algorithm combinations. Although the
empirical search works very well for FFTW, the search process does not
explain why the best plan found performs best, and the search overhead
grows polynomially as the DFT size increases. The opposite of empirical
search is model-driven optimization. However, it is widely believed that
model-driven optimization is inferior to empirical search and is particu-
larly powerless to solve problems as complex as the optimization of DFT.

In this paper, we propose a model-driven DFT performance predictor
that can replace the empirical search engine in FFTW. Our technique
adapts to different architectures and automatically predicts the perfor-
mance of DFT algorithms and codelets (including SIMD codelets). Our
experiments show that this technique renders DFT implementations that
achieve more than 95% of the performance with the original FFTW and
uses less than 5% of the search overhead on four test platforms. More
importantly, our models give insight on why different combinations of
DFT algorithms perform differently on a processor given its architec-
tural features.

1 Introduction

Adaptive libraries usually apply application-specific knowledge to define a search
space for potential implementation of their target routines such as BLAS and
DFT. Furthermore, empirical search is used to find the best performing version
from that search space. Well-known adaptive libraries include FFTW [8,10], AT-
LAS [18] generating the Basic Linear Algebra Subprograms(BLAS), SPIRAL [14]
performing linear digital signal processing transforms, as well as Sparskit [16] and
Sparsity [11] focusing on sparse numerical computation. These libraries usually
outperform the best hand-tuned implementation, and sometimes achieve peak
performance on some platforms.

It is generally acknowledged that the good performance of those libraries de-
pends on the generators’ extensive search process. A typical example is SPIRAL,
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which employs empirical search for both algorithm and implementation optimiza-
tions. However, there has been a long-standing question: why empirical search
seems to be indispensable to the generation of high quality code. In some cases,
empirical search explores implementation forms that are hard to deduct from
models. Other times, it selects better value for the parameter of the transformation
that is applied to the routine. Finally, the advantage of empirical search might be
its capabilities of applying optimizing transformations in different orders so that
it can solve the so-called “phase-ordering problem” [12]. It is helpful to compare
empirical search with its opposite, model-driven optimization. There have been
some previous efforts to compare these two approaches in ATLAS. Yotov et al.
[19] show that the empirical search in ATLAS can be successfully replaced by an
architectural model while still maintaining its good performance. Furthermore, re-
searchers in the signal processing domain have accumulated a set of heuristics for
the selection of best DFT algorithms for a particular problem [1]. More recently,
Fraguela et al. [6] show that a properly built memory model can successfully se-
lect the best performing DFT algorithms in SPIRAL even though its runtime pre-
diction is far from accurate. Overall, it is still unclear how architectural features
of a processor such as instruction latency and SIMD(Single-Instruction Multiple
Data) instructions affect the performance of a DFT.

This paper presents a quantitative evaluation of the empirical search strategy
of FFTW and a new model-driven optimization. It replaces the original FFTW
empirical search engine and produces equally high-quality code. The performance
modeling of the empirical search in FFTW differs from many other library gen-
erators, like ATLAS, which have relatively fixed formulas of implementation
and limited number of parameters to be tuned. FFTW, however, has some pre-
generated codelets together with other algorithms that can potentially compose
the best implementation for a DFT problem. The empirical search engine in
FFTW tries to find the best combination of problem decomposition strategies,
which is called “a plan” in FFTW. Each of the decomposition strategies is a
complex manipulation of the target FFT problem using codelets or other algo-
rithms. Therefore, the fundamental degree of freedom in FFTW search space is
not the parameter values but the algorithm structure of a solution.

This paper makes two major contributions. The first one is the building of
performance prediction models for several frequently used DFT algorithms and
DFT codelets. Particularly, we present how to automatically determine the pa-
rameter values of these models on different computer architectures. The second
contribution is the composition of these individual DFT models and the building
of a model-driven optimization engine. It produces plans that have comparable
quality to those generated by exhaustive search in FFTW while eliminating most
overhead of empirical search.

The rest of this paper is organizedas follows. Section 2 describes the existing em-
pirical search engine of FFTW. In Section 3, we quantitatively analyze and model
the performance of several DFT algorithms and DFT codelets used in FFTW. Sec-
tion 4 presents the model-driven optimization engine for FFTW. In Section 5, we
comprehensively compare a modified FFTW using our model-driven optimization
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engine with the original FFTW on four different platforms. Finally, we conclude
and suggest future directions of research in Section 6.

2 Empirical Searching in FFTW

FFTW has a code generation phase and a runtime phase. In its code generation
phase, FFTW generates and compiles some C subroutines for small DFTs, while
in its runtime phase, FFTW conducts all of its empirical search. All FFTW’s
capabilities of adapting to different computer architectures is the result of its
runtime empirical search. As a result, the efficiency and accuracy of FFTW’s
runtime empirical search are relatively more important than that of other li-
braries. In this section, we overview these two phases and some important factors
that contribute to the high performance of FFTW.

2.1 FFTW Code Generation Phase

FFTW’s low-level optimization is performed within codelets [7]. Some of the
codelets are architecture independent(scalar codelets), while others specially take
advantage of data level parallelism by using SIMD instruction extensions such
as SSE, SSE2, Altivec etc. All these highly optimized straight-line style codelets
are generated using a special-purpose compiler called genfft written in OCaml.
For each small DFT size, genfft implements only one DFT algorithm which is
expected to be efficient for most architectures. DFT algorithms used in codelets
include the Cooley-Tukey algorithm [4], the Prime Factor algorithm [13, p619],
the Generic DFT algorithm and the Split-radix algorithm [5]. For each small size
DFT codelet, genfft first implements one of the above DFT algorithms. Then
it simplifies the initial code with a handful of common compiler optimizations
such as constant folding and common expression elimination. Two DFT-specific
optimizations, i.e. making all numerical constants positive and applying network
transposition, are also used. genfft schedules the instructions using a cache obliv-
ious algorithm to achieve the asymptotic optimum for register spilling. Finally,
the internal representation of the algorithm, written in OCaml, is un-parsed to
straight-line C code.

Most users do not need to use the codelet generator during installation. The
downloaded FFTW package includes pre-generated codelets for some DFT prob-
lem sizes from 2 to 64. Users can generate codelets of other sizes according to
their need using genfft.

2.2 FFTW Runtime Phase

FFTW performs empirical search in the runtime phase. When the FFTW library
is invoked by a user program, the FFTW search engine will apply a wide range
of DFT algorithms to the target problem, so as to span a huge enough search
space to cover the best solution. Among all O(nlog(n)) FFT algorithms, FFTW
implements those that are efficient and widely used on modern architectures,
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including Cooley-Tukey for composite size DFT, Rader’s [15] and Bluestein [2]
for prime size DFT problems. Generic DFT (or Direct DFT) O(n2) algorithm is
the most straightforward solution to DFT problems and is able to solve all DFT
sizes. The Generic DFT algorithm is generally much slower than FFT algorithms.
However, FFTW still implements it because it may be beneficial for some small
size problems. Each of the above algorithm may have several variants (referred
as different solvers). For instance, Cooley-Tukey has Decimation In Time (DIT)
and Decimation In Frequency (DIF), buffered and non-buffered solvers. By using
these different solvers, FFTW can generally decompose a large size DFT problem
into smaller size sub-problems and recursively solve those sub-problems. One
thing worthy noting is that even a prime size DFT can be decomposed into
composite size one by applying Rader or Bluestein. This decompose process
stops when the problem size is small enough and FFTW can solve it directly
with a codelet or a Generic DFT solver.

For a specific DFT problem, the search space of FFTW grows like a tree.
Search space can become extremely huge for large size DFT problems. Decision
of which solver to choose on each level generally relies on both this solver’s per-
formance and its child solvers’ performance. A fundamental question raised by
this scenario is how we should traverse this huge search space to find the best
solution. An easy answer to this question is exhaustive empirical search, which
guarantees the best solution within the search space. Indeed, FFTW applies four
strategies in its search engine, namely, Exhaustive, Patient, Measure and Esti-
mate, in the order of decreasing sizes of search space explored. The first three
strategies apply different possible solvers, run each version of the code, measure
the performance and select the best, which generally takes a long time to return
the best solution for a large DFT problem. Estimate mode uses simple heuristics
to estimate performance and hence predict the best solver combination, which
is often not accurate but is the fastest strategies. An ideal optimization tech-
nique for FFTW should generate plans that perform comparably with the plans
generated by Exhaustive strategy but have much less overhead.

3 Program Analysis and Prediction Models

A specific DFT implementation, i.e. plan, is a hierarchical combination of indi-
vidual solvers. In order to predict the combination’s performance, we start from
individual DFT algorithms. FFTW employs both Generic DFT algorithm and
several FFT algorithms that divide a DFT into child DFT problems. A recursive
implementation of an FFT algorithm has a complexity of O(nlog(n)) but the
kernel part has a complexity of O(n) if child problems are excluded. An example
of such kernel part is the twiddle factor multiplication in Cooley-Tukey. Our
models predict the performance of FFT kernels recursively and the performance
of Generic DFT as a whole. Codelets are highly efficient components in FFTW
and the correct choice of them is crucial to performance. Since each of them
has fixed number of instructions but frequently different strides. We predict its
performance with respect to the different strides.
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Generally, it is very hard to predict the performance of a program on any
modern architecture. However some efforts have been made on some special
programs, for example, various benchmark performance was predicted in [17] by
using an abstract machine model. Models for memory hierarchy can be combined
with empirical search to improve the performance of dense-matrix computations
as shown in [3]. More recently, a highly effective model-driven optimization en-
gine [19] was developed for ATLAS to predict the relative performance between
code versions that have different values for transformation parameters. These
above works have inspired us to propose an adaptive model-driven DFT per-
formance prediction technique in FFTW. Our model-driven search engine is
developed in three steps: (1) Program analysis and performance modeling using
a fractional abstract machine model and a codelet model. (2) Training models
on the target computers to determine their architecture dependent parameters
using regression. (3) Recursive performance prediction to choose the optimum.

We will not declare these models can always give a very accurate runtime
prediction for complex DFT plans on all architectures, nor do we need to do
that in FFTW. What we really care about is the relative performance between
different solvers, and we can tolerant some performance prediction errors while
still being able to pick a good solution.

3.1 Fractional Abstract Machine Model

As we mentioned before, FFTW has 4 major O(nlog(n)) FFT algorithms,
Cooley-Tukey, Bluestein, Rader and the Prime Factor algorithm. Among them,
Prime Factor, which involves less computation but more memory operation com-
paring to Cooley-Tukey, is not beneficial for modern architectures and is not
implemented in the high level optimization. The Cooley-Tukey implementation
is limited to the case where both factors are larger than 16. Otherwise, its kernel,
i.e. the twiddle factor multiplication, is incorporated into some special codelets
used in one of its child problems. We use a fractional abstract machine model
to predict the performance of the three FFT kernels and Generic DFT.

We start modeling the algorithms’ performance by putting them in an ideal
environment where all data are in L1 cache( there is no memory stalls) and hence
the performance is only determined by the type and the number of operations.
This assumption follows the work of Saavddral, et.al. [17], in which an abstract
machine model based on Fortran language was used to predict the performance
of benchmarks. Under the no-stall and no-parallelism assumption, the run time
of a program is a weighted linear combination of operations as shown in (1)

TA,M =
n∑

i=1

CA,iPM,i = CAPM . (1)

CA is the program characteristic vector and CA,i is the number of instruction
type i in algorithm A. A complete CA should include all instruction types that
appear in the code. Vector CA is obtained from a static analysis of the source
code. and part of it is already provided by FFTW. PM is the machine per-
formance vector that describes the cost of each instruction type on a specific
computer architecture.
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This model is an explicit model where each element of machine performance
vector is the latency of the corresponding instruction and the machine perfor-
mance vector can be explicitly measured from a set of micro-benchmarks or
collected from the processor manuals. This model is simplified by including only
the most expensive instructions such as floating point addition, multiplication,
division and memory accesses, which take the majority of the execution time.
Furthermore, we do not consider a very limited number of function call and
branch instructions in the kernel code. For the loop condition branches, most
processors can predict them quite well, and they incur almost no more overhead
than an integer operation.

Next we want to remove the no-parallelism and no-stall assumption. To do
so, we need to calculate the effective machine performance vector, that is, the
effective latencies for various operations. The effective latency depends on the
schedule of instructions and might be different from the absolute operation delay
defined in the processor manual. However, it is usually very difficult to deduct
effective operation latency from source code given the intrinsic latency of in-
structions because different instruction set architectures (ISA) and the complex
interaction between instructions, like instruction level parallelism (ILP). There-
fore, instead of treating the machine performance vector as a global invariant ,
we make it local to each FFT algorithm because it is determined by the unique
instruction schedule, stalls and ILP. As a result, each algorithm has its own
local performance vector on a particular computer architecture and it is em-
pirically determined using regression methods. The empirical determination of
algorithm-specific performance vectors consider both the intrinsic latency of the
corresponding instruction and the unique instruction mix and schedule of a FFT
algorithm kernel.

In summary the effective performance vector of an algorithm is determined
by the tuple (algorithm, architecture) and can be learned by first measuring a
number of TA,M , each being the performance of a specific application of the algo-
rithm A on machine M . The program characteristic vector CA can be obtained
by analyzing the code using common compiler parsing techniques. Finally the
performance vector PM is regressed from TA,M and CA using (1). The details of
the exact regression method are discussed in Section 4. One thing worth noting
is that all loop bounds in the algorithms can be statically determined, which
makes it easy to compute CA.

Finally, we take into consideration of different memory access latency for our
model. The typical two-level cache hierarchy of modern architecture has a very
important impact on performance of large size DFTs. A careful study of the
relation between cache misses and runtime reveals that we need to implement
the above model in three DFT size segments separately according to L2 cache
size. Figure 1 (a) shows the profile of average stalled cycles per memory access
and the total number of memory accesses in Bluestein kernel. These numbers are
collected using hardware counters. The L1 and L2 cache of the tested platform
are 64K and 6M bytes. When the Bluestein’s number of memory footprint is
less than roughly half of L2 size, the average stalled cycles per memory access is
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Fig. 1. Profile of Bluestein and Generic DFT on Intel Xeon

relatively small because most are caused by L1 cache misses. With the increase
of total number of memory accesses, hence the L2 miss rate, there is a significant
increase on average stalled cycles per memory access. The increase stops when
the memory footprint is larger than roughly four times of L2 cache size. More
profiles of other FFT solver kernels show similar change of average memory
access cost on different architectures. Since the cost of other instructions remain
unchanged for different DFT size, we only need to adjust the cost of memory
accesses according to DFT sizes. Unlike the work by Fraguela et.al. [6] that uses
an analytic memory model, we develop an empirical model to compute the cost
of memory accesses in the algorithms.

For Bluestein, Cooley-Tukey and Rader kernels, the average cost of memory
access can be treated as a constant for DFT sizes that are much smaller or much
larger than L2 cache, where L1 or L2 cache misses dominate the cost. A linear
interpolation of average memory access cost is used for the transition segments
where DFT memory footprint is around L2 cache size. The L2 transition region
can be determined by using hardware counter as shown in Figure 1 or by em-
pirical ways, i.e. capturing the nonlinear turning point in the runtime over DFT
sizes data sets. Our experiment results shown in Section 5 demonstrate that
our implicit abstract machine models achieve on average less than 10% error in
predicting the performance of FFT algorithms.

The only O(n2) algorithm used in FFTW is the Generic DFT algorithm. It
follows the direct definition of DFT. For a size n DFT problem, Generic DFT
works n times on a size 2n complex input/output data and accesses n2 complex
twiddle factors. Figure 1 (b) shows L1 and L2 cache misses and runtime over
n2 of Generic DFT on Intel Xeon for different problem size n. As indicated in
the analysis of Generic DFT and verified in Figure 1 (b), all major arithmetic
operations and memory accesses increase quadratically with n.

With the above observation, our fractional abstract machine model is simpli-
fied to a fractional quadratic model: t = q∗n2. Quadratic coefficient q is detected
separately on three regions. q is obtained using regression when memory foot-
prints is smaller than half or larger than four times of L2 cache. Interpolation
method is used for transition part around L2 cache size. Actually, our fractional
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performance model is an overkill for the application of Generic DFT in FFTW.
Because of the algorithm’s quadratic complexity, it can only be beneficial for
small problem sizes in which case all data is in L2 cache. FFTW hardcodes to
constrain the applicability of Generic DFT only for problem size n <= 173. Al-
though the first segment of our fractional quadratic model is enough for FFTW,
we still address the full version of this Generic DFT performance prediction
model for completeness.

3.2 Performance Model for Codelets

As described before, codelets are highly optimized straight-line style C code for
DFTs of small sizes or sizes of small factor. There are primarily two kinds of
codelets. One is direct codelets(n codelet) that solve size n DFT directly and
the other is twiddle codelets(t codelet) that solves DFTs of size n ∗ m following
Cooley-Tukey. FFTW version 3.2.1 includes codelets for size 2-16,20,25,32,64.
A direct codelet and each of the m iteration of a twiddle codelets have a fixed
number of instructions. Unlike other FFT algorithms, which are more likely to
be implemented on high level of a DFT decomposition and have smaller strides,
codelets can be implemented at any level of decomposition and may have large
strides because of Cooley-Tukey’s shuffle effect.

Figure 2 (a) shows the performance of direct codelet n1 25 with different
strides. We can make a couple of observations from the figure. Firstly, with the
increase of stride, the runtime of the codelet increase rapidly around the strides
of 2000-30000. In this region, the memory footprint of the codelet are roughly
from half to four times of L2 cache. Similar to other FFT algorithms kernels,
the performance of codelets decreases in this L2 transition region, as the ratio
of L2 cache misses per memory access increases. Performance of codelets are
relatively stable for regions where memory footprint is smaller than half of L2
cache or larger than four times of L2 cache because of relatively fixed ratio of
L1/L2 cache misses ratio per memory access. The second observation is that the
codelet with power-of-two strides performs up to 100% worse than with other
strides of similar sizes. This is not hard to understand because all cache feature
sizes are power-of-two and such a stride will easily result in extra conflict cache
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misses. This effect is not obvious for stride regions where memory footprint is
smaller than L1 cache. Power-of-two strides that are smaller than L1 will not
be mapped to the same L1 cache set causing less conflict misses and the cost
of L1 cache misses is relative small. Finally, the even but non-power-two strides
performance better than similar odd strides, this is probably because even stride
has better data alignment resulting in less number of physical memory access in
different memory levels.

Besides what we discussed above, strides with large power-of-two factors also
affect the performance of codelets. For example, if strideA = n = L2 size/4,
where n is power-of-two, every other 4 elements accessed will be mapped to the
same L2 cache set. If strideB = 5 ∗ n/4, then strideB has a large power-of-two
factor n/4 and every other 16 elements accessed will be mapped to the same
L2 cache set. With similar compulsory cache misses but less conflict misses, we
can expect the performance of even strides with large power-of-two factor will
be better than that of power-of-two strides but worse than other cases.

Accordingly, the performance model for codelets divides codelets strides into
three cases: power-of-two, odd and even strides. If memory access region is
smaller than half of L2 or larger than four times of L2, an averaged runtime
is used for that segment and each stride type. Interpolation method is used in
the L2 cache transition segment for each stride type. However, when stride n is
even and has a large power-of-two factor, it is treated differently. Assume stride
n = 2p ∗ m, where m is an odd number, and 2q < m < 2(q+1), then a coefficient
α = p/(p + q) is adopted to represent the percentage of power-two part in n.
Predicted runtime is adjusted according to (2).

T = Te + α ∗ (Tp − Te), (2)

where Tp and Te are the runtime of the codelet with close power-of-two strides
and even non-power-two strides. When the stride is not close to power-of-two or
numbers that has large power-of-two factor and it is smaller than L1 or much larger
than L2 cache size, an averaged runtime of that stride type is used. otherwise,
interpolation is used on odd/even strides depending on the stride type.

3.3 Performance Model for SIMD Codelets

The current version of FFTW, fftw-3.2.1, supports SIMD instruction extensions
such as SSE, SSE2 and Altivec. FFTW takes advantage of SIMD instructions at
the codelet level by including direct and twiddle SIMD codelets. FFTW uses two
implementation schemes, SIMD with vector length of two and SIMD with vector
length of four. SIMD with vector length of four takes advantage of parallelism
between different iterations of the DFT problem. On the other hand, SIMD with
vector of length-2 relies on the natural parallelism between real and imaginary
parts of the complex data, i.e. DFT (A + iB) = DFT (A) + iDFT (B), and is
applicable to more problems. The input/output data in memory is required to
be aligned correctly for SIMD instructions before computation.

Figure 2 (b) shows the performance of a SIMD direct codelet n1fv 25 on
Intel Xeon processor with SIMD extension SSE2 enabled. Despite that SIMD
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codelets perform better than the corresponding scalar versions, the performance
pattern of SIMD codelet for different strides types is similar. Therefore we still
measure performance of each SIMD codelet with power-of-two, odd and even
strides separately. When memory footprint of a codelet with certain stride is
smaller than half of L2 or larger than 4 times of L2, an averaged measurement
is used directly. Otherwise, the same interpolation method as what is used for
scalar codelets is applied for the estimation of the runtime for codelets with
arbitrary strides.

4 Model-Driven Optimization Engine for FFTW

In this section, we describe the training of the performance prediction models
and the replacement of the original empirical search engine in FFTW with our
model-driven optimization engine.

4.1 Training of DFT Performance Models

The integration of the model-driven optimization engine begins with the training
of performance models for a specific processor so that the values of parameters
depending on architectural features can be determined. The training is done only
once for a computer when each solver is registered into FFTW planner during
installation. We measure the performance of each solver for different sizes or
strides and get the model parameters using linear regression.

For the abstract machine model of each FFT algorithm kernel, we train on
10-20 randomly selected sizes. 10-20 is more than the number of independent
parameters in the model because some numbers of instructions are linearly de-
pendent, e.g. 2n multiplications and 3n additions in Cooley-Turkey algorithm,
which decreases the degrees of freedom of the model. For each training size, we
estimate the number of different instructions and measure the execution time
of the algorithm kernel. Then, we use weighted linear least square regression
to determine the optimal model parameters. Given n instruction types and m
training points, the jth actual runtime is TA,M,j. Since we care about the relative
runtime error instead of absolute error, the weighted residual in (3) is minimized
for the optimal solution.

m∑

j=1

∣∣∣∣

∑n
i=1 CA,i,jPM,i − TA,M,j

TA,M,j

∣∣∣∣
2

(3)

A solution to this weighted linear least square problem is given the matrix form
in (4), where W is a diagonal matrix and wi,i = 1

T 2
A,M,j

P = (CT WC)−1CT WT (4)

For the fractional quadratic model of Generic DFT and codelet performance
model, similar weighted linear least square regression is used for different size or
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stride segments of the model that are dominated by L1 or L2 misses. Only one
parameter, i.e. the quadratic coefficient qn or the runtime, is extracted in each
case from the regression. Linear interpolation of qn or runtime is used in the
transition segment of each model where the regression does not apply. One last
thing to mention is the variance of measurements between multiple executions of
a kernel or a codelet. The variance is typically less than 5% of the total runtime
and we minimize this effect by repeat each measurement several times and pick
the minimum. The training of all models typically takes just several seconds on
each experiment platform we use.

4.2 Replacement of the Original Empirical Search Engine

Our model-driven optimization engine still follows the workflow of recursive
search in FFTW. Only the performance measurement part is replaced by per-
formance prediction using our models. For each solver, given the specific DFT
size and stride, an estimated cost is generated by performance models. FFT
solvers having child DFT problems will return a sum of its kernel performance
prediction and that of the child problems which is obtained recursively. One
thing to note is that solvers that are derived from the same FFT algorithm but
with different implementation details, like buffered or non-buffered, will have
separate models. Like the original empirical search engine, dynamic programing
technique is still used to reduce redundant performance prediction and solution
search. By the end of the search, a plan with the least predicted cost is returned
as the optimum.

FFTW search engine has some internal search flags to constrain the search
space. These flags are mapped from user interface patience levels, namely Ex-
haustive, Patient, Measure and Estimate[9]. Exhaustive mode traverses the whole
FFTW search space and takes the longest time to return a plan, e.g. 503 seconds
for a DFT of size 27000 on a 2GHz Athlon desktop. Patient and Measure modes
exclude solvers that are unlikely to lead to the optimal solution, and hence re-
duce the search space. They generally find plans that perform worse than the
Exhaustive but spending less search time. Their search overhead, however, is
still huge for large problems and increases polynomially with the problem size.
Estimate mode further reduces the search space and uses the estimated total
number of floating point operations as the metric of best plan. Clearly, such a
strategy oversimplifies a machine model by treating different operations with the
same delay and neglecting other factors such as ILP and memory access stalls.
For each of the above cases, if SIMD extension is enabled, the search space will
become larger because extra SIMD codelets are included and therefore it will
take longer to return a plan.

We use the model-driven search engine on the search space of Exhaustive mode
and it greatly reduces the search time. Similarly, search time will be reduced
proportionally if we use our model in Patient or Measure mode.
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5 Evaluation

In this section, we describe the results of our experiment by comparing FFTW
version 3.2.1 with a modified version using our model-driven search engine. We
conduct the comparison on four platforms: AMD Athlon, Intel Xeon, IBM Pow-
erPC and Sun SPARC. The configurations of the four architectures are shown in
Table 1. The comparison is made in three aspects. We first show the accuracy of the
performance prediction of three FFT algorithm kernels, Generic DFT algorithm,
a scalar codelet and a SIMD codelet. Furthermore, the best DFT plan’s perfor-
mance for different sizes are compared among different search strategies. Finally,
the search time spent by different strategies for different DFT sizes are compared.

5.1 Performance Prediction of Individual Algorithms

In this section, we show the accuracy of the fractional abstract machine model,
fractional quadratic model and codelet performance model by comparing the

Table 1. Test Platforms Configuration

Athlon64 X2 Xeon 5405 PowerPC 970 UltraSparc IIIi
Frequency 2 GHz 2 GHz 2.3 GHz 1.06 GHz
L1 Data Cache 64 KB 64 KB 32 KB 64 KB
L2 Cache 1 MB 6 MB 512KB 1 MB
OS linux 2.6.24 linux 2.6.23 linux 2.6.24 SunOS 5.10
SIMD 3DNow!(not supported) SSE2 Altivec N.A.
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Fig. 3. Performance prediction of individual algorithms



152 L. Gu and X. Li

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  100  1000  10000  100000  1e+06

N
o
rm

a
li

z
e
d
 T

im
e

Stride

(a) n1_25 

Actual execution time
Predicted execution time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10  100  1000  10000  100000  1e+06

N
o
rm

a
li

z
e
d
 T

im
e

Stride

(b) n1fv25 

Actual execution time
Predicted execution time

Fig. 4. Performance prediction of Scalar and SIMD Codelets

actual runtime and the predicted runtime of the Bluestein , Rader, Cooley-Tukey,
the Generic DFT and scalar/SIMD codelets. Figure 3 shows the performance pre-
diction for the four algorithms on Xeon. All predicted runtime is normalized with
respect to the corresponding actual runtime. We compare the performance pre-
diction for DFTs and codelets with sizes/strides up to 106. From the plots we can
see these performance prediction models are very accurate. On Xeon, the average
relative errors are less than 10% and similar results are got from other platforms.
Figure 4 shows the performance prediction for scalar and SIMD codelets on Xeon
with different strides. Generally, we have about 10% average prediction error and
the worst is around 25%. As we will show later, the accuracy of our prediction
model is good enough to distinguish good from bad plans in most cases.

5.2 Overall DFT Plan Performance

Performance comparison is made among our model-driven optimization engine,
FFTW Exhaustive and Estimate mode. We compare the runtime of the best DFT
plans found by these optimization methods. Because we only care about relative
performance, all runtime is normalized with respect to the runtime of Exhaustive
mode. Figure 5 shows the performance comparison among different DFT plans
on four test architectures with SIMD disabled. All three search engines perform
good (at most 10% − 20% slower than the best) for most small size DFTs.
While for large problem sizes on Xeon, Estimate plans generally run 10%− 20%
slower than Exhaustive plans, with occasional 50% slowdown. Large size DFT
plans on AMD found by the Estimate mode run 20% − 130% slower than the
plans found by the Exhaustive mode. Our model-driven optimization engine
achieves comparable performance with the Exhaustive mode. On average, our
model-driven optimization engine achieves 94.4%, 94.8%, 93.6% and 94% of the
performance of FFTW Exhaustive on these four platforms. For the cases where
our search engine does not performance well, it is either because our model fail
to give an accurate runtime prediction or because our actual search space is a
bit smaller than Exhaustive mode. We have not extended our work to real(non-
complex) DFT solvers which sometimes are used in complex DFTs.
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Fig. 5. Scalar performance comparison among FFTW Exhaustive, Estimate mode and
model-driven prediction

Figure 6 shows the performance of the three search strategies with SIMD ex-
tension enabled. Among the four platforms we tested, Intel Xeon supports SSE2
for double precision DFT and PowerPC970 supports Altivec for single precision.
3DNow of AMD is no longer supported in the current version of FFTW. Our
performance model outperforms the Estimate mode over the whole test region.
The model-driven strategy performs comparably with Exhaustive mode for most
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model-driven optimization

sizes but the performance of Estimate mode is about 20% to 30% slower than the
best. This is because the Estimate mode relies on instruction counts to optimize
the performance of codelets, which is inapplicable in the case of SIMD.

5.3 Optimization Time

In this section, we compare the search time that the three optimization engines
use to find the best DFT plan. Again, the time is normalized with respect to the
search time of Exhaustive mode. This search time excludes the initializing and
training time of our model, which is about several seconds and spent only once
for each platform instead of each DFT problem.

Figure 7 shows the search time spent by using model-driven, Exhaustive and
Estimate optimization engines on two architectures. For limited space, we do
not show the similar results on the other two platforms. Our model-driven opti-
mization engine spends only about 0.1% to 10% of the time spent by Exhaustive
mode. On the other hand, compared with the Estimate mode, our model-driven
engine spends about 100 times more on average. One of the main reasons is that
the Estimate engine runs on a much smaller search space than the Exhaustive
search space, which our optimization engine needs to walk through. However,
the absolute value of the search time using our search strategy is small and is
within several seconds even for extremely large DFT sizes.

In summary, our model-driven search engine achieves about 94% of the per-
formance of Exhaustive search engine and uses only less than 5% of its search
time. Our model-driven optimization engine achieves the goal of model based
optimization, that is, delivering performance comparable to that of exhaustive
search but using much smaller amount of search time.

6 Conclusion

In this paper, we propose a model-driven optimization engine for FFTW. This
optimization has successfully reduced the empirical search time by developing
performance prediction models for several DFT algorithms and codelets used in
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FFTW and integrating them into a model-driven search engine. The most im-
portant conclusion we can draw from this work is that model-driven optimization
can be effectively applied to a complex problem such as the generation of highly
efficient implementation of DFT. This work also provides insight on why a DFT
solution found by FFTW is the fastest by breaking down the overall performance
into some architectural-dependent components. Besides that, reducing searching
time means more for FFTW than other libraries, because search time is spent
on every DFT size and every runtime in FFTW. Our model-driven optimiza-
tion engine achieves more than 95% of the performance of the code found by
exhaustive search while using less than 5% of the optimization time.

This work will be more complete if it is extended to real( non-complex) DFT
algorithms. It will also be interesting if choices of best solvers on each search node
can be directly given by some rules that are learned from a one-time performance
training. Furthermore, it is still a challenge to generalize this work and apply
model-driven optimization on other complicated scientific libraries.
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