Cisco Cooperative Project

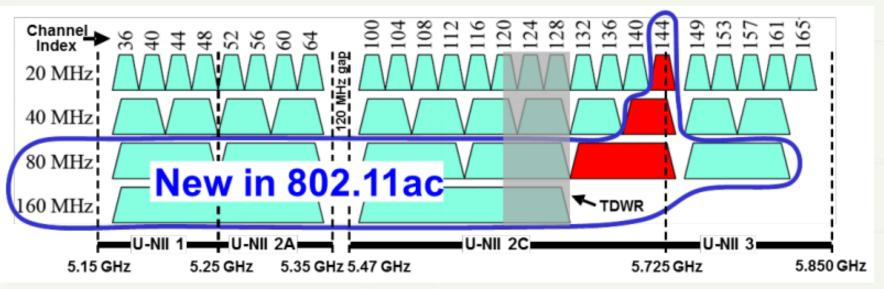
LAA with Multicarrier LBT

Student: Li Li Advisors: Len Cimini, Chien-Chung Shen

July 1, 2016

➢Paper about adaptive ED

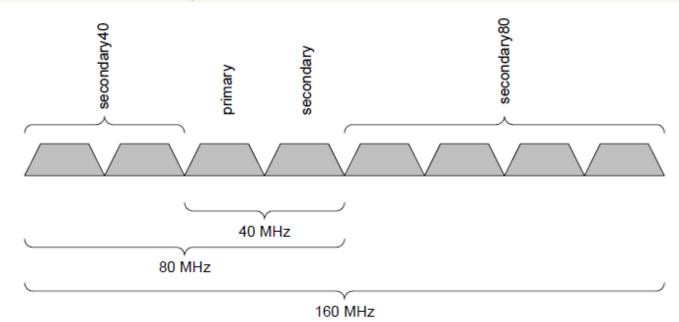
▶ 5-6 GHz Band
✓ 802.11ac
✓ LTE-U band
✓ Power limitation


Simulation Results

≻Next Steps

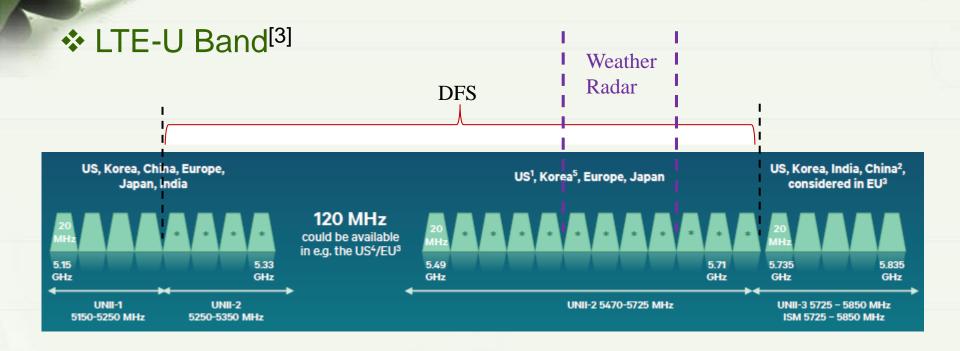
Paper about adaptive ED

Operating channels for 802.11ac in U.S.^[1]



✓ Four bands: U-NII 1, U-NII 2A, U-NII 2C, U-NII 3

✓ The standard permits operation in any of the channels shown, as well as simultaneous operation in any two non-adjacent 80-MHz channels.


[1] FCC, "Guidance for IEEE Std 802.11 ac^{TM} Devices Emission Testing", Aug. 14, 2014.

Channel bonding for 802.11ac^[2]

✓ There are no statements about locations of the primary channels. However, in three examples ([2], pp. 297), for the bandwidth of 80, 160 and 80+80 MHz, PC index are 36, 56, and 161, respectively. Thus, PC could be any 20 MHz channel.

[2] Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std 802.11ac[™]-2013.

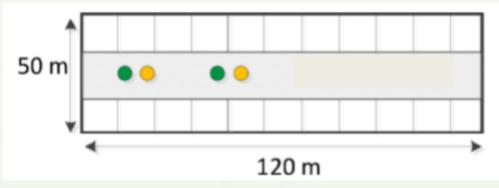
✓ LTE-U will use UNII-1 & UNII-3 (200MHz) per LTE-U forum

✓ LAA is expected to cover additional 5 GHz bands

[3] Qualcomm, "LTE-U/LAA, MuLTEfire™ and Wi-Fi; making best use of unlicensed spectrum", Sept. 2015.

Power limitations in U.S.^{[4][5]}

CURRENT RULES	No DFS U-NII-1 (100 MHz) 50 mW Indoor Only	DFS U-NII-2A (100 MHz) 250 mW	Proposed U-NII-2B (120 MHz) No Technical Rules	DFS U-NII-2C (255 MHz) 250 mW	No DFS U-NII-3 (100 MHz) 1 W Part 15.247 Rules (125 MHz)	Proposed U-NII-4 (75 MHz) No Technical Rules
------------------	--	--	--	--	---	--


- ✓ In [4], the total power limit is 50 mW (17 dBm) and 1 W (30 dBm) for U-NII 1 and U-NII 3.
- ✓ In [5], the power limit for U-NII 1 is increased to 250 mW (24 dBm) for indoor devices, and 1 W (30 dBm) for outdoor devices.

[4] FCC, "Revision of Part 15 of the Commission's Rules to Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band", Apr. 1, 2014
(https://apps.fcc.gov/edocs_public/attachmatch/FCC-14-30A1.pdf)
[5] FCC, "Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band", May 1, 2014.
(https://www.federalregister.gov/articles/2014/05/01/2014-09279/unlicensed-national-information-infrastructureu-nii-devices-in-the-5-ghz-band)

Simulation Results

Simulation Setting

✓ 2 APs, 2 eNBs, and each AP/eNB has five users (each UE uniformly and randomly distributed around its associated transmitter)

- ✓ 9 channels in total (U-NII 1 and U-NII 3)
- ✓ FTP file size: 0.5 Mbytes, Poisson process: lambda = 25
- ✓ LAA can aggregate channels in different bands
- ✓ Transmit power: 200 mW (23 dBm) for all transmitters (?)

Simulation Results: 9 channels

PC: 1,4,5,9, LAA randomly choose 3 channels as SC in each trial

✓Throughput

	-				
	WiFi #1	WiFi #3	LAA #2	LAA #4	
-70 dBm	143.43	202.05	108.96	212.55	
-75 dBm	138.55	223.23	87.65	168.52	
✓Bandwidth					
	W	iFi	LA	A	
-70 dBm	82368/0/33910/19236		39968/30423/32940/14755		
-75 dBm	86234/0/36171/12850		15627/26445/39046/41234		

• WiFi #3's performance is better than that of WiFi #1: there are no competitions among WiFi #1 and WiFi #3, but LAA #4's PC is not within WiFi #3's 80 MHz band

Simulation Results: 9 channels

PC: 1,4,5,9, LAA choose any idle channels (at most 3) as SC per transmission

✓Throughput

	WiFi #1	WiFi #3	LAA #2	LAA #4	
-70 dBm	110.99	221.16	154.53	267.04	
-75 dBm	116.18	235.75	130.05	206.47	
✓Bandwidth					
	WiFi		LA	A	
-70 dBm	89349/0/41840/2377		99571/4324/8436/18035		
-75 dBm	90308/0/37147/3079		64595/8798/11336/42331		

- LAA's performance is better: 1) one more channel, 2) flexible carrier aggregation
- Decreasing LAA ED can help to achiever fairness

Simulation Results: 9 channels

PC: 1,2,5,6, LAA choose any idle channels (at most 3) as SC per transmission

✓ Throughput

	WiFi #1	WiFi #3	LAA #2	LAA #4
-70 dBm	72.24	84.98	231.13	216.96
-75 dBm	97.93	103.16	176.85	180.35

✓ Bandwidth

	WiFi	LAA
-70 dBm	22510/0/30/112680	113370/14300/20/10
-75 dBm	51748/0/6/52323	83819/18448/66/14

• WiFi suffers from performance loss, the number of transmissions with 80 MHz decreases.

Discussions

- Adapting LAA's energy detection thresholds can help to achieve fairness between WiFi (channel bonding) and LAA (carrier aggregation). Due to higher physical rate of LAA, the overall performance may decrease.
- There are 9 channels but only 4 transmitters. PC selection is very straightforward, what about 8 or even more transmitters?

Next steps

- Speed up the simulation, and simulate a larger network size
- Work on adapting LAAED (together with bandwidth) to achieve fairness
- Work on the problem of PC and SC selection