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Abstract—Graphic Processing Units (GPU) has been proved
to be a promising platform to accelerate large size Fast Fourier
Transform (FFT) computation. However, GPU performance is
severely restricted by the limited memory size and the low
bandwidth of data transfer through PCI channel. Additionally,
current GPU based FFT implementation only uses GPU to
compute, but employs CPU as a mere memory-transfer controller.
The computing power of CPUs is wasted. This paper proposes
a hybrid parallel framework to use both multi-core CPU and
GPU in heterogeneous systems to compute large-scale 2D and 3D
FFTs that exceed GPU memory. This work introduces a flexible
partitioning scheme that enables concurrent execution of CPU
and GPU and integrates several FFT decomposition paradigms
to tailor computation and communication. Moreover, our library
exposes and exploits previously overlooked parallelism in FFT.
Optimal load balancing is automatically achieved from effective
performance modeling and empirical tuning process. On average,
our large FFT library on GeForce GTX480, Tesla C2070, C2075
is 121% and 145% faster than 4-thread SSE-enabled FFTW and
Intel MKL, with max speedups 4.61 and 2.81, respectively.

I. INTRODUCTION

Fast Fourier Transform (FFT) is one of the most widely
used numerical algorithms in science and engineering domains.
It is not rare that large scientific and engineering computation,
such as large-scale physics simulations, signal processing and
data compression, spend majority of execution time on large
size FFTs. Such FFT implementations require large amount
of computing resources and memory bandwidth. Compared
with current multi-core CPUs, Graphical Processing Units
(GPUs) have been recently proved to be a more promising
platform to solve FFT problems since GPUs have much more
parallel computing resources and can often achieve an order of
magnitude performance improvement over CPUs on compute-
intensive applications [1].

Efforts have been focused on solving in-card FFT problems
whose sizes can fit into the device memory of GPU. It means
that only two simple data transfers are needed in the solving
of one FFT problem, one copying all the source data from
CPU memory to GPU memory using the PCI bus, and the
other copying all the results back. Since the data transfer
does not have much to optimize, the prior works focused
on the decomposition of FFT problems for the two-level
organization of processing cores on GPU and the efficient
usage of GPU on-device memory hierarchy. Libraries such as
CUFFT from NVIDIA [2], Nukada’s work on 3D FFT [3], [4],
Govindaraju’s [5], [6] and Gu’s work on 2D and 3D FFT [1]
can be classified into this group.

Recently, Gu et.al. [7] demonstrated a GPU-based out-of-
card FFT library that can solve FFT problems larger than GPU
device memory. Since one data transfer cannot move all data
between CPU and GPU, multiple data transfers are needed. Gu
et.al. proposed a joint optimization paradigm that co-optimizes
the communication and the computation phases of FFT, and
an empirical searching method to find the best tradeoff be-
tween the two factors. For even larger FFT problems, Chen
et.al. presented a GPU cluster based FFT implementation [8].
However, the work has been almost exclusively focused on the
optimization of communication over inter-node channels.

In spite of highly influential results in prior FFT work
on GPUs, no matter the on-card FFT libraries, the out-of-
card FFT libraries or the GPU-cluster based solutions, the
real performance of GPUs is not significantly higher than that
of current high-performance CPUs as expected, since GPU
performance is severely restricted by the limited GPU memory
size and the low bandwidth of data transfer between CPU
and GPU through PCIe channel. In addition, in the prior
FFT research on GPUs, CPU is only used as a memory or
communication controller, that is, managing memory transfer
requests between CPU and GPU, or between nodes. The
computing power of CPUs is wasted. Therefore, the objective
of this paper is to propose a hybrid parallel FFT framework
to concurrently execute both CPU and GPU for computing
large-scale FFTs that exceed GPU memory. Incorporating CPU
has several advantages: (1) Multi-core CPU is capable of
computing partial work concurrently with GPU to release the
pressure which is originally assigned to the GPU, and to
make full use of available underlying computing resources
for performance improvement, (2) CPU helps increase data
transfer bandwidth remarkably by enabling efficient utilization
of PCIe bus and save much GPU memory resource since partial
work is kept into local CPU memory to execute without being
transferred to GPU, and (3) CPU has much larger memory size
than that of GPU in general.

Ogata et.al. [9] recently attempted to divide the compu-
tation to both CPU and GPU, though targeting at problems
whose sizes can fit into the GPU memory. The small problem
assumption makes the optimization of data communication
between CPU and GPU trivial because all data can be copied to
GPU in one data copying, which largely avoids the challenges
of co-optimizing both computation and communication be-
tween two different types of devices. In this paper, we present
a hybrid FFT library that engages both CPU and GPU in the
solving of large FFT problems that can not fit into the GPU
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memory. The key problem we solve is to engage heteroge-
neous computing resources and newly improved optimization
strategies in the acceleration of such large FFTs.

Making FFT run concurrently on CPU and GPU comes
with significant challenges. First of all, CPU and GPU are two
computer devices with totally different performance character-
istics. Even though FFT can be decomposed in many different
ways, not a single method can arbitrarily divide a problem
into subtasks with two different performance patterns. In FFT,
a simple change to the division of computation will lead to
global effects on the data transfers, because ultimately any
single point in the output of a FFT problem is mathematically
dependent on all input points. We cannot just optimize for
CPU or just optimize for GPU. In simpler words, the first
problem we need to solve is to divide a FFT workload between
two types of computing devices that are connected by a slow
communication channel, and to determine the optimal load
distribution among such heterogeneous resources.

The second challenge is the magnitude of the vast space
of possible hybrid implementations for one FFT problem. In
addition to the large number of possible algorithmic trans-
formations, as outlined in the first challenge, CPU and GPU
architectural features also need to be considered in the search.
Reconciling CPU and GPU architectures is hard because they
simply like different styles of computation/communication
mix. Moreover, the decision of workload assignment needs
to be put into a search space that consists of many different
ways of decomposition and different ways of data transfer. In
particular, computation and communication can be efficiently
overlapped, an important performance booster, only if the data
dependency between the CPU parts and the GPU parts is
appropriately arranged. In other words, even if we already find
the best algorithm for a FFT problem, i.e., the best division of
computation, the implementation of the algorithm still needs
to be co-tuned for two different architectures.

This paper is the first effort to propose a hybrid implemen-
tation of FFT that concurrently executes both multithreaded
CPU and GPU in a heterogeneous computer node to compute
large FFT problems that cannot fit into GPU memory. The
paper makes four main contributions: (1) a hybrid large-scale
FFT decomposition framework that enables the extraction and
the tailoring of different workload and data transfer patterns
appropriate for the two different computing devices, (2) an
empirical performance modeling to determine optimal load
balancing between CPU and GPU, which estimates perfor-
mance based on several key parameters, and replaces an
exhaustive walk-through of the vast space of possible hybrid
implementations of FFT on CPU/GPU with a guided empirical
search, (3) an optimizer that exploits substantial parallelism
for both GPU and CPUs, and (4) effective heuristics to pur-
posefully expose opportunities of overlapping communication
with computation in the process of decomposing FFT. Overall,
our hybrid FFT implementation outperforms several latest and
widely used large-scale FFT implementations. For instance,
our double-precison Tesla C2070 performance is 29% and
1.4× faster than that of Gu et.al.’s [7] and Ogata et.al.’s [9]
work, and 1.9× and 2.1× faster than 4-thread SSE-enabled
FFTW [10], [11], [12] and Intel MKL [13], with max speedups
4.6× and 2.8×, respectively.

II. OVERVIEW OF FFT ALGORITHM

FFT algorithms recursively decompose a N-point DFT
into several smaller DFTs [14], and the divide-and-conquer
approach reduces the operational complexity of a Discrete
Fourier Transform (DFT) from O(N2) into O(NlogN). There
are many FFT algorithms, or in other words, different ways to
decompose DFT problems. In this section we briefly introduce
the FFT algorithms used in this paper and overview how they
are incorporated into our hybrid approach. The DFT transform
of an input series x(n),n = 0,1, ...,N−1 of size N is presented

as Y (k) = ∑
N−1
n=0 x(n)W nk

N . We can map the one dimensional
input into two dimensions indexed by l in L dimension and
m in M dimension, respectively. The Cooley-Tukey FFT [15]
decomposes the original DFT into three sub-steps: (1) Perform

M DFTs of size L, A(p,m) = ∑
L−1
l=0 x(l,m)W l p

L ; (2) Multiply

twiddle factors, B(p,m) = A(p,m)W pm
N ; and (3) Perform L

DFTs of size M, Y (p,q) = ∑
M−1
m=0 B(p,m)W mq

M ; where W ab
c =

e− j2πab/c is the twiddle factor introduced by [15]. Therefore,
Y (k) = Y (pM + q). In essence, Cooley-Tukey introduces a
decomposition approach that divides one dimensional compu-
tation into two. Moreover, the Radix algorithm is a special
case of the Cooley-Tukey algorithm for power-of-two FFT
problems.

In this paper, we extend the I/O tensor representation intro-
duced in FFTW [12] to represent the algorithmic transforma-
tion of our hybrid FFTs. An original I/O tensor d(C,Si,So, I,O)
denotes FFTs along a data dimension where C is the size
of one dimensional FFT, Si and So represent the stride of
input and output, and I and O are the addresses of input
and output array. tL

M represents multiplication of twiddle fac-
tors with size L×M. The I/O tensor representation captures
the two most important factors that determine FFT’s perfor-
mance, i.e., data access patterns and computation load. As
an example, the Cooley-Tukey FFT decomposition can be
precisely denoted as an extended I/O tensor representation
u = {d(L,M,M, I,O), tL

Md(M,1,1,O,O)}. Here u is an I/O
tensor that represents a multidimensional FFT.

III. OUR HYBRID GPU/CPU FFT LIBRARY

A. Hybrid 2D FFT Framework

Our heterogeneous 2D FFT framework solves FFT prob-
lems that are larger than GPU memory. We denote this kind
of problems as out-of-card FFTs. Suppose the problem size
is N = Y × X , where Y is the number of rows and X is
number of columns. Generally 2D FFT involves two rounds of
computation, i.e. Y dimensional 1D FFTs along X dimension
and then X dimensional 1D FFTs along Y dimension. A 2D
FFT for an 2D input f (y,x) of size N is defined in equation (1),

out(ky,kx) =
X−1

∑
x=0

W
xkx
X

Y−1

∑
y=0

W
yky

Y f (y,x)

=
X−1

∑
x=0

W
xkx
X

Y−1

∑
y=0

W
yky

Y f (y,(xgpu,xcpu))

(1)

where x,kx = 0,1, ...,Xgpu, ...,X − 1; y,ky = 0,1, ...,Y − 1;
xgpu = 0,1, ...,Xgpu − 1; xcpu = Xgpu, ...,X − 1; twiddle factor

W ab
c = e− j2πab/c.
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Fig. 2. PCIe bandwidth of data transfer schemes on GTX480.

To demonstrate the improvement of our PCI bandwidth, we
used the same subarray test [7] as that in Gu’s work, where
there are C regular subarrays of length W each. Two regular
subarrays are separated by a stride X −W in a large array of
size C×X . Note that the large array is contiguous in system
memory but regular subarrays are not contiguous. Figure 2
shows the improvement of our PCI bandwidth over Gu’s work
on GTX480 GPU. Overall, our 2D hybrid implementation can
achieve 6 GB/s PCI bandwidth on average comparing to only
4.2 GB/s of Gu’s work and 3.4 GB/s of naive PCI transfer.

4) CPU Computation Optimizations: For Y1 dimensional
computation on CPU, Y1 sized 1D FFTs are required to
calculate for Xcpu×Y2 times. For each Y1 dimensional 1D
FFT, data accesses have a stride of Xcpu×Y2. In addition,
each 1D FFT needs to do a strided transpose. Both strided
memory accesses and strided transpose are very expensive
on CPU. Instead, we group the transformation of multiple
complex arrays into a concurrent group operation and allow
it to operate on non-contiguous (strided) data. Therefore, we
need no input or output transposition and save much execution
time. We set the number of arrays—Xcpu—to be the maximum
of what a FFTW group plan could execute at a time. For each
grouped array, the plan computes size Y1 1D FFT across a
stride of Y2×X for input and X for output. We need to execute
such kind of plan for totally Y2 times.

5) Co-Optimization of 2D FFT for CPUs and GPU:
The overall coordination between CPU and GPU works like
following. The workload of CPU, conceptually a loop of size
Y2, is parallelized into 4 concurrent subsections using 4 threads.
Each thread is responsible to execute a distinct subsection in
which independent grouped FFT computations are carried out.
Simultaneously, the workload of GPU, including data transfers
and kernel executions, is parallelized with CPU. Afterwards,
jobs on GPU driven by different streams are synchronized
before the task synchronization completes between GPU and
CPUs. There is no matrix transposition on either GPU or CPU
since computations in either side is re-organized to naturally
subsume the strided transposition.

The subsequent calculation of twiddle factor multiplication

t
Y1
Y2

and Y2 & X dimensional FFTs is left for GPU. For
Y2 =Y21×Y22 dimensional FFTs, Cooley-Tukey decomposition
is again applied since relative large size of Y2 would hurt
the performance of codelet based GPU computing. Similarly,
shared memory is taken into account for reusing data between
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Fig. 3. Double-precision 2D hybrid FFT performance comparison.

the decomposed Y21-step FFTs and the subsequent Y22-step
FFTs. For the last X-step, i.e., 1D contiguous FFT sub-
problems, CUFFT library is used because it provides good
performance for row-major contiguous 1D FFTs. Instead of
using ordinary CUFFT plan, we make use of stream-enabled
CUFFT plan so that all Y2 and X dimensional computations
plus both PCI transfers of Y2’s input and X’s output become
stream-based asynchronous executions.

6) Comparison to heterogeneous out-of-card
CUFFT/FFTW implementation: To demonstrate the effective-
ness of our approach on parallelizing FFT into heterogeneous
processors, we compare our hybrid FFT library against a
naive out-of-card hybrid 2D FFT implementation which simply
uses CUFFT for GPU computation and FFTW for the CPU
part. This heterogeneous distribution was first proposed in
Ogata’s [9] paper. Computation is firstly distributed along X
dimension in the 1st -round of 2D FFT and along Y dimension
for the 2nd-round. On GPU, sub-problems are divided into
several passes to facilitate data transfer between GPU and
CPU. Matrix transpose, CUFFT and data transfer are processed
in asynchronous manner. On CPU, FFTW advanced interface is
utilized to process strided data. The purpose of this comparison
is to see how our optimization technique improves over a
naive hybrid CUFFT/FFTW solution. In the experiment, we
vary the CPU/GPU work ratio from 0% to 100% for the naive
solution and show its double precision performance curve of
size 215×213 on C2070 in Figure 3. The peak performance of
Ogata’s naive hybrid FFT [9] gains only 7.7 GFLOPS which
is far below that of our hybrid version. The main reason is the
lacking of co-optimizations in the naive solution.

B. Hybrid 3D FFT Framework

General 3D FFT requires three rounds of computation.
Each round computes 1D FFT along one dimension across the
other two dimensions. Suppose the 3D input has sizes (Z,Y,X),
the 3D FFT can be represented in tensor form as
u3d = {d(Z,XY,XY, I,O),d(Y,X ,X ,O,O),d(X ,1,1,O,O)}.

To describe how our hybrid 3D FFT works, we start with a
simple hypothetical scenario where all the work is assigned to
GPU, and then continue to reveal how computation is extracted
from this GPU-only hypothetical case and is assigned to CPU.
Suppose that Z = Z1 × Z2 and Y = Y1 ×Y2, the u3d can be





However, there are parameters whose values need to be tuned
for the optimal load balancing for different CPU/GPU combi-
nations. In this work, we combine both performance modeling
and empirical searching to finish the last mile towards the
optimal load balancing. The empirical tuning is done at build
time.

Our approach is to split the total execution in either
GPU or CPU into several primitive sub-steps, analyze the
heterogeneous execution flow, and derive a performance model
for each primitives. The model provides estimated execution
time that is parameterized with the load ratio of GPU to
total work. For each hardware configuration, we calibrate the
models with two profiling runs, one on CPU and one on
GPU, to determine the values of model parameters in different
distribution ratios. Afterwards, using those parameters, we can
automatically estimate, rather than really measuring, the total
execution time of our implementation under varying ratios.
We further use dynamic-programming to find the optimal
implementation for different problems using the primitives
as building blocks. The estimated performance might not be
completely precise. Therefore, we only use it to provide a
small region of potentially good choices. Within the region
we exhaustively measure the performance and choose the best
one. Overall, we avoid a walk-through of the vast space of all
possible combinations of primitives.

A. Load Balancing of 2D FFT

Using the hybrid 2D FFT as an example, suppose that the
total problem size is Y1×Y2×X . The load ratio of GPU to total

work is defined as Rg =
Xgpu

X
along X dimension, therefore the

ratio of CPU to the total is 1−Rg. The execution time of the
whole process can be modeled as 8 parameters, which are
summarized in Table I. We used two runs, one on GPU and
CPU each, to determine T2dH2D-gpu, TY1kernel-gpu, and T2dD2H-gpu

as execution time of corresponding Table I’s parameters in
GPU-only case, and to determine TY1fftw-cpu as execution time
of TY1fftw(1−Rg) in CPU-only case. Therefore, each parameter
value in Table I can be modeled with different distribution
ratios.

TABLE I. PARAMETERS FOR 2D FFT RUNNING TIME ESTIMATION

Parameters Description

# passes Total # of passes. Subproblem of each pass fits
into GPU memory.

# streams Total # of streams that support for asynchronous
kernel executions and transfers.

# thds # of threads of CPU.

T2dH2D(i,Rg) = T2dH2D-gpu ×Rg. Time of copying a 2D strided
array of size

Rg×X×Y2

# passes×# streams
from host to device in stream i.

TY1kernel(i,Rg) = TY1kernel-gpu ×Rg. Time of Y1-step FFTs com-
putation of concurrent kernel in stream i. Thread
block size is Y1W × max(Y11,Y12), grid size is

Rg×X×Y2

# passes×# streams
.

T2dD2H(i,Rg) = T2dD2H-gpu ×Rg. Time of copying a 2D strided
array of size

Rg×X×Y

# passes×# streams
from device to host in stream i.

TY1fftw(1−Rg) = TY1fftw-cpu × (1−Rg). Time of Y1-step FFTs on
advanced FFTW plan
for grouped array of size (1−Rg)×X in CPU.
Total number of plans is Y2.

TY2&X Time of subsequent calculation of Y2 and X

dimensional FFTs.

On GPU side, for hybrid Y1 dimensional FFTs, the execu-
tion time is estimated as T G2D shown in equation (6).

T G2D = #passes×max{[Y1 ×T2dH2D(0,Rg)+

TY1kernel(0,Rg)+T2dD2H(0,Rg)]; [...];

[Y1 ×T2dH2D(# streams-1,Rg)

+TY1kernel(# streams-1,Rg)

+T2dD2H(# streams-1,Rg)]; }

(6)

On CPU side, for hybrid Y1 dimensional FFTs, the execu-

tion time is estimated as TC2D = Y2
#thds

×TY1fftw(1−Rg).

Since synchronization is set after Y1-step FFT on both
GPU and CPU side to guarantee the correctness of results,
the execution time of hybrid Y1 dimensional FFT can be
modeled as the maximum of the GPU time and CPU time, i.e.,
TY1

=max{T G2D,TC2D}. And the total time estimation will be
consequently calculated as Ttotal = max{T G2D,TC2D}+TY2&X .
Afterwards, empirical searching is employed to find the pa-
rameter values that can make T G2D equal to TC2D, as well
as the sub-steps along other dimensions, which indicates the
optimal load balancing.

B. Load Balancing of 3D FFT

The load balancing in the hybrid 3D FFT framework is
similar to that of the 2D cases. Suppose that the total problem
size is Z1 ×Z2 ×Y1 ×Y2 ×X . The load ratio of GPU to total
work is denoted as Rg =

Xgpu
X

along X dimension and ratio of
CPU to total problem is 1−Rg. Performance parameters for
the sub-steps in 3D hybrid FFT are summarized in Table II.
Two profiling runs still help determine T3dH2D-gpu, TZ1kernel-gpu,
TY1kernel-gpu, TY2kernel-gpu, T3dD2H-gpu, and TZ1fftw-cpu, TY fftw-cpu as
execution time in respective GPU-only and CPU-only case for
the parameters in Table II.

TABLE II. PARAMETERS FOR 3D FFT RUNNING TIME ESTIMATION

Parameters Description

T3dH2D(i,Rg) = T3dH2D-gpu ×Rg. Time of copying a 3D strided

array of size
Rg×Y×Z2

# passes×# streams
from host to device

in stream i.

TZ1kernel(i,Rg) = TZ1kernel-gpu ×Rg. Time of Z1-step FFTs com-
putation of concurrent kernel in stream i. Thread
block size is Z1W ×max(Z11,Z12), grid size is

Rg×Y×Z2

# passes×# streams
.

TY1kernel(i,Rg) = TY1kernel-gpu ×Rg. Time of Y1-step FFTs com-
putation of concurrent
kernel in stream i. Thread block size is Y1W , grid

size is
Rg×Y2

Y1W
× Z

# passes×# streams

TY2kernel(i,Rg) = TY2kernel-gpu ×Rg. Time of Y2-step FFTs com-
putation of concurrent kernel in stream i.

Thread block size is Y2W , grid size is
Rg×Y1

Y2W
×

Z
# passes×# streams

,

T3dD2H(i,Rg) = T3dD2H-gpu ×Rg. Time of copying a 3D con-

tiguous array of size
Rg×Y×Z1×Z2

# passes×# streams
from device

to host in stream i.

TZ1fftw = TZ1fftw-cpu ×(1−Rg). Time of Z1-step FFTs on
advanced FFTW plan for grouped array of size
Y in CPU. Total # of plans is (1−Rg)×X ×Z2.

TY fftw(1−Rg) = TY fftw-cpu × (1−Rg). Time of Y -step FFTs on
advanced FFTW plan for grouped array of size
(1−Rg)×X in CPU.Total # of plans is Z.

TZ2&X Time of subsequent calculation of Z2 and X

dimensional FFTs.



TABLE III. CONFIGURATIONS OF GPU, CPU, FFTW AND MKL

GPU Global Memory NVCC

GeForce GTX480 1.5GB 3.2

Tesla C2070 6GB 3.2

Tesla C2075 6GB 3.2

CPU Frequency, # of Cores FFTW & MKL

Intel i7 920 2.66GHz, 4 cores 3.3.3 & 10.3

On GPU side, for hybrid Z1&Y dimensional FFTs, the
execution time is estimated as T G3D shown in equation (7).

T G3D = #passes×max{[Z1 ×T3dH2D(0,Rg)+

TZ1kernel(0,Rg)+TY1kernel(0,Rg)+

TY2kernel(0,Rg)+T3dD2H(0,Rg)]; [......];

[Z1 ×T3dH2D(# streams-1,Rg)

+TZ1kernel(# streams-1,Rg)

+TY1kernel(# streams-1,Rg)

+TY2kernel(# streams-1,Rg)

+T3dD2H(# streams-1,Rg)];}

(7)

On CPU side, for hybrid Z1&Y dimensional FFTs, the ex-
ecution time is estimated as TC3D represented in equation (8).

TC3D =
(1−Rg)×X ×Z2

#thds
×TZ1fftw

+
Z

#thds
×TY fftw(1−Rg)

(8)

Similarly, since synchronization is set after Z1&Y -step
FFT on both GPU and CPU side, the execution time of
the hybrid Z1&Y dimensional FFT can be modeled as the
maximum of the GPU time and CPU time, i.e., TZ1&Y =
max{T G3D,TC3D}. The total time estimation is calculated
as Ttotal = max{T G3D,TC3D}+ TZ2&X . Empirical searching
techniques similar to 2D cases are used to balance the substeps,
as well as those along other dimensions.

V. PERFORMANCE EVALUATION

In this section, we evaluate the hybrid 2D and 3D FFT im-
plementation on three heterogeneous computer configurations.
A single model of CPU, Intel i7 920, is coupled with three
different NVIDIA GPUs, i.e. GeForce GTX480, Tesla C2070
and Tesla C2075 in the three experiments. Configurations of
the FFT libraries, the GPUs and the CPU with total 24GB
host memory are summarized in Table III, where NVCC is
the compiler driver for NVIDIA CUDA GPUs.

As mentioned in section III.A.3), the performance reported
here includes both computational time and data transferring
time between host and device. Our library in both single- and
double-precisions are compared to FFTW and Intel MKL, two
of the best performing FFT implementations on CPU. More-
over, our hybrid FFT library is compared with Gu’s out-of-card
FFT work [7], a highly efficient GPU-based FFT library and
the only one that we know can handle the problems sizes larger
than GPU memory. The whole design of this performance
evaluation is to let us see how much performance improvement
can be achieved by using both CPU and GPU in compu-
tation, against the best-performing GPU-only or CPU-only
FFT implementations. Please note that we can’t compare our
library with pure CUFFT implementation because it requires

problem size to be smaller than GPU memory, and therefore
won’t accept problem sizes used in this evaluation. In FFTW,
Streaming Single Instruction Multiple Data Extensions (SSE)
on Intel CPU is enabled for better performance. Also FFTW
results are got with the ‘MEASURE’ flag, the second most
extensive performance tuning mode. The ‘EXHAUSTIVE’ flag
in FFTW, which represents the most extensive searching and
tuning, is not used because the problem sizes in this evaluation
are so large that FFTW can’t finish its search under the
‘EXHAUSTIVE’ mode. For example, we tried running FFTW
in ‘EXHAUSTIVE’ mode for a 228 FFT problem, but found
FFTW couldn’t finish the search in 3 days. In addition, Intel
MKL automatically enables SSE at run time. Both FFTW and
MKL are chosen to run with four threads. Even though the i7
CPU supports 8 hyperthreads, the 8-thread FFTW and MKL
didn’t show performance advantage over, actually in some
cases were slower than, the 4-thread versions.

All FFT problem sizes are larger than GPU memory. For
double-precision implementation on GTX480, we choose the
test cases from 32M points (i.e. 225) to 256M points (i.e.
228). 32M-point FFT is twice the maximal problem size that
GTX480 memory can accommodate and 256M-point FFT is
the maximum problem size that can fit into host memory. For
single precision tests on GTX480, the sizes are from 64M
points (i.e. 226) to 512M points (i.e. 229). Similarly, for Tesla
C2070/C2075, test cases are from 256M points (i.e. 228) to
512M points (i.e. 229) for double precision implementation
and from 512M points (i.e. 229) to 1024M points (i.e. 230)
for single precision test. The performance of a D dimen-
sional complex FFT is evaluated in GFLOPS [1] defined as

GFlops =
5M ∑

D
d=1 log2Nd

t
×10−09 where the total problem size

is M = N1 ·N2 · ... ·ND and t is execution time in seconds.

A. Performance Tuning

For both 2D and 3D FFTs, our performance modeling and
empirical searching find the optimal ratio and best performance
for different input sizes. Figure 5 demonstrates the effect
and accuracy of load distribution ratio tuning on overall FFT
performance. The figure shows the actual and modeled double-
precision 2D FFT performance on three different GPUs under
different load ratios with problem size 215×213. The x-axis is
the distribution ratio from 0% to 100%. In particular, 0% rep-
resents running our hybrid FFT library only on CPU and 100%
represents running only on GPU. The two extreme cases will
help demonstrating the intrinsic overhead incurred by splitting
computation/communication into two devices. Table IV shows
the values of model parameters from the profiling runs of GPU-
only and CPU-only case described in section IV.A and IV.B,
where # passes, # streams and # thds are 2, 8, 4, respectively.
The modeled optimal and average performance is 99%, 96%,
95%, and 98%, 93%, 91% of the actual measured on GTX480,
Tesla C2070 and C2075, respectively. Our performance mod-
eling, even without empirical tuning, is accurate.

Figure 6 shows the actual and modeled double-precision
3D FFT performance with size 210 × 29 × 29. The modeled
optimal and average performance is again very accurate, and
is 99%, 95%, 93%, and 98%, 94%, 91% of the actual values.

In addition, the final performance of our library is also
compared against the cases that run our library only on GPU or



TABLE IV. MODEL PARAMETERS FOR 2D AND 3D FFTS ON C2070

Parameter Value Parameter Value Parameter Value

T2dH2D-gpu 0.003 TY1kernel-gpu 0.041 T2dD2H-gpu 0.042

TY1fftw-cpu 0.195 TY2&X 1.137

T3dH2D-gpu 0.024 TZ1kernel-gpu 0.014 TY1kernel-gpu 0.028

TY2kernel-gpu 0.1 T3dD2H-gpu 0.02 TZ1fftw-cpu 0.0008

TY fftw-cpu 0.01 TZ2&X 1.221
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Fig. 5. Double-precision hybrid 2D FFT performance tuning.

only on CPU. As shown in Figure 5 for 2D FFT, on GTX480,
Tesla C2070 and C2075, the optimal ratio of GPU to total work
is 71.9%, 78.2% and 78.2%. The library’s best performance is
21.4%, 19.1% and 20.7% faster than GPU-only performance,
and is 1.09×, 1.59× and 1.76× faster than CPU-only cases.
Moreover, for 3D FFT in Figure 6, the optimal ratio of GPU
to the total is 75.0%, 78.2% and 78.2%. The load-balanced
library performs 25.6%, 22.8% and 23.1% faster than GPU-
only performance, and is 1.25×, 1.51× and 1.62× faster than
CPU-only case.

Not shown in this figure, but the single-precision perfor-
mance tuning has similar curve as that of the double-precision
case. Also the optimal ratio of GPU to CPU in single-precision
version is larger than that of double precision since GPU has
relatively higher performance on single precision operations
than CPU.
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Fig. 6. Double-precision hybrid 3D FFT performance tuning.
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Fig. 7. Single-precision 2D FFT of size from 226 to 229 on GTX480.

B. Evaluation for 2D Hybrid FFT

We evaluate various 2D FFT problems on the three het-
erogeneous configurations. In all the figures, the test points
are indexed in an increasing order of Y in the problem sizes.
Figure 7 shows our single-precision 2D FFT performance on
Geforce GTX480 with problem sizes from 226 to 229. On aver-
age, our single-precision 2D hybrid FFT on GTX480 achieves
25.5 GFLOPS. Our optimally-distributed performance is 16%
faster than Gu’s pure GPU version, and is also 95% faster than
the 4-thread FFTW and 1.06× faster than the 4-thread MKL.
In particular, even if we run our hybrid FFT only on GPU, it
is still faster than Gu’s work, a high-performance GPU-based
FFT implementation, mainly attributing to the asynchronous
transfer schemes in our hybrid algorithm.

Furthermore, we also test 2D hybrid FFT performance in
double-precision as shown in Figure 8. Our double-precision
2D hybrid FFT on GTX480 achieves 13.1 GFLOPS. Moreover,
our optimal performance is 20% faster than Gu’s pure GPU
implementation, and is 98% faster than the 4-thread FFTW
and 1.04× faster than the 4-thread MKL.

Additionally, Figure 9 and Figure 10 show our large
2D FFT results on the Tesla C2070/C2075 with even larger
problem sizes in single and double precision. On average,
our single-precision 2D hybrid FFT achieves 37.2 GFLOPS
on Tesla C2075 and 33.7 GFLOPS on Tesla C2070, which
represent speedups of 26% and 24% over Gu’s pure GPU
implementation, 2.23× and 1.93× over the 4-thread FFTW,
and 2.41× and 2.09× over the 4-thread MKL, respectively.

For double precision, the performance is 19.1 GFLOPS and
17.8 GFLOPS on Tesla C2075 and C2070, which represent
29% and 28% speedups over Gu’s pure GPU implementation,
2.08× and 1.87× speedups over the 4-thread FFTW and 2.24×
and 2.02× speedups over the 4-thread MKL.

Particularly notable is that as Y increases, the performance
of both FFTW and MKL decreases rapidly because the data lo-
cality loses rapidly along the Y dimensional computation when
Y increases. On the contrary, our hybrid FFT demonstrates a
much more stable performance.
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Fig. 8. Double-precision 2D FFT of size from 225 to 228 on GTX480.
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Fig. 9. Single-precision 2D FFT of size from 229 to 230 on Tesla.

C. Evaluation for 3D Hybrid FFT

Figure 11, 13 and Figure 12, 14 show the performance of
our single- and double-precision 3D hybrid FFT on GTX480
and Tesla C2075/C2070. On average our library achieves 18.4
GFLOPS on GTX480, 23.2 GFLOPS on C2075 and 21.5
GFLOPS on C2070.

On average, our hybrid 3D FFT library is 19.5% faster than
Gu’s GPU only FFT implementation, 74.2% faster than the 4-
thread FFTW and 1.09× faster than MKL. Similar to their 2D
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Fig. 10. Double-precision 2D FFT of size from 228 to 229 on Tesla.
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Fig. 11. Single-precision 3D FFT of size from 226 to 229 on GTX480.
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Fig. 12. Double-precision 3D FFT of size from 225 to 228 on GTX480.

performance, FFTW’s and MKL’s 3D performance decrease
quickly as Z increases due to the loss of data locality though
MKL generally performs better than FFTW for large Zs. Our
hybrid library generally maintains its good performance for
the same large Z cases.

D. Accuracy of Our Hybrid FFT

The correctness of our hybrid FFT library is verified
against FFTW and MKL. All three libraries are tested with
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Fig. 13. Single-precision 3D FFT of size from 229 to 230 on Tesla.
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Fig. 14. Double-precision 3D FFT of size from 228 to 229 on Tesla.
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Fig. 15. Single-precision accuracy of 2D and 3D FFT.

the same input data randomly chosen from -0.5 to 0.5 and
the difference in output is quantified as normalized RMSE
over the whole data set. The normalized RMSE evaluates
the relative degree of deviations and is a wildly used metric
for numeric accuracy. The normalized RMSE is defined as
√

∑
N−1
i=0 [(Xi−Ri)2+(Yi−Si)2]

2N /

√

∑
N−1
i=0 (R2

i +S2
i )

2N .

The normalized RMSEs of single- and double-precision for
both 2D and 3D FFTs are shown in Figure 15 and Figure 16.
As we can see the normalized RMSE is extremely small
and is in the range from 2.41 × 10−07 to 3.18 × 10−07 for
single precision and 5.82× 10−16 to 8.02× 10−16 for double
precision. In other words, our hybrid FFT library produces the
same accurate results as FFTW and MKL.

VI. CONCLUSION

In this paper, we proposed a hybrid FFT library that con-
currently uses both CPU and GPU to compute large FFT prob-
lems. The library has four key components: a decomposition
paradigm that mixes two FFT algorithms to extract different
types of computation and communication patterns for the two
different processor types; an optimizer that exploits substantial
parallelism for both GPU and CPUs; a load balancer that
assigns workloads to both GPU and CPU, and determines the
optimal load balancing by effective performance modeling; and
a heuristic that empirically tunes the library to best tradeoff
among communication, computation and their overlapping.
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Fig. 16. Double-precision accuracy of 2D and 3D FFT.

Overall, our hybrid library outperforms several latest and
widely used large-scale FFT implementations.
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