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Abstract

The growing complexity of modern processors has made
the generation of highly efficient code increasingly difficult.
Manual code generation is very time consuming, but it is of-
ten the only choice since the code generated by today’s com-
piler technology often has much lower performance than
the best hand-tuned codes. A promising code generation
strategy, implemented by systems like ATLAS, FFTW, and
SPIRAL, uses empirical search to find the parameter values
of the implementation, such as the tile size and instruction
schedules, that deliver near-optimal performance for a par-
ticular machine. However, this approach has only proven
successful on scientific codes whose performance does not
depend on the input data. In this paper we study machine
learning techniques to extend empirical search to the gen-
eration of sorting routines, whose performance depends on
the input characteristics and the architecture of the target
machine.

We build on a previous study that selects a ”pure” sort-
ing algorithm at the outset of the computation as a func-
tion of the standard deviation. The approach discussed in
this paper uses genetic algorithms and a classifier system
to build hierarchically-organized hybrid sorting algorithms
capable of adapting to the input data. Our results show that
such algorithms generated using the approach presented in
this paper are quite effective at taking into account the com-
plex interactions between architectural and input data char-
acteristics and that the resulting code performs significantly
better than conventional sorting implementations and the
code generated by our earlier study. In particular, the rou-
tines generated using our approach perform better than all
the commercial libraries that we tried including IBM ESSL,
INTEL MKL and the C++ STL. The best algorithm we have
been able to generate is on the average 26% and 62% faster
than the IBM ESSL in an IBM Power 3 and IBM Power 4,
respectively.

∗This work was supported in part by the National Science Foun-
dation under grant CCR 01-21401 ITR; by DARPA under contract
NBCH30390004; and by gifts from INTEL and IBM. This work is not
necessarily representative of the positions or policies of the Army or Gov-
ernment.

1 Introduction
Although compiler technology has been extraordinarily

successful at automating the process of program optimiza-
tion, much human intervention is still needed to obtain high-
quality code. One reason is the unevenness of compiler im-
plementations. There are excellent optimizing compilers for
some platforms, but the compilers available for some other
platforms leave much to be desired. A second, and perhaps
more important, reason is that conventional compilers lack
semantic information and, therefore, have limited transfor-
mation power. An emerging approach that has proven quite
effective in overcoming both of these limitations is to use
library generators. These systems make use of semantic in-
formation to apply transformations at all levels of abstrac-
tions. The most powerful library generators are not just pro-
gram optimizers, but true algorithm design systems.

ATLAS [21], PHiPAC [2], FFTW [7] and SPIRAL [23]
are among the best known library generators. ATLAS and
PHiPAC generate linear algebra routines and focus the op-
timization process on the implementation of matrix-matrix
multiplication. During the installation, the parameter val-
ues of a matrix multiplication implementation, such as tile
size and amount of loop unrolling, that deliver the best per-
formance are identified using empirical search. This search
proceeds by generating different versions of matrix multi-
plication that only differ in the parameter value that is being
sought. An almost exhaustive search is used to find the best
parameter values. The other two systems mentioned above,
SPIRAL and FFTW, generate signal processing libraries.
The search space in SPIRAL or FFTW is too large for ex-
haustive search to be possible. Thus, these systems search
using heuristics such as dynamic programming [7, 12], or
genetic algorithms [19].

In this paper, we explore the problem of generating high-
quality sorting routines. A difference between sorting and
the algorithms implemented by the library generators just
mentioned is that the performance of the algorithms they
implement is completely determined by the characteristics
of the target machine and the size of the input data, but not
by other characteristics of the input data. However, in the
case of sorting, performance also depends on other factors
such as the distribution of the data to be sorted. In fact, as
discussed below, multiway merge sort performs very well
on some classes of input data sets while radix sort performs
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poorly on these sets. For other data set classes we observe
the reverse situation. Thus, the approach of today’s gener-
ators is useful to optimize the parameter values of a sorting
algorithm, but not to select the best sorting algorithm for
a given input. To adapt to the characteristics of the input
set, in [14] we used the distribution of the input data to se-
lect a sorting algorithm. Although this approach has proven
quite effective, the final performance is limited by the per-
formance of the sorting algorithms - multiway merge sort,
quicksort and radix sort are the choices in [14] - that can be
selected at run time.

In this paper, we extend and generalize our earlier ap-
proach [14]. Our new library generator produces imple-
mentations of composite sorting algorithms in the form of
a hierarchy of sorting primitives whose particular shape ul-
timately depends on the architectural features of the target
machine and the characteristics of the input data. The intu-
ition behind this is that different sorting algorithms perform
differently depending on the characteristic of each partition
and as a result, the optimal sorting algorithm should be the
composition of these different sorting algorithms. Besides
the sorting primitives, the generated code contains selec-
tion primitives that dynamically select the composite algo-
rithm as a function of the characteristics of the data in each
partition. During the installation time, our new library ap-
proach searches for the function that maps the characteris-
tics of the input to the best sorting algorithms using genetic
algorithms [3, 8, 16, 22]. Genetic algorithms have also been
used to search for the appropriate formula in SPIRAL [19]
and for traditional compiler optimizations [4, 6, 20].

Our results show that our approach is very effective. The
best algorithm we have generated is on the average 36%
faster than the best “pure” sorting routine, being up to 45%
faster. Our sorting routines perform better than all the com-
mercial libraries that we have tried including IBM ESSL,
INTEL MKL and the STL of C++. On the average, the gen-
erated routines are 26% and 62% faster than the IBM ESSL
in an IBM Power 3 and IBM Power 4, respectively.

The rest of this paper is organized as follows. Section 2
discusses the primitives that we use to build sorting algo-
rithms. Section 3 explains why we chose genetic algorithms
for the search and explains some details of the algorithm
that we implemented. Section 4 shows performance results.
Section 5 outlines how to use genetic algorithms to generate
a classifier sytem for sorting routines, and finally Section 6
presents out conclusion.

2 Sorting Primitives

In this section, we describe the building blocks of our
composite sorting algorithms. These primitives were se-
lected based on experiments with different sorting algo-
rithms and the study of the factors that affect their perfor-
mance. A summary of the results of these experiments is
presented in Figure 1, which plots the execution time of
three sorting algorithms against the standard deviation of
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Figure 1: Performance impact of the standard deviation when
sorting 2M and 16M keys.

the keys to be sorted. Results are shown for Sun Ultra-
Sparc III, and for two data sets sizes, 2 million(M) and 16
million(M). The three algorithms are: quicksort [10, 17],
a cache-conscious radix sort (CC-radix) [11], and multi-
way merge sort [13]. Figure 1 shows that for 2M records,
the best sorting algorithm is either quicksort or CC-radix,
while, for 16M records, multiway merge or CC-radix are
the best algorithms. The input characteristics that determine
when CC-radix is the best algorithm is the standard devia-
tion of the records to be sorted. CC-radix is better when
the standard deviation of the records is high because if the
values of the elements in the input data are concentrated
around some values, it is more likely that most of these el-
ements end up in a small number of buckets. Thus, more
partition passes will have to be applied before the buckets
fit into the cache and therefore more cache misses are in-
curred during the partitioning. Performance results on other
platforms show that the general trend of the algorithms is al-
ways the same, but the performance crossover point occurs
at different points on different platforms.

It has been known for many years that the performance
of Quicksort can be improved when combined with other al-
gorithms [17]. We confirmed experimentally that when the
partition is smaller than a certain threshold (whose value
depends on the target platform), it is better to use insertion
sort or store the data in the registers and sort by exchang-
ing values between registers [14], instead of continuing to
recursively apply quicksort. Register sort is a straight-line
code algorithm that performs compare-and-swap of values
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stored in processor registers [13].
Darlington [5] introduced the idea of sorting primitives

and identify merge sort and quicksort as two sort primitives.
In this paper, we search for an optimal algorithm by building
composite sorting algorithms. We use two types of primi-
tives to build new sorting algorithms: sorting and selection
primitives. Sorting primitives represent a pure sorting algo-
rithm that involves partitioning the data, such as radix sort,
merge sort and quicksort. Selection primitives represent a
process to be executed at runtime that dynamically decide
which sorting algorithm to apply.

The composite sorting algorithm considered in this paper
assume that the data is stored in consecutive memory loca-
tions. The data is then recursively partitioned using one of
four partitioning methods. The recursive partitioning ends
when a leaf sorting algorithm is applied to the partition. We
now describe the four partitioning primitives followed by
a description of the two leaf sorting primitives. For each
primitive we also identify the parameter values that must be
searched by the library generator.
1. Divide − by − V alue (DV)

This primitive corresponds to the first phase of quicksort
which, in the case of a binary partition, selects a pivot
and reorganizes the data so that the first part of the vec-
tor contains the keys with values smaller than the pivot,
and the second part those that are greater than or equal to
the pivot. In our work, the DV primitive can partition the
set of records into two or more parts using a parameter np
that specifies the number of pivots. Thus, this primitive
divides the input set into np + 1 partitions and rearranges
the data around the np pivots.

2. Divide − by − position (DP)

This primitive corresponds to multiway merge sort and
the initial step breaks the input array of keys into two or
more partitions or subsets of the same size. It is implicit
in the DP primitive that, after all the partitions have been
processed, the partitions are merged to obtain a sorted ar-
ray. The merging is accomplished using a heap or priority
queue [13]. The merge operation works as follows. At
the beginning the leaves of the heap are the first elements
of each partition. Then, pairs of leaves are compared, the
smaller is promoted to the parent node, and a new element
from the partition that contained the promoted element be-
comes a leaf. This is done recursively until the heap is full.
After that, the element at the top of the heap is extracted,
placed in the destination vector, a new element from the
corresponding subset is promoted, and the process repeats
again. Figure 2 shows a picture of the heap.

The heap is implemented as an array where siblings are
located in consecutive positions. When merging using the
heap, the operation of finding the child with the smallest
key is executed repetitively. If the number of children of
each parent is smaller than the number of nodes that fit in
a cache line, the cache line will be under-utilized. To solve

...

...
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SortedSorted
Subset Subset Subset Subset

Sorted Sorted

2*p−1 nodes

p Subsets

Figure 2: Multiway Merge.

this problem we use a heap with a fanout that is a multiple
of A/r where A is the size of the cache line and r the size
of each node. That is, each parent of our heap has A/r
children [14]. This takes maximum advantage of spatial
locality. Of course, for this to be true, the array structure
implementing the heap needs to be properly aligned.

The DP primitive has two parameters: size that specifies
the size of each partition, and fanout, that specifies the
number of children of each node of the heap.

3. Divide − by − radix (DR)

The Divide-by-Radix primitive corresponds to a step of
the radix sort algorithm. The DR primitive distributes the
records to be sorted into buckets depending on the value
of a digit in the record. Thus, if we use a radix of r bits,
the records will be distributed into 2r sub-buckets based
on the value of a digit of r bits. Our implementation relies
on the counting algorithm [13] which, for each digit, pro-
ceeds in three steps: the first step computes a histogram
with the number of keys per bucket, the second computes
partial sums that identify the location in the destination
vector where each bucket starts, and a final step moves the
keys from the source vector to the destination one.

The DR primitive has a parameter radix that specifies the
size of the radix in number of bits. The position of the
digit in the record is not specified in the primitive, but is
determined at run time as follows. Conceptually, a counter
is kept for each partition. The counter identifies the posi-
tion where the digit to be used for radix sort starts. Every
partition that is created inherit the counter of its parents.
The counter is initialized at zero and is incremented by
the size of the radix (in number of bits) each time a DR
primitive is applied.

4. Divide − by − Radix − Assuming − Uniform −
Distribution (DU)

This primitive is based on the previous DR primitive, but
assumes that a digit is uniformly distributed. The compu-
tation of the histogram and the partial sum steps in the DR
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primitive are used to determine the number of keys of each
possible value and reserve the corresponding space in the
output vector. However, these steps (in particular com-
puting the histogram) are very costly. To avoid this over-
head, we can assume that a digit is uniformly distributed
and that the number of keys for each possible value is the
same. Thus, with the DU primitive, when sorting an input
with n keys and a radix of size r, each sub-bucket is as-
sumed to contain n

2r keys. In practice, some sub-buckets
will overflow the space reserved, because the distribution
of the input vector is not totally uniform. However, if the
overhead to handle the cases when there is overflow is less
than the overhead to compute the histogram and the accu-
mulation step, the DU primitive will run faster than the DR
one. As in DR, the DU primitive has a radix parameter.

Apart from these primitives we also have recursive prim-
itives that will be applied until the partition is sorted. We
call them leaf primitives.

5. Leaf − Divide − by − V alue (LDV)

This primitive specifies that the DV primitive must be ap-
plied recursively to sort the partitions. However, when the
size of the partition is smaller than a certain threshold, this
LDV primitive uses an in-place register sorting algorithm
to sort the records in that partition. LDV has two param-
eters: np, which specifies the number of pivots as in the
DV primitive, and threshold, which specifies the partition
size below which the register sorting algorithm is applied.

6. Leaf − Divide − By − Radix (LDR)

This primitive specifies that the DR primitive is used to
sort the remaining subsets. LDR has two parameters:
radix and threshold. As in LDV, the threshold is used
to specify the size of the partition where the algorithm
switches to register sorting.

Notice that although the number and type of sorting
primitives could be different, we have chosen to use these
six because they represent the pure algorithms that obtained
better results in our experiments. Other sorting algorithms
such as shell sort never obtained the performance of the
sorting algorithms selected here. However, they could be
included in our framework.

All the sorting primitives have parameters whose most
appropriate value will depend on architectural features of
the target machine. Consider, for example, the DP primi-
tive. The size parameter is related to the size of the cache,
while the fanout is related to the number of elements that
fit in a cache line. Similarly, the np and radix of the DV
and DR primitives are related to the cache size. However,
the precise value of these parameters cannot be easily deter-
mined a priori. For example, the relation between np and
the cache size is not straightforward, and the optimal value
may also vary depending on the number of keys to sort. The
parameter threshold is related to the number of registers.

In addition to the sorting primitives, we also use selec-
tion primitives. The selection primitives are used at run-
time to determine, based on the characteristics of the in-
put, the sorting primitive to be applied to each sub-partition
of a given partition. Based on the results shown in Fig-
ure 1, these selection primitives were designed to take into
account the number of records in the partition and/or their
standard deviation. These selection primitives are:

1. Branch − by − Size (BS)

As shown in Figure 1, the number of records to sort is
an input characteristic that determines the relative perfor-
mance of our sorting primitives. This BS primitive is used
to select different paths based of the size of the partition.
Thus, this BS primitive, has one or more (size1, size2, ...)
parameters to choose the path to follow. The size values
are sorted and used to select n + 1 possibilities (less than
size1, between size1 and size2, ..., larger than sizen).

2. Branch − by − Entropy (BE)

Besides the size of the partition, the other input character-
istic that determines the performance of the above sorting
primitives is the standard deviation. However, instead of
using the standard deviation to select the different paths to
follow we use, as was done in [14], the notion of entropy
from information theory.

There are several reasons to use entropy instead of stan-
dard deviation. Standard deviation is expensive to com-
pute since it requires several floating point operations per
record. Although, as can be seen in Figure 1, the standard
deviation is the factor that determines when CC-radix is
the best algorithm, in practice the behavior of CC-radix
depends, more than on the standard deviation of the the
records to sort, on how much the values of each digit are
spread out. The entropy of a digit position will give us
this information. CC-radix sort distributes the records ac-
cording to the value of one of the digits. If the values of
this digit are spread out, the entropy will be high and the
sizes of resulting sub-buckets will be close to each other,
and, as a result, all the sub-buckets will be more likely to
fit in the cache. Consequently, each sub-bucket could be
completely sorted with few cache misses. If, however, the
entropy is low, most of the records will end up in the same
sub-bucket, which increase the likelihood that one or more
sub-buckets will not fit in cache. Sorting these sub-buckets
could require many cache misses.

To compute the entropy, at runtime we need to scan the
input set and compute the number of keys that have a par-
ticular value for each digit position. For each digit, the en-
tropy is computed as

∑
i −Pi ∗ log2 Pi, where Pi = ci/N ,

ci is the number of keys with value i in that digit, and
N is the total number of keys. The result is a vector
of entropies, where each element of the vector represents
the entropy of a digit position in the key. We then com-
pute an entropy scalar value S, as the inner product of the
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computed entropy vector (Ei) and a weight vector (Wi):
S =

∑
i Ei ∗ Wi. The resulting S value is used to se-

lect the path to proceed with the sorting. The scalar en-
tropy value and the weight vector are the parameter val-
ues needed for this primitive. The weight vector measures
the impact of each digit on the performance of radix sort.
During the training phase, it can be updated with the per-
formance data using the Winnow algorithm. More details
can be found in [14].

Type Prim. Parameters
DV np, number of pivots
DP size, partition size

fanout of the heap
Sorting DR radix size in bits

DU radix size in bits
LDV np, number of pivots

threshold for in-place register sort
LDR radix size in bits

threshold for in-place register sort
BS n, there are n + 1 branches

Selection size, n size-thresholds for the n + 1 branches
BE n, there are n + 1 branches

entropy, n scalar-entropy-value-thresholds
for the n + 1 branches and the weight vector.

Table 1: Summary of primitives and their parameters.

The primitives and their parameters are listed in Table 1.
We will use the eight primitives presented here (six sorting
primitives and two selection primitives) to build sorting al-
gorithms. Figure 3 shows an example where different sort-
ing algorithms are encoded as a tree of primitives. Figure 3-
(a) shows the encoding corresponding to a pure radix sort
algorithm, where all the partitions are sorted using the same
radix of 25. Our DR primitive sorts the data according to
the value of the left-most digit that has not been processed
yet. Figure 3-(b) shows the encoding of an algorithm that
first partitions according to the value of the left-most base
28 digit and then sorts each resulting bucket using radix sort
with radix size of either 24 or 28 depending on the number
of records of each of the buckets produced by the top level
radix sort. Radix 24 is used when the number of records is
less than S1 and 28 otherwise. Notice that when the result-
ing partition has fewer than 16 elements the in-place register
sorting algorithm is applied. Figure 3-(c) shows the encod-
ing of a more complex algorithm. The input set is initially
partitioned into subsets of 32K elements each. For each
partition, the entropy is computed as explained above and,
based on the computed value, a different algorithm is ap-
plied. If the entropy is less than V 1, a quicksort is applied.
This quicksort turns into an in-place register sorting when
the partition contains 8 or fewer elements. If the entropy is
more than V 2 (with V 2 > V 1) a radix sort using radix 28

is applied. Otherwise, if the entropy is between V 1 and V 2,
another selection is made based on the size of the partition.
If the size is less than S1, a radix sort with radix 28 is ap-
plied. Otherwise a three-way quicksort is applied. At the

end, each subset is sorted, but they need to be sorted among
themselves. For that, the initial subsets are merged using a
heap like the one in Figure 2, with a fanout of 4, which is
the parameter value of the DP primitive.

LDR   r=5, t=0

(a) CC−radix with
radix 5 for all the digits

LDV np=2, t=8 LDR r=8, t=16
DR r=8

B Size

LDR r=4, t=16 LDR r=8, t=16 

(b)CC− radix with 
 different radix sizes (c) Composite sorting algorithm

 B Entropy
> V2

LDR r=8, t=16 LDV np=2, t=8

< S1< S1

< V1

B Size

DP s=32K, f=4 

>= S1 >=S1

>=V1 && <=V2

Figure 3: Tree based encoding of different sorting algorithms.
The primitives we are using cannot generate all possible

sorting algorithms, but by combining them they can build a
much larger space of sorting algorithms than that containing
only the traditional pure sorting algorithms like quicksort or
radix sort. Also, by changing the parameters in the sorting
and selection primitives, we can adapt to the architecture
of the target machine and to the characteristics of the input
data.

3 Gene Sort
In this section we explain the use of genetic algorithms

to optimize sorting. We first explain why we believe that
genetic algorithms are a good search strategy and then we
explain how to use them.

3.1 Why Use Genetic Algorithms?

Traditionally, the complexity of sorting algorithms has
been studied in terms of the number of comparisons exe-
cuted assuming a specific distribution of the input, such as
the uniform distribution [13]. The studies assume that the
time to access each element is the same. This assumption,
however, is not true in today’s processors that have a deep
cache hierarchy and complex architectural features. Since
there are no analytical models of the performance of sorting
algorithms in terms of architectural features of the machine,
the only way to identify the best algorithm is by searching.

Our approach is to use genetic algorithms to search for
an optimal sorting algorithm. The search space is defined
by composition of the sorting and selection primitives de-
scribed in Section 2 and the parameter values of the prim-
itives. The objective of the search is to identify the hierar-
chical sorting that better fits the architectural features of the
machine and the characteristics of the input set.

There are several reasons why we have chosen genetic
algorithms to perform the search.

• Using the primitives in Section 2, the sorting algorithms
can be encoded as a tree in Figure 3. Genetic algorithms
can be easily used to search in this space for the most ap-
propriate tree shape and parameter values.
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• The search space of sorting algorithms that can be derived
using the eight primitives in Section 2 is too large for ex-
haustive search.

• Genetic algorithms preserve the best subtrees and give
those subtrees more chances to reproduce. Sorting algo-
rithms can take advantage of this since a sub-tree is also a
sorting algorithm.In our case, genetic programming maintains a popula-

tion of tree genomes. Each tree genome is an expression
that represents a sorting algorithm. The probability that a
tree genome is selected for reproduction (called crossover)
is proportional to its level of fitness. The better genomes
are given more opportunities to produce offsprings. Genetic
programming also randomly mutates some expressions to
create a possibly better genome.

3.2 Optimization of Sorting with Genetic Algorithms

3.2.1 Encoding

As discussed above we use a tree based schema where the
nodes of the tree are sorting and selection primitives.

3.2.2 Operators

Genetic operators are used to derive new offsprings and in-
troduce changes in the population. Crossover and muta-
tion are the two operators that most genetic algorithms use.
Crossover exchanges subtrees from different trees. Muta-
tion operator applies changes to a single tree. Next, we ex-
plain how we apply these two operators.

Crossover
The purpose of crossover is to generate new offsprings

that have better performance than their parents. This is
likely to happen when the new offsprings inherit the best
subtrees of the parents. In this paper we use single-point
crossover and we choose the crossover point randomly. Fig-
ure 4 shows an example of single-point crossover.

DR

DV DR

BE

LDV

LDRLDR

BE

Parent trees Offsprings

DR DV

LDVDR

Figure 4: Crossover of sorting trees.

Mutation
Mutation works on a single tree where it produces some

changes and introduces diversity in the population. Muta-
tion prevents the population from remaining the same after
any particular generation [1]. This approach, to some ex-
tent, allows the search to escape from local optima. Muta-
tion changes the parameter values hoping to find better ones.
Our mutation operator can perform the following changes:
1. Change the values of the parameters in the sorting and

selection primitive nodes. The parameters are changed
randomly but the new values are close to the old ones.

2. Exchange two subtrees. This type of mutation can help
in cases like the one shown in Figure 5-(a) where a subtree
that is good to sort sets of less than 4M records is being
applied to larger sets. By exchanging the subtrees we can
correct this type of misplacement.

3. Add a new subtree. This type of mutation is helpful
when more partitioning is required along one path of the
tree. Figure 5-(b) shows an example of this mutation.

4. Remove a subtree. Unnecessary subtrees can be deleted
with this operation.

DP s=4M records

Optimal subtee

for 4 M records

Optimal subtee

for 4 M records

Optimal subtee

for 4 M records

Optimal subtee

for 4 M records

<=4M >4M

BS

<=4M >4M

BS

Add a new

subtree
Exchange subtrees

Subtree A

Subtree A

(a) (b)

Figure 5: Mutation operator. (a)-Exchange subtrees. (b)-Add
a new subtree.

3.2.3 Fitness Function

The fitness function determines the probability of an indi-
vidual to reproduce. The higher the fitness of an individual,
the higher the chances it will reproduce and mutate.

In our case, performance will be used as the fitness func-
tion. However, the following two considerations have been
taken into account in the design of our fitness function:

1. We are searching for a sorting algorithm that performs
well across all possible inputs. Thus, the average perfor-
mance of a tree is its base fitness. However, since we
also want the sorting algorithm to consistently perform
well across inputs, we penalize trees with a variable per-
formance by multiplying the base fitness by a factor that
depends on the standard deviation of its performance when
sorting the test inputs.

2. In the first generations, the fitness variance of the popula-
tion is high, That is, a few sorting trees have a much better
performance than the other ones. If our fitness function
was directly proportional to the performance of the tree,
most of the offsprings would be the descendants of these
few trees, since they would have a much higher probabil-
ity to reproduce. As a result, these offsprings would soon
occupy most of the population. This could result in prema-
ture convergence, which would prevent the system from
exploring areas of the search space outside the neighbor-
hood of the highly fit trees. To address this problem, our
fitness function uses the performance order or rank of the
sorting trees in the population. By using the performance
ranking, the absolute performance difference between trees
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Genetic Algorithm {
P = Initial Population
While (stopping criteria is false) do {

• Apply mutation and crossover and
generate set M of k individuals

• P = P ∪ M
• S = Input sets with different sizes and

different standard deviations
• Use each genome of P to sort each element of S
• Apply fitness function to remove the k

least fit individuals from P.
}} Figure 6: Genetic Algorithm

is not considered and the trees with lower performance
have more probability to reproduce than if the absolute per-
formance value had been used. This avoids the problem of
early convergence and of convergence to a local optimum.

3.2.4 Evolution Algorithm

An important decision is to choose the appropriate evolution
algorithm. The evolution algorithm determines how many
offsprings will be generated, how many individuals of the
current generation will be replaced and so on.

In this work we use a steady-state evolution algorithm.
For each generation, only a small number of the least fit
individuals in the current generation are replaced by the new
generated offsprings. As a result, many of the individuals
from the previous population are likely to survive.

Figure 6 shows the code for the steady-state evolution al-
gorithm that we use to generate a sorting routine. Each gen-
eration, a fixed number of new offsprings will be generated
through crossover and some individuals will mutate as ex-
plained above. The fitness function will be used to select the
individuals to which the mutation and crossover operators
are applied. Then, several input sets with different charac-
teristics (standard deviation and number of records) will be
generated and used to train the sorting trees of each gener-
ation. New inputs are generated for each iteration. The per-
formance obtained by each sorting algorithm will be used
by the fitness function to decide which are the least fit indi-
viduals and remove them from the population. The number
of individuals removed is the same as the number gener-
ated. This way, the number of individuals remains constant
across generations.

Several criteria can be chosen as stopping criteria such
as stop after a number of generations, or stop when the per-
formance has not improved more than a certain percentage
in the last number of generations. The stopping criteria and
initial population that we use will be discussed in the next
section.

4 Evaluation of Gene Sort
In this section we evaluate our approach of using genetic

algorithms to optimize sorting algorithms. In Section 4.1
we discuss the environmental setup. Section 4.2 presents

performance results, and Section 4.3 presents the sorting
trees produced for each target platform and analyzes their
characteristics.

4.1 Environmental Setup

We evaluated our approach on seven different platforms:
AMD Athlon MP, Sun UltraSparc III, SGI R12000, IBM
Power3, IBM Power4, Intel Itanium 2, and Intel Xeon. Ta-
ble 3 lists for each platform the main architectural param-
eters, the operating system, the compiler and the compiler
options used for the experiments.

For the evaluation we follow the genetic algorithm in
Figure 6. Table 2 summarizes the parameter values that we
have used for the experiments. We use a population of 50
sorting trees, and we let them evolve using the steady-state
algorithm for 100 generations. However, our experiments
(not shown here because of lack of space) show that 30 gen-
erations suffice in most cases to obtain a stable solution.

Parameters for Genetic algorithm

Population Size 50

#Generations 100

#Generated offsprings 30

Mutation Rate Probability 6%

#Training input sets 12

Table 2: Parameters for one generation of the Genetic Algo-

rithm.

Our genetic algorithm searches for both the structure of
the tree and the parameter values. Thus, a high replacement
rate and a high mutation rate are necessary to guarantee that
an appropriate parameter value can be reached through ran-
dom evolution. We have chosen a replacement rate of 60%
which for our experiments, means 30 new individuals are
generated through crossover in each generation. The muta-
tion operator changes the new offsprings with a probability
of 6%. Also, 12 different input sets are generated in each
generation and used to test the 80 sorting trees (50 parents
+ 30 offsprings). 1

For the initial population we have chosen trees repre-
senting the pure sorting algorithms of CC-radix [11], quick-
sort [17], multiway merge [13], the adaptive algorithm that
we presented in [14], and variations of these. In all the plat-
forms that we tried the initial individuals were quickly re-
placed by better offsprings, although many subtrees of the
initial population were still present in the last generations.

The times to generate the sorting routines vary from plat-
form to platform, and range from 9 hours on the Intel Xeon
to 80 hours on the SGI R12000.

4.2 Experimental Results

In this Section we present the performance of sort-
ing routines generated using genetic algorithms. In Sec-
tion 4.2.1 we compare with other sorting routines and in

1We have done experiments varying the parameter values for the ge-
netic algorithm in Table 2, and the results obtained were very similar.
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AMD Sun SGI IBM IBM Intel Intel

CPU Athlon MP UltraSparcIII R12000 Power3 Power4 Itanium 2 P4 Intel Xeon
Frequency 1.2GHz 750MHz 300MHz 375Mhz 1.3GHz 1.5GHz 3GHz
L1d/L1i Cache 128KB 64KB/32KB 32KB/32KB 64KB/64KB 32KB/64KB 16KB/16KB 8KB/12KB (1)
L2 Cache 256KB 1MB 4MB 8MB 1440KB 256KB (2) 512KB
Memory 1GB 4GB 1GB 8GB 32GB 8GB 2GB
OS RedHat9 SunOS5.8 IRIX64 v6.5 AIX4.3 AIX5.1 RedHat7.2 RedHat3.2.3
Compiler gcc3.2.2 Workshop cc 5.0 MIPSPro cc 7.3.0 Visual Age c v5 Visual Age c v6 gcc3.3.2 gcc3.4.1
Options -O3 -native -xO5 -O3 -TARG: -O3 -bmaxdata: -O3 -bmaxdata: -O3 -O3

platform=IP30 0x80000000 0x80000000

Table 3: Test Platforms. (1) Intel Xeon has a 8KB trace cache instead of a L1 instruction cache. (2) Intel Itanium2 has a 6MB L3.

4.2.2 with commercial libraries such as INTEL MKL, C++
STL, and IBM ESSL.

4.2.1 Performance Results

We used the genetic algorithm to generate a sorting algo-
rithm to sort 32 bit integer keys. The algorithm has been
tuned by sorting input data sets with sizes ranging from 8M
to 16M keys, and standard deviations ranging from 29 to
223.

For the experiments in this Section, we sort records with
two fields, a 32 bit integer key and a 32 bit pointer. We
use this structure because, to minimize data movements of
the long records typical of databases, sorting is usually per-
formed on an array of tuples, each containing a key and a
pointer to the original record [15, 18]. We assume that this
array has been created before our library routines are called.

Figure 7 shows the performance of five different sorting
algorithms: quicksort, CC-radix, multiway merge, the adap-
tive sort algorithm that we presented in [14], and the sort-
ing algorithm generated using the genetic algorithm (Gene
Sort). For CC-radix sort we use the implementation pro-
vided by the authors of [11]. For quicksort, multiway merge
sort, and adaptive sort we use the implementations that
we presented in [14]. Quicksort and multiway merge sort
were automatically tuned to each architectural platform us-
ing empirical search to identify parameter values such as
fanout or heap size. The adaptive algorithm sorts the input
set using the “pure” algorithm that it predicts to be the best
out of CC-radix sort, quicksort and multiway merge sort as
described in [14]. Gene Sort is the algorithm generated us-
ing the approach presented in this paper

Figure 7 plots the execution time in microseconds (10−6)
per key as the standard deviation changes from 29 to 223.
The test inputs used to collect the data in Figure 7 contained
14M records, and standard deviations of sizes 4n∗512, with
n ranging from 0 to 8. These test inputs were different from
the ones used during the training process. For each standard
deviation, three different input sets with the same standard
deviation were sorted using the five different sorting algo-
rithms. The Figure plots the average of the three running
times. Differences between these three running times were
smaller than 3%. The test inputs have a normal distribution,
which was also the distribution of the training inputs. How-
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Figure 7: Performance of sorting algorithms as the standard
deviation changes
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ever, we have run experiments that show that the sorting
routines in Figure 7 obtain similar performance when sort-
ing inputs with uniform or exponential distribution. This
agrees with the results that we reported in [14].

Figure 7 shows that Gene Sort usually performs much
better than CC-radix, multiway merge, quicksort or the
adaptive sort algorithm. Our adaptive algorithm presented
in a previous work [14] predicts correctly the best algo-
rithm among quicksort, CC-radix and multiway merge, but
these algorithms usually perform worse than our Gene Sort
and, as result, the adaptive algorithm cannot outperform the
Gene Sort. Also, notice that the adaptive algorithm has
some overhead over the predicted sorting algorithm since
the prediction mechanism needs to compute the entropy of
the input set. Our branch− by−entropy primitive also in-
curs this overhead, but as we will see in Section 4.3, in the
end none of the algorithms found by our genetic algorithm
used this primitive.

The performance of the Gene Sort is slightly worse (less
than 7%) than some of the other algorithms in only three
cases: on the AMD Athlon for very low values of standard
deviation, and on the SGI R12000 and INTEL Itanium 2 for
very high values of standard deviation. The fitness func-
tion of our genetic algorithm when searching for a general
algorithm promotes the sorting algorithm that achieves the
best average performance and shows little variation in the
execution times (Section 3.2.3). Thus, the use of this fit-
ness function may result in the selection of a sorting algo-
rithm with slightly worse behavior for very low or very high
standard deviation since they exhibit very different charac-
teristics from most of the cases. However, our experimen-
tal results show that the Gene Sort algorithm performs very
well across the board. Overall, on Athlon MP, which is the
platform with the minimum improvement, the general sort-
ing algorithm obtain a 27% average improvement. On the
other platforms, the average improvement over the best of
the three “pure” sorting algorithms is 35%.

4.2.2 Performance comparison with commercial li-
braries

In this Section we compare the performance of Gene Sort
with the sorting routines from the Intel Math Kernel Li-
brary 7.0 (MKL), C++ STL and IBM ESSL version 3.2
(IBM Power3) and version 3.3 (IBM Power4). Execution
times were measured by sorting inputs with 14M keys. On
the IBM platforms (Power3 and Power4) we sort 32 bit in-
teger keys. In the INTEL platforms (Itanium 2 and Xeon)
we sort single precision floating point values since INTEL
MKL does not sort integers. We can apply the radix based
primitives to sort floating point values because using the
IEEE 754 standard the relative order of two non-negative
floating-point numbers is the same as the order of the bit-
strings that represents them [9]. The keys to sort are located
in consecutive positions of an array. For the experiments in
this section, we did not include the pointers used in the pre-
vious section. We re-generated the sorting libraries to take

into account the differences (floating-point numbers for IN-
TEL and no pointers).

Figure 8 shows the execution time of Gene Sort, INTEL
MKL, C++ STL and IBM ESSL sorting routines (the line
corresponding to Xsort will be discussed in the next sec-
tion). For the INTEL platforms we also show quicksort,
since the INTEL MKL implements quicksort. To simplify
the plots we do not show results for the other sorting rou-
tines in Figure 7, but Gene Sort always performs better than
any of them.

Gene Sort is faster than the C++ STL in both IBM Power
3 and Power 4. On the IBM Power 4, Gene Sort is much
faster than the IBM ESSL sorting routine. However, on the
IBM Power 3, the IBM ESSL sorting routine runs faster
than Gene Sort. It is noticeable that the IBM ESSL sort-
ing routine requires more cycles on the Power 4 than on the
Power3 (170 versus 90 cycles per key). A possible expla-
nation is that the IBM ESSL library was manually tuned
for the Power3 and not for Power4. If our assumption is
correct, this would show the disadvantage of manual tun-
ing versus the automatic tuning used in our approach. Gene
Sort, thanks to automatic tuning, performs about the same
in both platforms, although it is outperformed by the IBM
ESSL library in the Power3. In Section 5 we present a
slightly different approach that generates the Xsort routine.
As can be seen in Figure 8 Xsort is faster than any of the
commercial libraries that we considered (including the IBM
ESSL library in the Power 3). On the average, Xsort is 26%
and 62% faster than the IBM ESSL in Power 3 and Power
4, respectively.

On the Intel Itanium 2 and Intel Xeon, our quicksort what
was optimized using empirical search is faster than Intel
MKL on the two platforms. C++ STL is marginally slower
than our quicksort at most points on Intel Xeon but faster
than our quicksort on Intel Itanium 2. However, C++ STL
is much slower than our Gene Sort in both platforms. Xsort
performs, on the average, 56% and 61% faster than the C++
STL in INTEL Itanium 2 and INTEL Xeon, respectively.

4.3 Analyzing The Best Sorting Genomes

Table 4 presents the best sorting genome found in the
experiments of Section 4.2.1 for the Gene Sort routines in
Figure 7. The string representation of the genome is of the
form (primitive parameters (child 1) (child 2)...), where pa-
rameters are those shown in Table 1. For example, (dr 19
(ldr 13 20)) means apply radix sort with radix 19, and then
radix sort with a radix 13 and threshold 20 to apply in-
place register sort ( see Section 2).

An analysis of the results in Table 4, leads us to two
main observations: 1) The radix based primitives Divide−
by−Radix (DR) and Dive− by−Radix−Assuming−
Uniform − Distribution (DU) are the most frequently
used primitives. First, the data are partitioned using radix
sort with a large radix (15 or larger). Then, they are parti-
tioned again using radix sort with smaller radix. 2) Selec-
tion primitives are rare, and only the Branch−By−Size

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05) 
0-7695-2298-X/05 $ 20.00 IEEE 



AMD Athlon MP Sun UltraSparcIII SGI R12000 IBM Power3 IBM Power4 Intel Itanium 2 Intel Xeon

(dr 15(dr 9 (dr 19(du 6 (dr 17(dr 6 (dr 19(ldr 13 20)) (dr 16(bs 1186587 (dp 246411 4 (dr 17 (bs 1048576
(ldr 5 20))) (ldr 7 20))) (ldr 9 5))) (ldr 5 20) (du 3(ldr 13 20)))) (ldr 5 20)) (ldr 5 20) (du 6 (ldr 9 20))))

Table 4: Gene Sort algorithm for each platform.

(BS) primitive appear in IBM Power 4 and Intel Xeon. The
Branch − By − Entropy (BE) primitive does not appear.

We are unable to verify that the sorting genomes in Ta-
ble 4 are the optimal ones for each platform, since the
search space is so large that exhaustive search is not pos-
sible. However, we conducted some experiments reported
next, to investigate the optimality of the algorithm found.

We did a sensitivity study to verify that the parameters
found are the optimal ones. We have taken the sorting
genome for the AMD Athlon MP and IBM Power 3 in Ta-
ble 4 and we have modified them by changing the radix size.
When changing the radix size of the first radix our results
show that the radix size selected by our genetic algorithm
is the one that runs faster, although it may sometimes in-
cur higher cache or TLB misses. Experiments fixing the
first radix and changing the value of the second radix also
showed that the parameter selected by our genetic algorithm
for this second radix was indeed the best. So, it appears that
our approach effectively finds the best parameter values at
least for the radix based algorithms and the platforms that
we examined.

The observation that selection primitives are rare in the
sorting algorithms indicates that our genetic algorithm gen-
erates code that is unable to adapt to the standard devia-
tion of the input data set. To study how much performance
would improve if the generated code would have such adap-
tation, we modified our system to generate a classifier sys-
tem.

5 Classifier Sorting
In this Section we outline how to use genetic algorithms

to generate a classifier system [3, 16, 22] for sorting routines
that are suited for different regions of the input space. When
generating a classifier the selection of a genome in a region
of the input space does not depend on the performance of
the genome in a different region.

A classifier system consists of a set of rules. Each rule
has two parts, a condition and an action. A condition is
a string that encodes certain characteristics of the input,
where each element of the string can have three possible
values: “0”, “1”, and “*” (don’t care). Similarly, the in-
put characteristics are encoded with a bit string of the same
length. If i and c are the input bit string and the condition
string respectively, we can define the function match(p, c)
as follows:

match(i, c) =
{

true, ∀(j)ij = cj ∨ cj =′ ∗′
false, otherwise

If match(i, c) is true, the action corresponding to the
condition bit string c will be selected. A fitness prediction
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Figure 8: Performance comparison with commercial libraries.
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is associated with each rule. For a given input string, there
can be multiple matching rules. The rule with the highest
predicted fitness will be chosen to act on the input. With the
“*” in the condition string, two or more input strings can
share the same action. Next we explain how the classifier
system is tuned for each platform and input.

5.1 Representation

As we explained in [14] and outlined in Section 2, per-
formance of sorting depends on the number of keys N and
the entropy of each digit Ei. Thus, the condition bit string
has to encode the different values of these two input char-
acteristics. The number of bits used to encode the input
characteristics in the condition bit string will depend on the
impact on the performance of each input parameter. So, the
more the impact an input parameter has on performance the
higher the number of bits that should be used to encode that
input parameter.

Our experimental results show that the entropy has a
higher impact on performance than the number of keys. As
a result, we decided to use two bits to encode the number
of keys and four bits to encode the entropy of each digit.
Thus, if we assume that N can range from 4M to 16M, the
encoding differentials between four regions of length 3M
each.

The algorithm selection is done using the rule matching
mechanism. As a result, selection primitives are not longer
needed to select the appropriate sorting primitives. Thus,
the action part of a rule only consists of sorting plans with-
out selection primitives. The sorting genome now has the
form of a linear list, not a tree.

Given an input to sort, its input characteristics N and E
will be encoded into the bit string i. All the conditions cj in
the rule set of the classifier system will be compared against
the input bit string i. All the conditions matching the input
bit string i constitute the match set M .

5.2 Training

We train the classifier system to learn a set of rules that
cover the space of the possible input parameter values, dis-
cover the conditions that better divide the input space and
tune the actions to learn the best genome to sort inputs with
the characteristics specified in the condition. As before,
during the training process inputs with different values of
E and N are generated and sorted.

Given a training input, we have a match rule set, which
are the set of rules where the condition matches the bit string
encoding the input characteristics. We can generate new
matching rules applying transformations to both the condi-
tion string and the action as described in Section 3.2.2.

We use a classifier fitness based on accuracy [3, 22]. In
this type of classifier each rule has two properties, the pre-
dicted fitness and the accuracy of the prediction. During the
training process, several inputs matching the condition bit
string will be sorted using the sorting genome specified in
the action part of the rule. The performance obtained will be

used to update the accuracy and the predicted fitness. More
details of how this algorithm works can be found in [3, 22].

5.3 Runtime

At the end of the training phase, we have a rule set. At
runtime, the bit string encoding the input characteristics will
be used to extract the match set. Out of these rules, the one
with the highest predicted performance and accuracy will
be selected, and the corresponding action will be the sort-
ing algorithm used to sort the input. The runtime overhead
includes the computation of the entropy to encode the input
bit string and the scan of the rule set to select the best rule.
In our experiments entropy is computed by sampling one
out of four keys of the input. This overhead is negligible
compared to the time required to sort input arrays of sizes
(≥ 4M ).

5.4 Experimental Results
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Figure 9: Xsort versus Gene and Adaptive Sort.
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8192 524288 8388608

Sun ( dr 19 ( dr 13 )) ( dr 21 ( dr 21 ( du 5
UltraSparc III ( ldr 5 20)) ( ldr 6 20)))
IBM ( dr 22 ( du 10)) ( dr 19 ( du 7 ( dr 20 ( du 10
Power3 ( ldr 6 20))) ( ldr 2 20)))

Table 5: Best genomes selected by the classifier sorting library.

Figure 9 compares the execution time of the algorithm
generated in the form of a classifier (Xsort) versus Gene
Sort and Adaptive Sort as the standard deviation changes
when sorting 14M records. Xsort is almost always better
than Adaptive sort. On the average Xsort is 9% faster than
Gene Sort, being up to 12% faster than Gene Sort in the
IBM Power4. When compared to Adaptive sort (which is
composed of “pure” sorting algorithms), Xsort in on the av-
erage 36% faster, being up to 45% faster on Intel Xeon.

Table 5 shows the different sorting genomes found using
the classifier for 14M keys and different values of standard
deviation for Sun UltraSparc III and IBM Power 3. The
table shows that the algorithms are still radix based, but they
are different based on the entropy.

6 Conclusion
In this paper, we propose building composite sorting al-

gorithms from primitives to adapt to the target platform and
the input data. Genetic algorithms were used to search for
the sorting routines. Our results show that the best sort-
ing routines are obtained when using the genetic algorithms
to generate a classifier system. The resulting algorithm is
a composite algorithm where a different sorting routine is
selected based on the entropy and the number of keys to
sort. In most cases, the routines are radix based with differ-
ent parameters depending on the input characteristics and
target machine. The generated sorting algorithm is on the
average 36% faster than the best “pure” sorting routines on
the seven platforms on which we experimented, being up to
42% faster. Our generated routines perform better than any
commercial routine that we have tried including the IBM
ESSL, the INTEL MKL and the STL of C++. On the av-
erage, our generated routines are 26% and 62% faster than
the IBM ESSL in an IBM Power 3 and IBM Power 4, re-
spectively.
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