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ABSTRACT 
Empirical program optimizers estimate the values of key optimi-
zation parameters by generating different program versions and 
running them on the actual hardware to determine which values 
give the best performance. In contrast, conventional compilers use 
models of programs and machines to choose these parameters. It 
is widely believed that model-driven optimization does not com-
pete with empirical optimization, but few quantitative compari-
sons have been done to date. To make such a comparison, we 
replaced the empirical optimization engine in ATLAS (a system 
for generating a dense numerical linear algebra library called the 
BLAS) with a model-driven optimization engine that used de-
tailed models to estimate values for optimization parameters, and 
then measured the relative performance of the two systems on 
three different hardware platforms. Our experiments show that 
model-driven optimization can be surprisingly effective, and can 
generate code whose performance is comparable to that of code 
generated by empirical optimizers for the BLAS. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, code 
generation, optimization; I.2.2 [Artificial Intelligence]: Auto-
matic programming – program transformation; G.4 [Mathemati-
cal Software] 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Compilers, Memory hierarchy, Tiling, Blocking, Unrolling, Pro-
gram transformation, Code generation, Empirical optimization, 
Model-driven optimization, BLAS 

1. INTRODUCTION 
The essential form of knowledge is nothing but a representation of truth: 
for the truth of being and the truth of knowing are one, 
differing no more than the direct beam and the beam reflected. 

Francis Bacon, Advancement of Learning (1605) 

High-level program transformations such as loop tiling, loop un-
rolling, and software pipelining are critical for compiling efficient 
code for modern architectures. Many of these transformations 
have numerical parameters whose values must be chosen carefully 
to obtain optimal performance. For example, to apply loop unroll-
ing, it is necessary to determine how many times the loop must be 
unrolled; too little unrolling may result in inefficient use of proc-
essor resources while too much unrolling may cause instruction 
cache overflow, or register spills to memory. 

To compute good values for transformation parameters, most 
compilers use simple architectural models that are tractable ab-
stractions of the complex hardware of modern computers. When 
applying loop tiling for example, tile sizes are usually determined 
by assuming that the cache is fully associative, whereas most 
hardware caches have limited set-associativity and use a pseudo-
LRU replacement policy.  

Although there is a substantial body of work on restructuring 
compilers, it is fair to say that even for a simple kernel like matrix 
multiplication, most current compilers do not generate code that 
can compete with hand-written code in efficiency. To circumvent 
this difficulty, some library writers are using empirical optimiza-
tion to generate highly tuned libraries automatically. Well-known 
library generators that employ empirical optimization are ATLAS 
[18] which generates highly tuned Basic Linear Algebra Subrou-
tine (BLAS), FFTW [8] and SPIRAL [21] which generate FFT 
libraries. To choose a good tile size for a loop, a system that uses 
empirical optimization generates multiple versions of the tiled 
loop, runs all of them on the actual machine, and selects the tile 
size that results in the best performance. Simple architectural 
models can be useful to prune the size of the search space, but 
there is no need for precise models. These library generators pro-
duce better code on a wide range of architectures than native 
compilers using model-driven optimization. 

Why are current compilers unable to transform a simple matrix 
multiplication loop into code that performs as well as the code 
generated by ATLAS? One possibility is that compilers are at a 
disadvantage because they are general-purpose and must be able 
to optimize any program, whereas ATLAS is a library generator 
that can focus on a particular problem domain. The trouble with 
this argument is that the problem domain of ATLAS is dense 
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numerical linear algebra, which is precisely the area that has been 
studied most intensely by the compiler community! Another pos-
sibility is that systems like ATLAS are performing certain optimi-
zations that compilers do not know about. Yet another possibility 
is that these systems incorporate the same optimizations as com-
pilers do, but perform them in a different order (the so-called 
“phase-ordering problem”). Finally, if phase-ordering is not an 
issue, perhaps the architectural models used by compilers are 
overly simplistic compared to the complex hardware of modern 
computers, so they are unable to estimate optimal transformation 
parameters accurately. To the best of our knowledge, no studies 
exist to provide clear answers to these questions. 

 
Figure 1. Empirical and model-driven optimizers 

This paper provides the first quantitative evaluation of the differ-
ences between empirical and conventional, model-driven optimi-
zation. Figure 1 shows our experimental set-up. Like all systems 
that use empirical optimization, ATLAS has (i) a module that 
performs empirical search to determine certain parameter values 
(MMSearch), and (ii) a module that generates code, given these 
values (MMCase). We first studied the code generation module, 
and determined that the code it produces can be viewed as the end 
result of applying standard compiler transformations to high-level 
BLAS code. We then built a modified version of ATLAS in 
which the search module was replaced with a module 
(MMModel) that uses architectural models to estimate values for 
the same parameters that ATLAS normally searches for. Finally, 
we measured the performance of the code generated by the two 
systems on three architectures, and studied the generated code 
itself to understand performance differences. Since both ATLAS 
and our modified version use the same code generator, we are 
assured that any differences in performance arise solely from 
differences between empirical optimization and model-driven 
optimization as implemented in the two systems, and not from 
different code generation strategies. 

This paper summarizes our findings. In Section 2, we use the 
framework of restructuring compilers to describe the code genera-
tion strategy of ATLAS. In Section 3, we describe how ATLAS 
determines the values of the optimization parameters by using an 
extensive empirical search. In Section 4, we describe novel pro-
gram and machine models that we use to estimate values for these 
parameters without doing any empirical searches. In Section 5, we 
contrast the two approaches, comparing 

• the time spent to determine the parameter values,  
• the values of the parameters, and 
• the relative performance of generated code. 
In Section 6, we show how performance changes as parameter 
values are changed. This sensitivity analysis is useful for deter-
mining which parameters must be estimated most accurately for 

efficient code. We conclude in Section 7 with a discussion of our 
main findings, and suggest future directions of research. 

2. HIGH-PERFORMANCE BLAS 
In this section, we use the framework of restructuring compilers 
to describe how ATLAS produces highly optimized code for the 
Basic Linear Algebra Subroutines (BLAS). This description is 
based solely on what we have been able to deduce by studying the 
source code of the ATLAS system. The code produced by 
ATLAS depends on certain optimization parameters, which are 
assumed to be given to the code generator by an oracle for now. 

2.1 High-level BLAS code 
We restrict our attention to the Level-3 BLAS, which are by far 
the most complex and time-consuming of the BLAS routines. The 
simplest Level-3 BLAS performs the following computation: 

CBAC βα +×=  (1) 

In this equation, A, B and C are input matrices of appropriate 
shape, while α and β are scalars. Note that matrix multiplication 
is a special case of this computation in which α = 1 and β = 0. We 
will consider the case α = β = 1, for which it is straightforward to 
provide an implementation in a high-level, C-like language, as 
shown in Figure 2. 

Other BLAS-3 routines perform the same computation with trans-
posed versions of either A or B or both. Level-2 BLAS codes 
perform variations of matrix-vector multiplication, while Level-1 
BLAS codes perform vector operations such as inner product and 
sum. 

for (int j = 0; j < M; j++) 
  for (int i = 0; i < N; i++) 
    for (int k = 0; k < K; k++) 
      C[i][j]= C[i][j]+A[i][k]*B[k][j] 

Figure 2. Matrix Multiplication 
It is well known that the code in Figure 2 will perform poorly if 
the matrices A, B, and C are large. This is because modern com-
puters have deep processor pipelines and multi-level memory 
hierarchies consisting of caches and registers. In principle, matrix 
multiplication has excellent algorithmic data reuse because it 
performs O(N3) operations on O(N2) data. In practice, the program 
may run poorly if a lot of data is touched between successive 
accesses to a given cache line, evicting the cache line before it 
can be accessed again. For example, in the code shown in Figure 
2, successive accesses to a given element of B are separated by 
accesses to O(N2) data, so every access to B may miss in the 
cache. Registers may be considered to be the highest level of the 
memory hierarchy. To use them effectively in matrix multiplica-
tion, it is necessary to register-allocate array elements, which 
many compilers do not normally do. Finally, on pipelined proces-
sors that issue instructions in order, there will be little overlap in 
the execution of different iterations of the k-loop, so instruction-
level parallelism (ILP) will not be exploited. 

2.2 Optimized BLAS codes 
To address these performance problems, it is necessary to restruc-
ture the code to exploit features of modern architectures. ATLAS 
is not a restructuring compiler, but the code it produces can be 
viewed as the end result of performing the following sequence of 
code transformations on the high-level code in Figure 2. 



• Cache-level tiling: The standard approach to exploiting data 
reuse in loops such as matrix multiplication is to tile (or 
block) the loops in the loop nest [1]. In effect, the matrix 
multiplication is converted to a sequence of smaller matrix 
multiplications whose working sets fit in the cache. Each of 
the small matrix multiplications multiplies an MBxKB sub-
matrix of A by a KBxNB sub-matrix of B and accumulates 
the result in a MBxNB sub-matrix of C. In this paper, we call 
these operations mini-MMMs. ATLAS tiles only for the L1 
data cache, and it uses only square tiles (NB=MB=KB). The 
code for a mini-MMM is shown in Figure 3, assuming the 
JIK loop order. 
  for (int j = 0; j < NB; j++) 
    for (int i = 0; i < NB; i++) 
      for (int k = 0; k < NB; k++) 
        C[i][j] += A[i][k] * B[k][j] 

Figure 3. Mini-MMM code 
The value of NB is an optimization parameter. Choosing too 
large or too small a value of NB increases the L1 cache miss 
ratio and leads to inefficient cache utilization. 

• Register-level tiling: The code for the mini-MMM in the 
previous step is itself tiled to make effective use of the gen-
eral-purpose registers. Each of the smaller matrix multiplica-
tions multiplies a MUx1 sub-matrix of A with a 1xNU sub-
matrix of B and accumulates the result in a MUxNU sub-
matrix of C. In this paper, we call these micro-MMMs. The 
loops of a micro-MMM are unrolled completely to produce a 
straight-line code segment. 
The pseudo-code for a mini-MMM after register-level tiling 
and unrolling of the micro-MMM is shown in Figure 4. In 
this code, we assume for simplicity that the elements in the 
A, B, and C tiles touched in the mini-MMM are indexed 
starting at (0, 0). A pictorial view of this code is shown in . 
The shaded regions in this figure correspond to a micro-
MMM. 

for (int j = 0; j < NB; j += NU) 
  for (int i = 0; i < NB; i += MU) 
    load C[i..i+MU-1, j..j+NU-1] into registers 
    for (int k = 0; k < NB; k++) 
       load A[i..i+MU-1,k] into registers 
       load B[k,j..j+NU-1] into registers 
       multiply A’s and B’s and add to C’s 
    store C[i..i+MU-1, j..j+NU-1] 

Figure 4. Mini-MMM Code after Register-level Tiling 
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Figure 5: Pictorial View of Code in Figure 4 

After register-level tiling, the k loop in Figure 4 is unrolled 
completely if NB is small enough. Otherwise, this loop is un-
rolled by a factor of KU. Unrolling together with scheduling 
of operations, as described in the next step, gives the effect 
of software-pipelining the innermost loop of the mini-MMM. 
The values of MU, NU, and KU are optimization parameters. 
If MU and NU are too small, registers are not fully utilized, 
but if they are too large, the compiler may generate many 
spills to memory. Unrolling by KU reduces loop control 
overhead, but too much unrolling can lead to instruction 
cache overflow, which reduces performance. 

• Scheduling: The body of the innermost loop that results from 
the previous step is straight-line code that contains KU cop-
ies of the micro-MMM code; each copy has MU*NU multi-
ply-add operations and the corresponding MU loads from A 
and NU loads from B. The operations in the loop body can 
be divided into two groups: computation and memory ac-
cesses. 
We first focus on the scheduling of the computation opera-
tions in the loop body, assuming that the appropriate loads 
have been done. If the MMSearch routine in ATLAS detects 
that the processor has a combined multiply-add instruction 
(that is, the parameter MulAdd is true), the code generation 
module generates code that increases the likelihood that the 
C compiler will uses that instruction. We confine our discus-
sion to the more complicated case when such an instruction 
is not available. In this case, each multiply instruction writes 
its result to a temporary register, which is read by the corre-
sponding add instruction.  
For efficient pipelining, it is desirable that a multiplication 
instruction and its corresponding addition instruction be 
separated by independent instructions. To accomplish this, 
instruction scheduling considers separately the MU*NU mul-
tiply instructions (M1M2…MMU*NU) and the MU*NU add in-
structions (A1A2…AMU*NU) in a single micro-MMM. It inter-
leaves the two lists after skewing them by Latency, a pa-
rameter related to FP multiplier latency, to produce a sched-
ule like this: 

M1 
M2 
 … 
MLatency 
A1 
MLatency+1 
A2 
MLatency+2 
… 
MMU*NU-1 
AMU*NU-Latency 
MMU*NU 
AMU*NU-Latency+1 
AMU*NU-Latency+2 
… 
AMU*NU 

Such a schedule requires Latency number of extra registers 
to hold the results of the multiplications. In particular, if NR 
is the number of registers, the following inequality must hold 
for efficiency: 

NRLatencyNUMUNUMU ≤+++*  (2) 



It is obvious that the final Latency adds can overlap with the 
initial Latency multiplies of the next iteration of the K loop.  
We now consider where the loads of A and B elements must 
be inserted into this computation schedule. A naïve approach 
is to schedule all the loads as early in this schedule as de-
pendences allow. However, if the CPU supports only a small 
number of outstanding loads, the instruction pipeline might 
stall. To avoid this, ATLAS schedules blocks of NFetch 
loads at a time, where NFetch is an optimization parameter 
that depends on the number of outstanding loads that the 
CPU supports. In this way, the executions of memory and 
ALU operations are interleaved. 
Notice that in each micro-MMM, there are MU+NU loads 
but MU*NU multiplies and adds. Therefore, the last part of 
this schedule for the loop body is likely to have only arith-
metic operations. To make better use of memory, ATLAS 
tries to overlap some of the initial loads for one iteration of 
the k loop with the final computations of the previous itera-
tion. This step can be viewed as a simple kind of software 
pipelining of the unrolled loop. The number of these initial 
loads is determined by an optimization parameter called 
IFetch. 
Finally, there is a parameter called FFetch whose precise 
role is somewhat unclear to us. It appears to be used to sup-
press the initial loads for C from memory under some cir-
cumstances.  
The values of MulAdd, FFetch, IFetch, NFetch, and Latency 
are optimization parameters.  

2.3 Versioning 
As in many BLAS libraries, the library generated by ATLAS 
actually contains several versions of each high-level BLAS-3 
algorithm. For example, it is often the case that A, B, and C are 
sub-matrices of larger matrices. In that case, it may be beneficial 
to copy these matrices into contiguous storage to reduce conflict 
misses during the execution of the operation. However, the over-
head of copying may not be worthwhile if the matrix sizes are 
small, or if copying requires more memory than what is available. 
Most BLAS libraries therefore have both a copying and a non-
copying version of each code; at runtime, matrix size information 
is used to determine which version should be executed. Decisions 
that ATLAS makes at runtime include (i) whether to copy the tiles 
for mini-MMM into continuous memory, (ii) the loop order of the 
mini-MMM (only JIK or IJK are considered), and (iii) how 
boundary sub-matrices will be multiplied. Boundary sub-matrices 
arise because a matrix dimension may not necessarily be an inte-
ger multiple of the tile size. Skinny matrices “left-over” from 
tiling can be multiplied by specialized code called clean-up code, 
in which the exact size of operand sub-matrices is used to fully 
unroll loops. At runtime, ATLAS decides whether to call the ge-
neric MMM code or the clean-up code for handling the boundary 
sub-matrices. 

2.4 Summary 
The code produced by ATLAS can be viewed as the end-result of 
applying a sequence of well-known program transformations to 
high-level BLAS codes. The optimization parameters used in 
these transformations are NB, MU, NU, KU, MulAdd, Latency, 
IFetch, NFetch, and FFetch. 

Although these optimization parameters are specific to ATLAS, 
we would argue that most of them would arise naturally in the 
context of conventional restructuring compilers. Any compiler 
that tiles for the data cache will compute a parameter similar to 
NB. Parameters similar to MU, NU, and KU are used for register 
tiling. Instruction selection and scheduling would require parame-
ters like MulAdd, Latency and something similar to NFetch or 
IFetch. FFetch is the odd man out. 

3. HOW ATLAS FINDS PARAMETER 
VALUES 
As mentioned earlier, ATLAS does its work in two phases. 

• The installation phase of ATLAS is shown in Figure 1. First, 
ATLAS computes machine parameters such as L1 data cache 
size and the number of registers. Then, it performs empirical 
search to determine values for the optimization parameters, 
using machine parameters to limit the size of the search 
space. Finally, it generates all the mini-MMM versions for 
the library.  

• At run-time, an application program calls ATLAS’s general 
interface routine. This interface routine takes care of some 
trivial cases such as empty input matrices and the case when 
α = 0 (which means the result is just βC), and then makes a 
sequence of calls to the appropriate mini-MMM to perform 
the matrix multiplication. 

3.1 Estimating machine parameters 
Since ATLAS is self-tuning, it does not require the user to pro-
vide the values of machine parameters. Instead, it runs micro-
benchmarks to determine approximate values for most of these 
parameters. Among these are 

• the size of L1 data cache (L1Size), 
• the number of floating-point registers (NR), 
• the availability of a multiply-add instruction (MulAdd), and 
• the latency of the floating-point multiply unit (Latency). 
These micro-benchmarks have nothing to do with matrix multipli-
cation; for example, the micro-benchmark for estimating the size 
of the L1 data cache is similar to the one in Hennessy and Patter-
son [9]. 
As described in Section 2, two other architectural parameters are 
critical for performance: (i) the L1 instruction cache size, and (ii) 
the number of outstanding loads that the machine supports. 
ATLAS does not determine these explicitly; instead, they are 
considered implicitly during the optimization of matrix multipli-
cation code. For example, the size of the L1 instruction cache 
may limit the amount of unrolling of the k loop of Figure 4 (pa-
rameter KU) that is beneficial. Rather than estimating the size of 
the instruction cache by running a micro-benchmark and then 
using that to determine the amount of unrolling, ATLAS gener-
ates a suite of MMM kernels with different amounts of unrolling, 
and determines the best one experimentally.  

3.2 Estimating optimization parameters 
Once machine parameters have been estimated, ATLAS estimates 
optimization parameters using an extensive search to find optimal 
values.  

The optimization sequence is as follows. 
1. Find best NB. 
2. Find best MU and NU. 



3. Find best KU. 
4. Find best Latency. 
5. Find best Fetch factors. 
6. Find non-copy version crossover. 
7. Find optimal cleanup codes. 
We now discuss each of these steps in greater detail. 

3.2.1 Find Best NB 
In this step, ATLAS generates a number of mini-MMMs for ma-
trix sizes NBxNB where NB is a multiple of 4 that satisfies the 
following inequalities: 

SizeLNBNB 1;8016 2 ≤≤≤  (3) 

 A “phase-ordering problem” in generating these mini-MMM 
codes is that ATLAS does not as yet have optimal values for the 
other optimization parameters. Therefore, it uses rough estimates 
for the values of these parameters. The values of MU and NU are 
set to the values closest to each other that satisfy (2). For each 
matrix size, ATLAS tries two extreme cases for KU – no unroll-
ing (KU=1) and full unrolling (KU=NB). Suitable Latency and all 
Fetch parameters are obtained from running the micro-
benchmarks. 

The NB that produces highest MFLOPS is chosen as “best NB” 
value, and it is used from this point on in all experiments as well 
as in the final versions of the optimized mini-MMM code. 

3.2.2 Find Best MU and NU 
This step is a straightforward search that refines the reference 
values of MU and NU that were used to find the “best NB”. 
ATLAS tries all possible combinations of MU and NU that satisfy 
Inequality (2). The cases when MU or NU is 1 are treated spe-
cially. A test is performed to see if 1x9 unrolling or 9x1 unrolling 
is better than 3x3 unrolling. If not, unrolling factors of the form 
1xU and Ux1 for values of U greater than 3 are not checked. 

3.2.3 Find Best KU 
This step is another simple search. Unlike MU and NU, KU does 
not depend on the number of available registers, so technically we 
can make it as large as we want to without causing register spills. 
The main constraint here is instruction cache size. ATLAS tries 
values for KU between 4 and NB/2 as well as the special values 1 
and NB. The value that gives best performance in terms of 
MFLOPS (based on NB, MU and NU as determined from the 
previous steps) is declared the optimal value for KU. 

3.2.4 Find Best Latency 
In this step, ATLAS tries different schedules for the computations 
in the unrolled k loop of Figure 4 to determine if there is a skew 
that generates a better schedule than the one obtained by using the 
hardware Latency value. It checks all the values between 1 and 6, 
and selects the one that performs best, using parameter values 
determined from the previous steps. It also ensures that the chosen 
value divides MU*NU*KU to facilitate instruction scheduling.  

3.2.5 Find Best Fetch 
In this step ATLAS searches for the values of FFetch, IFetch and 
NFetch. First, ATLAS determines the value of FFetch (0 or 1). 
Then, it searches for the best value of the pair (IFetch, NFetch) 
where IFetch is in the interval [2,MU+NU] and NFetch is in the 
interval [1,MU+NU-IFetch]. 

3.2.6 Find Non-Copy Version of NB 
ATLAS generates both a copy and a non-copy version of the 
mini-MMM code. Without copying, the sub-matrices touched by 
a mini-MMM are not stored contiguously in memory, so the prob-
ability of conflict misses is higher than in the copy version. To 
avoid excessive conflict misses, ATLAS uses a smaller tile size 
for the non-copy version than for the copy version. It searches for 
tile sizes from NB down to 16 in steps of 4, until performance 
deteriorates by 20% or more. The tile size that yields highest per-
formance is selected to be the value of NCNB (Non-Copy NB). 

ATLAS also does a very restricted search for unroll factors and 
latencies (between 2 and 9 in this case). These searches are very 
much along the lines of the corresponding copy versions. 

At runtime, ATLAS invokes the copy version whenever the col-
lective size of the matrices is big enough that the cost of copying 
can be amortized by computation. The non-copy version is used 
when the dimensions of the matrices (see Figure 2) satisfy the 
following constraint: 

3** NBKNM ≤  (4) 

One other case in which ATLAS decides to use the generated 
non-copy version is for matrices larger than (218-2)/NB in one 
dimension. 

3.3 Generate Optimal Cleanup Codes 
If the tile size is not a multiple of the original matrix size, there 
may be “left-over” rows and columns in the matrices to be multi-
plied that are too few to form a tile. ATLAS generates “clean-up” 
code for handling these left-over rows and columns. These special 
tiles have one dimension of size NB and another dimension be-
tween 1 and NB-1. The size of this other dimension will be called 
L in this discussion. 

ATLAS generates cleanup codes as follows. For each value of L 
from NB-1 on down, ATLAS generates a specialized version of 
the code in which some of the loops are fully unrolled. Full un-
rolling is possible because the shapes of the operands are com-
pletely known. When the performance of the general version falls 
within 1% of the performance of the current specialized version, 
the generation process is terminated. The current L is declared to 
be the Crossover Point. At runtime, the specialized versions are 
invoked when the dimension of the left-over tile is greater than L, 
while the general version is invoked for tile sizes smaller than L.  

4. ESTIMATING PARAMETERS USING 
MODELS 
We now discuss the use of architectural models to estimate the 
values of optimization parameters without empirical search.  

4.1 Estimating NB 
There is a large body of work in the compiler community on es-
timating good tile sizes in the context of general-purpose compil-
ers. Dongarra and Schreiber [6] determine tile sizes and orienta-
tions such that the amount of data touched by the tile is 
bounded by the size of the cache, while minimizing the surface to 
volume ratio of the tile. Their solution modeled the problem as a 
constrained minimization problem. Boulet et al [2] suggest that 
the surface to volume ratio is not the appropriate metric to be 
minimized and present alternative metrics one might choose to 
optimize. Neither of these two approaches addresses the question 



of conflict misses. Lam, Rothberg and Wolf present strategies to 
determine square tiles while minimizing capacity and conflict 
misses [12]. Coleman and McKinley generalized this analysis to 
rectangular tiles [5]. Ramanujam and Sadayappan have consid-
ered tiling in the context of distributed-memory computers. Wolf, 
Chen and Maydan [20] discuss how tile sizes can be determined 
in the setting of production compilers. Clauss has used Ehrhart 
polynomials to provide exact values for the working set of a loop 
[4]. Unfortunately, few if any of these papers have comparisons 
with hand-optimized BLAS code, so it is difficult to determine the 
accuracy of these methods and their impact on performance. 
Our model for estimating NB is quite intricate, so we describe it in 
stages. Although the model works for any level of the memory 
hierarchy, we consider only the L1 cache (like ATLAS). 
First, we assume a simple cache model: 

• fully-associative cache (no conflict misses); 

• line size is one element (no spatial locality); 

• optimal replacement strategy (not LRU). 
Consider the code for matrix multiplication in Figure 2 in which 
the loops are executed in the JIK order. We can distinguish be-
tween three different scenarios, depending on how large the ma-
trices are compared to the cache size. 

• Large Cache Model (LCM): This model is valid when the 
size of the matrices is small compared to the cache size. In 
this model, the only misses are cold misses because nothing 
ever needs to be evicted from the cache. 

• Small Cache Model (SCM): This model is valid when the 
cache is small compared to the size of the matrices; intui-
tively, it is too small to hold even one row of a matrix. Spe-
cifically, if two different accesses to an array element are 
separated by accesses to O(1) other elements, we assume that 
the second access hits in the cache; otherwise, the number of 
accesses to other elements grows with matrix size, so we as-
sume that the second access misses in the cache.  

• Medium Cache Model (MCM): This model is valid when the 
cache is big enough to hold one (or several) rows of a matrix, 
but is not enough to hold a full matrix. 

These models can be used to make quantitative performance pre-
dictions, but we will not pursue that line of investigation in this 
paper. Our objective here is only to choose the largest NB that 
makes the LCM valid during the execution of the mini-MMM 
code shown in Figure 3. To keep things simple in the discussion 
that follows, we will use the word matrix instead of matrix tile. 
Matrix A is indexed by the control variables of the innermost two 
loops, i and k. Therefore, every iteration of the outermost loop j 
touches all of A. To stay in LCM, all misses must be cold misses, 
so we need to be able to store A completely in the cache. This 
will require storage for MB*KB=NB2 elements. 
Matrix B on the other hand is accessed by the control variables of 
the outermost loop j and the innermost loop k. Therefore once j is 
fixed, we will need to access the entire jth column of B in every 
iteration of loop i. After this computation, we will not access this 
column again, so we need storage for KB=NB elements of B in 
the cache. 
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Figure 6. Matrix Indexing Scheme and Cache Usage for JIK 

Finally, matrix C is indexed by the control variables of the outer-
most two loops – j and i. This means that we fix a single element 
of C, reuse it in all the iterations of the innermost loop k, and 
never touch it again after that. Therefore we need storage for one 
element of C in the cache. 

Summarizing, we need 12 ++ NBNB  lines in the cache to satisfy 
the requirements for LCM in this simple cache model. Because 
we know the capacity C of the cache, we can set NB to be the 
largest value consistent with this inequality: 

CNBNB ≤++ 12  (5) 

For loop orders other than JIK, the reasoning is very similar. The 
only difference is that the matrices A, B and C change their roles, 
thus contributing different terms on the left side of (5), but the 
final inequality is the same. In summary, we always need to keep 
one full matrix in the cache, a row or a column of another matrix 
and a single element of the third matrix. 

4.1.1 Modeling NB for Caches with Larger Lines 
We now refine our cache model by allowing lines to hold some 
number of elements greater than 1 (say B). Spatial locality be-
comes important, and we must consider the layout of matrices in 
the storage space. 
If we now return to our example (loop order JIK), and take into 
account that we are dealing with FORTRAN matrices stored in 
column-major layout, we can correct Inequality (5) as follows: 

B
C

B
NB

B
NB

≤+⎥⎥

⎤
⎢⎢

⎡+⎥
⎥

⎤
⎢
⎢

⎡ 1
2

 (6) 

The reasoning behind Inequality (6) is that we still need to cache 
the full matrix A, which contains MB*KB=NB2 elements. With B 
elements per line and assuming that A is laid out sequentially in 
memory, we need ⎡ ⎤BNB /2  cache lines. We need also to cache a 
full column of B (KB=NB elements). Because matrices are laid 
out in column major order in memory, one such column will re-
quire ⎡ ⎤BNB /  cache lines. Finally the single element of C that 
we need to store in cache is part of a single cache line. The same 
reasoning also works for loop orders JKI and KJI. 
For other loop orders (IJK, IKJ, KIJ) we need to store in the cache 
a full matrix, a matrix row from another matrix, and a single ele-
ment from the third matrix (e.g. these matrices in the IJK case are 
B, A and C respectively). Since we have non-unit line sizes, stor-
ing a row in the cache requires more storage than a column does. 
Because of the column major layout, each element of the row will 
most likely be part of a different cache line, which makes the row 



require NB cache lines instead of the ⎡ ⎤BNB / , normally required 
by a column. Therefore Inequality (6) changes to the following: 

B
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B
NB

≤++⎥⎥

⎤
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⎡ 1
2

 (7) 

4.1.2 Modeling NB for LRU Replacement Caches 
Finally, we analyze the effect of cache replacement policy. Most 
caches implement (pseudo) Least Recently Used (LRU) replace-
ment policy. As we shall see, this has a substantial impact on the 
optimal NB value. 
To find the impact of replacement policy, we must reason about 
the history of data accesses. A well-known approach for doing 
this is the stack algorithm [13]. In this approach, the history of 
memory references is represented as a stack that is updated after 
every memory reference M by pushing the line containing M onto 
the top of the stack and removing it from its old location if the 
line was already in the stack. An LRU cache would obviously 
keep only the top L lines, where L is the size of the cache. 
We can rewrite the pseudo-code of the JIK loop order in the fol-
lowing way: 

for jth column B (BXj) 
  for iit row of A (AiX) 
    multiply AiX by BXj and add to Cij 

The top of the stack after one execution of the inner multiply will 
look like: 

jijNBNBijiji CBABABA ,,,,22,,11, L  (8) 

Ci,j is used repeatedly (for each element multiply of AiX and BXj), 
so it stays at the top of the stack.  
This innermost multiply is performed NB times using the different 
rows of A and the same column of B. So the top of the stack after 
one full execution of the middle loop looks like this: 

jNBjNBNBNBjNBjNB

jNBNBNBNBNB

jNB

jNB

CBABABA
CAAA

CAAA
CAAA

,,,,22,,11,

,1,12,11,1

,2,22,21,2

,1,12,11,1

L

L

M

L

L

−−−−

 

(9) 

Notice that the elements of the jth column of B appear only in the 
last row of the history because they are accessed in each iteration 
of the i loop. 
At the next iteration of the outer loop, we need to access A1,1 
again. Since A1,1 is the oldest reference in the history and the 
cache replacement policy is LRU, the line containing A1,1 will be 
in the cache only if everything in the history so far is in the cache. 
The history contains matrix A (NB*NB elements), a column of B 
and a column of C. In contrast, in a cache with optimal replace-
ment, we need only one element of C. 
Continuing this argument, we see that we need space for two col-
umns of B in the cache. With the space for the second column of 
B, it becomes possible for the elements of A to remain in the 
cache while the elements of the jth column of B are evicted. 
Applying the same argument again, but this time for the columns 
of C, it is easy to show that we need storage for one extra element 

of C to ensure that no elements of A are evicted as a consequence 
of LRU replacement. 
Putting all this together, we get the following inequality: 
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(10) 

In summary, for an LRU cache and loop order JIK, the optimal 
NB ensures that the full matrix A, two columns of B, and one 
column and one element of C fit in the cache. In general, for any 
other loop order, the optimal NB ensures that one full matrix, two 
columns or rows of another matrix, and one column or row and 
one element of the third matrix fit in the cache. 

Table 1. Equations for Optimal NB in the General Case 
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The inequalities for all the different loop orders are summarized 
in Table 1. The only variable in all these equations is NB, there-
fore we can find the largest integer solution for it using binary 
search. 

4.1.3 Modeling NB for Set-Associative Caches 
In practice, caches are not fully associative. In spite of this, the 
models developed so far are relevant for the copy version of mini-
MMM code, which copies tiles into a sequential region of mem-
ory to reduce conflict misses. 
To determine the optimal value for NB when copying is not per-
formed, we need to estimate the impact of conflict misses. Our 
estimates are based on the model developed by Fraguela et al. [7], 
which uses a statistical approach to predict approximately the 
number of cache misses caused by a loop nest with constant 
bounds. For lack of space, we do not address this issue further in 
the paper. 

4.2 Finding MU, NU, and KU 
Register tiling can be looked at as a special case of tiling (or 
equivalently unroll and jam [1]) for a cache that has the following 
properties: 
• fully-associative – any register can contain a value loaded 

from any memory address; 
• unit line size – each register contains a single value and is a 

line in this L0 cache by itself; 
• optimal replacement policy – the code generator is free to 

schedule any register fill or spill at any time. 



We assume that the register tile has K as its outermost loop, as 
shown in Figure 4. If all three parameters (MU, NU and KU) are 
equal to some value U, we can use inequality (5) to constrain U: 

NRUU ≤++ 12  (11) 

Here NR is the number of floating point registers. Intuitively, U2 
registers are required for the register tile of C, U registers are 
required for B and 1 register is required for A. Because NR is 
usually small, it may be sub-optimal to unroll equally in all direc-
tions. For example NR=6 forces us to make U=1 (no unrolling). 
However if we can unroll by different amounts in the three direc-
tions, we can choose to unroll by 2 in exactly one direction and 
get better performance. 
If we think about the three unroll factors separately, (11) is re-
placed with: 

NRNUNUMU ≤++ 1*  (12) 

Notice that while MU and NU are constrained by the number of 
registers, unrolling along the K direction is not.  

4.2.1 ATLAS-Compatible MMM Unroll Model 
The code generation strategy described in Section 2.2 actually 
requires MU registers rather than just one register for A (this al-
lows more elements of A to be prefetched into registers). Fur-
thermore, in the absence of a combined multiply-add instruction 
we need extra registers for storing the result of floating-point 
multiplications. Taking into account all these considerations, the 
appropriate constraint is given by Inequality (2), where Latency is 
replaced by the number of temporary registers (TR) required for 
scheduling: 

NRTRNUMUNUMU ≤+++*   

Now if we assume MU=NU we get: 

( ) 022 ≤−++ NRTRNUNU  (13) 

which we can solve for NU. Having obtained NU, we can solve 
(4) for MU: 

1+
−−

=
NU

NUTRNRMU  (14) 

and adjust MU and NU so that they are both at least one and MU 
is the bigger one. 
For KU, our approach is to unroll along the K direction as much 
as possible without overflowing the L1 instruction cache. We can 
do this because we know the size of the instruction cache. When 
generating code for a specific KU value, we measure the size of 
the loop in bytes, using a special feature of the C language, pre-
sent in the GCC compiler that allows us to compute addresses of 
goto-style labels. Here is an example: 

printf(“code size = %d\n”, &&l2 - &&l1); 
return; 
l1: 
  // mini-MMM code generated for fixed KU 
l2:; 

This code prints the number of bytes of generated binary code 
between the two labels. 

4.3 Finding Fetch, Latency, and MulAdd 
ATLAS has three fetch parameters: FFetch, IFetch and NFetch. 
We choose FFetch=1 (to prefetch the portion of C into registers). 
We believe that IFetch and NFetch should both be set to the num-

ber of supported outstanding loads (OL). However we do not yet 
have a benchmark that estimates OL; and we also found that per-
formance was not sensitive to the values of these parameters, as 
we discuss in Section 6. Therefore we set both parameters to 2. 
For the optimization parameters Latency and MulAdd, our model 
uses the machine parameters determined by the hardware parame-
ter detection module. 

4.4 Summary 
We have developed a model-driven approach for choosing all 
optimization parameters used by ATLAS: NB, MU, NU, KU, 
MulAdd, Latency, FFetch, IFetch and NFetch. 

5. PERFORMANCE ANALYSIS 
In this section, we describe the results of our experiments with 
ATLAS and with the modified version of ATLAS (called Model 
from this point on) in which empirical optimization has been re-
placed with model-driven optimization. We compare both the 
installation time of the two versions, and the execution times of 
double-precision matrix multiplications of various sizes on the 
three architectures shown in Table 2. 

5.1 The Installation Phase 
Table 2. Test Platforms Hardware 

 SGI Sun Intel 
CPU R12000 UltraSparcIII PIII-Xeon 

Frequency 270MHz 900MHz 550MHz 

Registers 32 32 8 

L1 Cache 32KB/32KB 64KB/32KB 16KB/16KB 

L2 Cache 4MB 8MB 512KB 

Memory 1GB 2GB 1GB 

OS IRIX64 v6.5 SunOS 5.8 RedHat 7.3 

ATLAS 
Compiler 

MIPSpro CC 
v7.3.1.1m 

Forte 7 
C v5.4 

gcc v3.2 

ATLAS 
Options 

-O3 -64 
-OPT:Olimit=15000 
-TARG:platform=IP27 
-LNO:blocking=OFF 
-LOPT:alias=typed 

-dalign 
-fsingle 
-xO2 
-native 

-fomit-frame-
pointer 
-O 

Native 
Compiler 

MIPSpro F77 
v7.3.1.1m 

Forte 7 
F95 v7.0 

g77 v3.2 

Native 
Options 

-O3 -64 
-OPT:Olimit=15000 
-TARG:platform=IP27 

-dalign 
-native 
-xO5 –pad 

-O3 -fno-inline 
-funroll-all-loops 
-funroll-loops 

The installation phase can be divided into four parts. The first 
part, Detecting Machine Parameters, takes 6%-12% longer in 
Model, mainly because of the way the code is organized. The 
original version of ATLAS detects the cache size as part of the 
empirical search while Model performs this task in this part. The 
second part, Estimating Optimization Parameters, is where 
ATLAS performs the empirical search. In Model, this part takes 
almost no time because no search is performed. The final two 
parts of the installation phase generate the final source, and then 
compile it to make the library. Currently, we generate more ver-
sions of the clean-up code (for multiplying boundary sub-
matrices) than ATLAS does, so there are minor differences be-



tween ATLAS and Model in the time they take to execute these 
two parts. Figure 7 presents this breakdown of installation times. 
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5.1.1 Optimization Parameter Values 
Table 3 and Table 4 show the values of the optimization parame-
ters that are determined by ATLAS and by Model respectively. 
The parameter values determined by the two systems are very 
similar on the Intel and SGI machines. On the Sun, tile size and 
KU values are significantly different, but other parameter values 
are close. The impact of these differences will be discussed later 
in this paper. 

Table 3. ATLAS Estimated Parameters 

Archi-
tecture 

Tile Size 
Copy / Non-Copy 

Unroll  
MU / NU / KU 

Fetch  
F / I / N 

Latency 

SGI 64 / 64 4 / 4 / 64 0 / 5 / 1 3 

Sun 48 / 48 5 / 3 / 48 0 / 3 / 5 5 

Intel 40 / 40 2 / 1 / 40 0 / 3 / 1 4 

Table 4. Model Estimated Parameters 

Archi-
tecture 

Tile Size 
Copy / Non-Copy 

Unroll  
MU / NU / KU 

Fetch  
F / I / N 

Latency 

SGI 62 / 45 4 / 4 / 62 1 / 2 / 2 6 

Sun 88 / 78 4 / 4 / 88 1 / 2 / 2 4 

Intel 42 / 39 2 / 1 / 42 1 / 2 / 2 3 

5.2 Comparison of Performance 
In this section, we compare the execution times of both the mini-
MMM routines () as well as complete MMM for various matrix 
sizes (Figure 8, Figure 9 and Figure 10). 

5.2.1 Mini-MMM Performance 
Table 5. Mini-MMM Performance Comparison 

Architec-
ture 

ATLAS 
(MFLOPS) 

Model 
(MFLOPS) 

Difference 
(%) 

SGI 457 453 1 

Sun 1287 1052 20 

Intel 394 384 1 

 shows that on both the SGI and Intel machines, the performance 
of the codes generated by the two approaches is similar. On the 
Sun, there is roughly a 20% difference in performance. 

5.2.2 MMM Performance 
Next, we compare the performance of complete MMM using: 
• mini-MMMs generated by ATLAS (with empirical search), 
• mini-MMMs generated by Model, 
• hand-tuned BLAS routines, and 
• high-level matrix multiplication compiled using the most 

powerful optimizations available in the native compiler. 
We compare performance for square matrices of size 100 to 5000. 
On SGI and Sun, both ATLAS and Model use the non-copy ver-
sions of mini-MMM for multiplying large matrices. These data-
points are shown as unfilled markers on the plots. 
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Figure 8. MMM Performance Comparison on SGI 

On the SGI machine, the best performer is the native BLAS li-
brary. On the matrix sizes we tested, Model is always within 2% 
of ATLAS in performance. For matrix sizes larger than 4000, 
Model outperforms ATLAS by roughly 30%, but both are much 
slower than BLAS. For these matrix sizes, both ATLAS and 
Model decide to use the non-copy version, and this causes TLB 
misses to go up, as can be seen in Figure 8. ATLAS finds a tile 
size of 64, which is also the size of the TLB on the SGI machine. 
The model predicts a tile size of 45, so it requires fewer TLB 
entries, and thus performs better. These experiments demonstrate 
the well-known fact that for large data sizes, TLB effects can be 
important. 
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Figure 9. MMM Performance Comparison on Sun 

On the Sun, the best performer is again the native BLAS library. 
The codes generated by ATLAS and by Model are between 25% 
and 50% slower than the BLAS. ATLAS-generated code per-
forms about 20% better than Model-generated code for matrix 
sizes less than 3000. 
As on the other machines, the native BLAS library performs best 
on the Pentium. Both ATLAS-generated code and Model-
generated code perform about 20% worse than the BLAS, and are 
within 3% to 10% of each other.  
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Figure 10. MMM Performance Comparison on Intel 

The native compilers on all three machines did not produce very 
good code. In these experiments, the sizes of the matrices were 
parameters to the high-level code for matrix multiplication that 
was given to these compilers. We found that if the matrix sizes 
are hard-coded constants in this code, the performance obtained 
by the native compilers on SGI and Sun is close to that of ATLAS 
and Model. We do not yet understand this issue. 

5.3 Summary 
Two surprising conclusions can be drawn from the experimental 
results in this section. First, we found that handwritten BLAS 
libraries perform better than either ATLAS-generated or Model-
generated code on all three machines; on the Sun and Intel ma-
chines, the difference in performance is 25%-33%. This suggests 
there is considerable room for improvement in both empirical and 

model-driven optimization techniques for generating the BLAS. 
Second, we found that on the SGI and Intel machines, the code 
generated by model-driven optimization is similar in performance 
to the code generated by ATLAS. On the Sun, only the values 
selected for tile size and KU by the two systems were signifi-
cantly different, and the performance of Model-generated code is 
about 20% worse than ATLAS-generated code. It would appear 
that for generating optimized BLAS, empirical search is not as 
important as is commonly believed.  
We also repeated these experiments with rectangular matrices of 
different sizes, but reached the same conclusions.  

6. SENSITIVITY ANALYSIS 
The results of the previous section show that the performance of 
code produced by model-driven optimization can be comparable 
to that of code generated by empirical optimization. An interest-
ing question at this point is the following: 
How sensitive is the performance of the code to changes in the 
values of optimization parameters? 
This question is of interest for several reasons. In our context, the 
problem of generating efficient code can be viewed as a multi-
dimensional optimization problem in which the independent vari-
ables are the optimization parameters such as NB, MU, NU, etc., 
and the dependent variable is performance. When the parameter 
values determined by the two systems are different, sensitivity 
analysis is useful to understand which of these differences af-
fected performance the most. In addition, if it turns out that near 
the optimal point, performance is relatively insensitive to changes 
in one of the parameters, we can spend less time and effort in 
optimizing the value of that parameter, which would benefit both 
empirical and model-driven optimization. Such insights would 
also help in developing hybrid optimization strategies that com-
bine model-driven and empirical optimization; if performance is 
insensitive to the value of some parameter, we can use simple 
models to choose its value, and use complex models or empirical 
optimization only for determining values for high-sensitivity pa-
rameters. In the limit, if performance near the optimal point is 
relatively insensitive to changes in any of the parameters, a simple 
model-driven optimization strategy is adequate. 
Because of the large number of optimization parameters, it is 
impractical to vary all of them simultaneously. Instead, we set all 
optimization parameters to the values found by ATLAS, and then 
measured how performance of the mini-MMM code changes 
when we vary one parameter at a time. 
On some graphs presented in this section, we mark three impor-
tant points: “A” shows the parameter value selected by ATLAS, 
“M” shows the parameter value selected by the Model, and “B” 
shows the best parameter choice among those tested. It is impor-
tant to note that “M” does not represent the performance 
achieved by the model since all parameters other than the one 
being varied are set to ATLAS-selected values.  

6.1 Sensitivity to tile size (NB) 
Figure 11, Figure 12, and Figure 13 show how performance 
changes when tile size is varied on the SGI, Sun and Intel ma-
chines respectively. 
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Figure 11: Performance vs. tile size on SGI 

On the SGI machine, ATLAS and our model choose almost the 
same tile size (64 vs. 62). Notice that the best performance is 
obtained when the tile size is roughly 450; at that point, perform-
ance is roughly 525 MFLOPS, which is about 15% better than the 
performance obtained by ATLAS or the model. Since ATLAS 
uses the size of the L1 cache to limit the search space for NB, it 
does not explore such large tile sizes. 
Our conjecture is that this large tile size is appropriate for the L2 
cache. If we use our model to determine NB for the L2 cache, we 
obtain 722, which is close to the point at which there is a sudden 
drop in performance in Figure 11. Multi-level caching is outside 
the scope of this paper because we use the ATLAS infrastructure 
for code generation. We are investigating this matter further. 
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Figure 12: Performance vs. tile size on Sun 

On the Sun machine, performance is relatively unchanged for tile 
sizes between 40 and 80. The best performance of 1336 MFLOPS 
is obtained for a tile size of 48. The model predicts a somewhat 
larger tile size (88), and this accounts for roughly 10% of the 20% 
difference in the performance of Model-generated and ATLAS-
generated code. We are doing more detailed cache simulations to 
understand this issue. 
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Figure 13: Performance vs. tile size on Intel 

Sensitivity to tile size is most pronounced on the Intel machine; a 
10% change in the tile size from the optimal tile size can reduce 
performance by 10% (400 MFLOPS down to 350 MFLOPS). 
However, both ATLAS and Model choose good tile sizes. 
We believe that the sensitivity of performance to tile size on the 
Intel machine arises from the relatively small L1 cache size. In 
contrast, performance on the SGI and Sun machines is relatively 
insensitive to tile size.  

6.2 Sensitivity to register tile size (MU, NU) 
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Figure 14: Performance vs. register tile size on SGI 
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Figure 15: Performance vs. register tile size on Sun 

Figure 14, Figure 15, and Figure 16 show how performance 
changes when the register tile size is changed on the SGI, Sun, 
and Intel machines respectively. Both ATLAS and Model choose 
the best register tiles on the SGI and the Intel machines. On the 
SUN, ATLAS and Model choose slightly different register tiles, 
but both perform well. 
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Figure 16: Performance vs. register tile size on Intel 
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Figure 17: Performance vs. Register Tile Shape on Intel 

Figure 17 shows that the shape of the register tile can affect per-
formance significantly. For example, the value of the expression 
(MU*NU+MU+NU) is the same for (MU, NU) = (3, 1) and for 
(MU, NU) = (1, 3), but it can be seen that the performance of the 
code produced in the two cases differs by 33% on the Pentium. 
The dependence of performance on the shape of the register tile 
disappears when we use icc rather than gcc to generate code. It 
appears that icc uses RISC-like instructions such as load 
reg1,@mem followed by fmul reg1,reg2 instead of CISC-like 
instructions such as fmul reg,@mem.  

6.3 Sensitivity to KU 
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Figure 18: Performance vs. KU 

Figure 18 shows that performance of the code increases slightly 
as the unroll factor KU is increased. The performance points for 
Model lie outside the range shown, so they do not appear in this 
graph. Although ATLAS and Model choose very different values 

for KU on the Sun, it can be seen that performance is insensitive 
to this difference. The instruction caches on all the machines are 
large enough that the k loop in the mini-MMM code of Figure 4 
can be unrolled completely without overflowing the cache. This 
will not be the case on a machine with a small instruction cache 
but a large data cache, because NB for such a machine would be 
too large to permit the loop to be unrolled completely. Similarly, 
full unrolling can be suboptimal on a machine with many regis-
ters, since the values of MU and NU will be large; the code size 
for each micro-MMM might be big enough that full unrolling 
(even for small NB) might overflow the instruction cache. 

6.4 Sensitivity to Latency 
Latency is important only when the code generator is not using 
combined multiply-add instructions. SGI has a combined multi-
ply-add, and the impact on performance of changes in the Latency 
parameter is less than 20 MFLOPS so we do not show it graphi-
cally. 
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Figure 19: Performance vs. latency on Sun 
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Figure 20: Performance vs. latency on Intel 

We now consider machines without a multiply-add instruction. If 
Latency is too small, the multiplications do not finish in time for 
the corresponding additions, so the pipeline stalls. If the Latency 
is too big, the ATLAS code generator needs that many temporary 
registers, which limits the MU and NU unroll factors, reducing 
performance. Therefore we expect an inverse U shape for the 
graph of performance vs. Latency, which is what we see in Figure 
19 and Figure 20. On the Sun, the Model chooses a sub-optimal 
value for Latency, which though close to the value ATLAS 
chooses, results in a 10% drop in performance.  



6.5 Sensitivity to Fetch parameters 
Our experiments showed that performance on the three machines 
is insensitive to the values of FFetch, IFetch and NFetch parame-
ters. 

6.6 Summary 
Our experiments show that performance on all three machines is 
most sensitive to the register tiling parameters MU and NU. There 
are relatively few registers on most machines, so it is important to 
use them effectively. However, even for these sensitive parame-
ters model-driven optimization was competitive. On the Sun, 
performance is also very sensitive to the Latency parameter. Para-
doxically, although performance is relatively insensitive to cache 
tile size on machines with large L1 data caches, there appear to be 
some subtleties in choosing good values for this parameter, per-
haps having to do with multiple memory hierarchy levels. Sub-
optimal tile size and Latency choices contributed roughly equally 
to the 20% difference in performance between ATLAS-generated 
and Model-generated code on the Sun. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we compared the relative effectiveness of empirical 
and model-driven optimization in producing optimized BLAS 
libraries. To isolate the contribution of empirical optimization, we 
modified ATLAS so that it used optimization parameters derived 
from model-driven optimization, and compared the performance 
of code generated by the two approaches on three architectures. 
A surprising conclusion from our experiments is that model-
driven optimization can be very effective – on the SGI and Intel 
machines, performance of the generated code was very close to 
that of ATLAS-generated code. On the Sun, the model chose sub-
optimal values for two parameters (tile size and Latency), and this 
led to a 20% difference in performance. It remains to be seen if 
more accurate modeling can eliminate this difference. 
Empirical optimization is used in FFTW and SPIRAL to choose 
an optimal algorithm from a suite of algorithms, and not just to 
choose values for transformation parameters as in ATLAS. It is an 
open question whether model-driven optimization is effective in 
this context as well.  
It would be interesting to see if empirical search can be speeded 
up by using modeling to bound the size of the search space.  
Perhaps the most important conclusion of this work is that empiri-
cal search may not be necessary to generate high quality code, 
given the effectiveness of the model-driven approach. It is more 
difficult to determine what needs to be done to make compilers 
bridge the gap with library generators. Although all techniques 
used by ATLAS – loop tiling, unrolling, instruction scheduling 
etc. – have been part of the compiler writer’s lore for many years, 
we cannot claim that it is easy to make compilers competitive 
with library generators. The developers of library generators 
know in advance the code to be generated and therefore can 
hardwire the search space and performance equations into their 
systems. With today’s technology, it is feasible to automate the 
identification of the search space, but the development of per-
formance equations – which were the main component of our 
strategy – is not well understood and cannot be automated at this 
time. There are, however, some promising results in this area [3]. 
A second perhaps equally important conclusion of this study is 
that there is still a significant gap in performance between the 
code generated by ATLAS and the BLAS routines. Although we 

do not understand the reason for this gap very well, it is clear that 
the problem of automating library generation remains open. The 
high cost of library and application tuning makes this one of the 
most important questions we face today. 

APPENDIX A 
In this appendix we present in pseudo-code an optimized mini-
MMM code generated by ATLAS. The optimization parameter 
values chosen are MU=4, NU=2, KU=1; IFetch=NFetch=2; 
FFetch=1; Latency=2; and MulAdd=false. 
To produce a compact representation, we define some notation. 

• There will be MU=4 temporary registers devoted to A (rAi). 
LAi will mean load ith such register from L1D$. 

• There will be NU=2 temporary registers devoted to B (rBj). 
LBj will mean load jt such register from L1D$. 

• There will be MU*NU temporary registers devoted to C 
(rCij). Sij will mean store register rCij into L1D$. 

• *ij will mean: multiply rAi by rBj and store the value in a 
temporary register. 

• +ij will mean: add the temporary value of the previous multi-
plication of rAi by rBj to rCij. 

We start with mini-MMM code similar to Figure 4: 
loop on N, step NU=2 
  loop on M, step MU=4 
    prefetch C;   // FFetch=1 
    loop K, step KU=1 
      LA0; LB0;   // IFetch=2 
       *00; 
      LA1; LA2;   // NFetch=2 
         *10; 
      LA3; LB1;   // NFetch=2 
       +00; *20; +10; 
       *30; +20; *01; 
       +30; *11; +01; 
       *21; +11; *31; 
       +21;  +31; 
    end K 
    S00; S10; S20; S30; S01; S11; S21; S31; 
  end M 
end N 

Although this is not the final code ATLAS generates, from here 
we can make some important observations: 

• As expected the main loop body contains MU*NU=4*2=8 
multiplies and 8 corresponding adds. Each pair is Latency=2 
FP instructions apart; 

• Fetch parameters work on a per K-iteration basis, issuing 
IFetch loads from rAi and rBj, followed by several groups of 
NFetch loads with computation in-between. 

The final transformation step ATLAS performs on the code is to 
software pipeline the K loop. The result looks as follows: 



loop on N, step NU=2 
  loop on M, step MU=4 
    prefetch C;   // FFetch=1 
    // start the software pipeline 
    LA0; LB0;   // IFetch=2 
       *00; 
    LA1; LA2;   // NFetch=2 
         *10; 
    LA3; LB1;   // NFetch=2 
    loop K, step KU=1 
      // software pipeline pattern 
       +00; *20; +10; 
       *30; +20; *01; 
       +30; *11; +01; 
       *21; +11; *31; 
      LA0; LB0;   // IFetch=2 
      LA1; LA2;   // NFetch=2 
       +21; 
       *00; 
      LA3; LB1;   // NFetch=2 
         +31; 
         *10; 
    end K 
    // drain the software pipeline 
       +00; *20; +10; 
       *30; +20; *01; 
       +30; *11; +01; 
       *21; +11; *31; 
       +21;  +31; 
    S00; S10; S20; S30; S01; S11; S21; S31; 
  end M 
end N 

When Latency is large, ATLAS also tries to schedule the multi-
plies of the current iteration with the adds from the previous itera-
tion and the data loads of the next iteration, effectively spanning 
three original iterations in the pipeline pattern. 
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