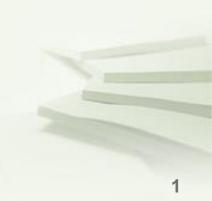
Cisco Cooperative Project

Start Recording

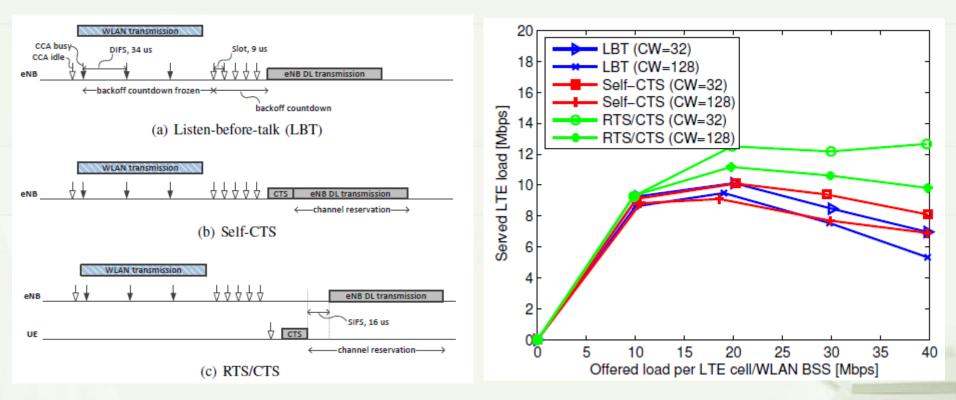
Coexistence Evaluation of WiFi and LAA

Student: Li Li Advisors: Len Cimini, Chien-Chung Shen


April 21, 2016

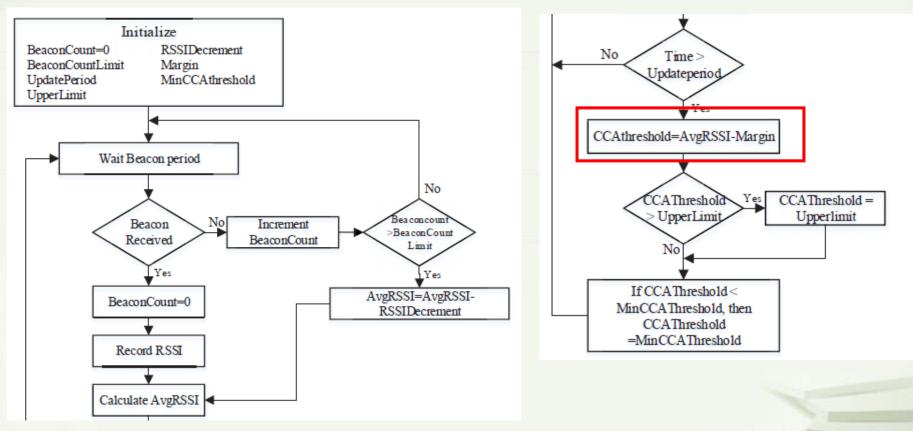
► Discussion on Proposal 2016

▶ Papers about LAA and 802.11ax


► Adaptive Threshold: Collisions

Discussion on Proposal 2016

- Multi-channel: channel selection, coverage vs throughput
- Multi-user beamforming: interference avoidance, imperfect CSI?
- Standalone LAA: uplink transmission
- 802.11ax: MAC design, dynamic sensitivity control with LAA



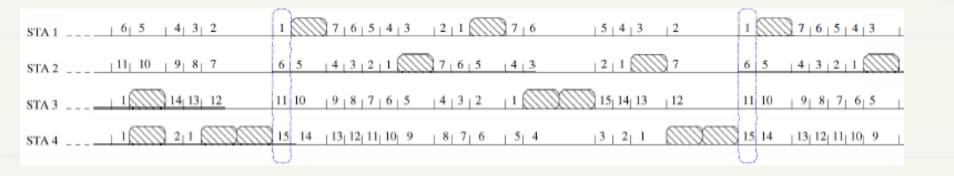
 \checkmark RTS/CTS method can be a reference for comparison.

[1] J. Jeon, H. Niu, Q. C. Li, A. Papathanassiou, and G. Wu, "LTE in the unlicensed spectrum: Evaluating coexistence mechanisms," in IEEE Globecom Workshops, pp. 740-745, Dec. 2014.

✤ 802.11ax with dynamic sensitivity control (based on SINR, per user)

✓ If both 802.11ax and LAA support adaptive ED, maybe the system performance can be further improved.

[1] M. S. Afaqui, E. G. Villegas, E. L. Aguilera, G. Smith, D. Camps, "Evaluation of Dynamic Sensitivity Control Algorithm for IEEE 802.11ax," in IEEE WCNC 2015.


★ 802.11ax. CSMA with deterministic backoff

1 while the device is on do 1 while the device is on do $r \leftarrow 0; s \leftarrow 0;$ 2 $b \leftarrow \mathcal{U}[0, 2^{s} \mathrm{CW}_{\min} - 1];$ 2 3 while there is a packet to transmit do 3 4 repeat 4 5 while b > 0 do 5 6 wait 1 slot; 6 7 $b \leftarrow b - 1;$ 7 8 8 Attempt transmission of 1 packet; 9 if collision then 9 10 $r \leftarrow r + 1;$ 10 11 $s \leftarrow \min(s+1, S);$ 11 12 $b \leftarrow \mathcal{U}[0, 2^{s} CW_{\min} - 1];$ 12 13 13 until (r = R) or (success); 14 14 $r \leftarrow 0;$ 15 15 $s \leftarrow 0;$ 16 16 if success then 17 $b \leftarrow \mathcal{U}[0, 2^s \mathrm{CW}_{\min} - 1];$ 17 18 18 19 else 19 Discard packet; 20 20 $b \leftarrow \mathcal{U}[0, 2^s \mathrm{CW}_{\min} - 1];$ 21 21 Wait until there is a packet to transmit; 22 Algorithm 1: CSMA/CA

 $r \leftarrow 0$; $s \leftarrow 0$; $b \leftarrow \mathcal{U}[0, 2^{s} CW_{\min} - 1];$ while there is a packet to transmit do repeat while b > 0 do wait 1 slot; $b \leftarrow b - 1$; Attempt transmission of 2^s packets; if collision then $r \leftarrow r+1;$ $s \leftarrow \min(s+1, S);$ $b \leftarrow \mathcal{U}[0, 2^{s} CW_{min} - 1];$ until (r = R) or (success); $r \leftarrow 0$; if success then $b \leftarrow (2^s \mathrm{CW}_{\min})/2 - 1;$ else Discard packet; $b \leftarrow \mathcal{U}[0, 2^s \mathrm{CW}_{\min} - 1];$ Wait until there is a packet to transmit; Algorithm 4: CSMA/ECA with hysteresis and fair-share

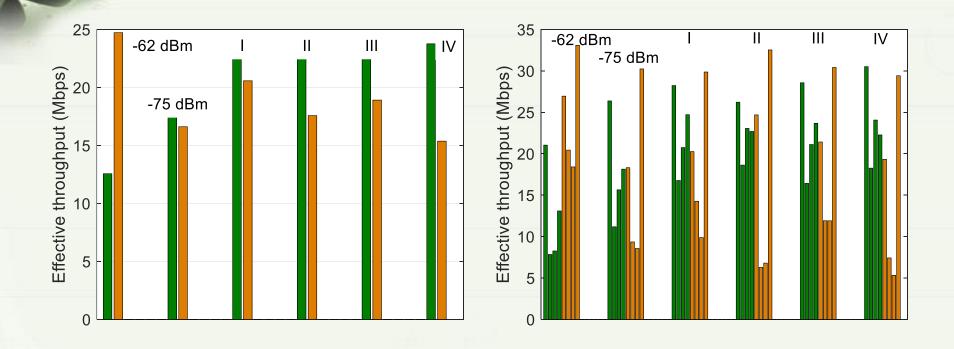
[1] L. S. Russo, A. Faridi, B. Bellalta, J. Barcelo, M. Oliver, "Evaluation of Dynamic Sensitivity Control Algorithm for IEEE 802.11ax," in IEEE ICC 2013.

* 802.11ax, CSMA with deterministic backoff

 \checkmark No collisions when each node is within the coverage area of the others?

✓ What about the case of multiple APs or mixed WiFi/LAA networks?

[1] L. S. Russo, A. Faridi, B. Bellalta, J. Barcelo, M. Oliver, "Future Evolution of CSMA Protocols for the IEEE 802.11 Standard," in IEEE ICC 2013.


Simulation Setting

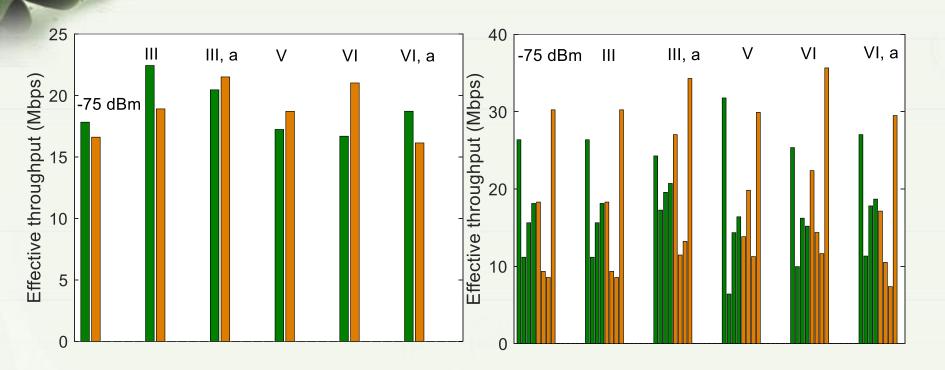
- ✓ 4 APs, 4 eNBs, and each AP/eNB has five users
- ✓ FTP file size: 0.5 Mbytes, Poisson process: lambda = 2.5
- ✓ One LAA eNB serves different UEs one by one.
- ✓ Modulation-coding-scheme

Modulation type	Coding Rate	AC SNR	LTE SNR	AC throughput	LTE throughput
QPSK	1/2	5	2.0	14.4	16.8
QPSK	3/4	9	5.5	21.7	25.2
16-QAM	1/2	11	7.9	28.9	33.6
16-QAM	3/4	15	12.2	43.3	50.4
64-QAM	2/3	18	15.3	57.8	67.2
64-QAM	3/4	20	17.5	65	75.6

According to collisions (per user)

- ✓ All LAA eNBs begin with a high ED (-62 dBm) for all users
- If collision happens to one user, certain eNBs decrease their ED by 1 for this user.
- ✓ After a certain period, all EDs go back to -62 dBm.
- Case I": LAA adopts "RTS/CTS" to avoid collisions. (For comparison)
- "Case II": certain eNBs: those who cause collisions (#2 and #6 in the example).
- "Case III": certain eNBs: the one who suffer from collision (#4 in this example).
- Case IV": certain eNBs: neighbor eNBs (#2 and #6 in the example).

✓ Case III achieves a pretty good performance.


 \checkmark "Decreasing by 1" for each collision is too much for LAA.

According to collisions (per base station), Case V

- ✓ All LAA eNBs begin with a high ED (-62 dBm)
- ✓ If the number of collisions happens to one user is larger than 3, its associated LAA eNB decrease its ED by 1
- ✓ After a certain period, all EDs go back to -62 dBm.

According to collisions (per base station), Case VI

- ✓ All LAA eNBs begin with a high ED (-62 dBm)
- ✓ If collision happens to one user, its associated LAA eNB decrease its ED by 1/5 (the average ED in Case III)
- ✓ After a certain period, all EDs go back to -62 dBm.

- "Case III, a": If the number of collisions happens to one user is larger than 3, its associated eNB decrease the ED by 1 for this user.
- ✓ "Case VI, a": the initial LAA ED is set to -70 dBm.
- ✓ "Case VI" and "Case VI, a" can also improve the performance, but not as much as the per user case.

≻Work on the "per base station" case

Study the channel selection problem in the multi-channel case