

Cisco Cooperative Project

Coexistence of WiFi and LAA: Traffic, Detection, Multi-Carrier LBT

Students: Li Li Advisors: Len Cimini, Chien-Chung Shen

Oct. 02, 2015

Outline

✤ Mixed Traffic

Energy detection for LAA

Multi-Carrier LBT

Next Steps

Mixed Traffic

★EDCA: different contention window for different traffic [1] ✓ FTP: CW_{min} = 15, CW_{max} = 63 (1023)

✓ VoIP:
$$CW_{min} = 3$$
, $Cw_{max} = 7$

Traffic Model

- ✓ FTP Model 3 (poisson process): file size: 0.5 Mbytes; mean = 5 s;
 10 UEs per carrier [2]
- ✓ VoIP, based on G.729A: packet inter-arrival time: 20 ms, packet size: 60 bytes [2]
- ✓ In current simulation (with scaling): FTP: 800 slots/400 slots, VoIP: 20 slots/1 slot (Single channel, same location)

[1] IEEE Std 802.11TM -2012, "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications."

[2] 3GPP TR 36.889 V13.0.0 (2015-06).

Mixed Traffic

*****FTP traffic/VoIP traffic: 1/0

	WiFi			LAA			
M=2							
M=4	0.2069 0.2101		0.2	127	0.2	112	
M=8	0.0928	28 0.0936 0.0916 0.0946		0.0896	0.0966	0.0909	0.0948

Mixed Traffic

*****FTP traffic/VoIP traffic: 0.9/0.1

	WiFi			LAA				
M=4	0.2	042	0.2	0.2066		022	0.02	2025
M=8	0.0846	0.0869	0.0844	0.0872	0.0819	0.0898	0.0839	0.0793

*****FTP traffic/VoIP traffic: 0.7/0.3

	WiFi				LA	AA		
M=4	0.1	828	0.1907		0.1953		0.1	935
M=8	0.0779	0.0670	0.0751	0.0699	0.0683	0.0719	0.0763	0.0745

- ➢ In all cases, LAA coexists with WiFi very well;
- As VoIP increases, performance decreases. High collision probability with small contention window.

Energy Detection for LAA

Simulation setting

✓ 4 APs (green) and 4 eNBs (yellow) are equally spaced [1]

- ✓ Transmit power: 18 dBm, with path loss, shadowing and Rayleigh fading
- $\checkmark\,$ FTP traffic with load rate of 0.5 $\,$
- ✓ WiFi: CCACS = -82 dBm, CCAED = -62 dBm; LAA: CCAED = -65/-70/-75 dBm
- ✓ q_WiFi = [15,63], q_LAA = [15,63]

Energy Detection for LAA

✤LAA CCAED: -65 dBm

	WiFi			LAA				
M=8	0.3198	0.1837	0.2070	0.2661	0.3339	0.3264	0.3312	0.3333

✤LLA CCAED: -70 dBm

	WiFi			LAA				
M=8	0.3011	0.1190	0.1750	0.2694	0.3287	0.3129	0.3158	0.3317

✤LLA CCAED: -75 dBm

	WiFi			LAA				
M=8	0.2884	0.0843	0.0923	0.2380	0.3083	0.2972	0.2727	0.3177

Energy Detection for LAA

- ✓ The nodes in the margin have more opportunities to access the channel than the nodes in the middle (better performance), especially for WiFi.
- ✓ Counterintuitively, decreasing the LAA CCAED will decease the performance of both WiFi and LAA.

Energy detection for LAA

✤ LAA CCAED: -65 dBm

✓ Radius in average

\\/iFi

1	2,3	2	1
3	1,4,5	4	3
5	3,6,7	6	5
7	5,8	8	7

ΙΔΔ

✤ LAA CCAED: -70 dBm

✓ Radius in average

WiFi		LAA	
1	2,3	2	1,3
3	1,4,5	4	3,5
5	3,6,7	6	5,7
7	5,8	8	7

✓ Block times

WiFi		LAA	
1	2	2	1
3	3	4	1
5	3	6	1
7	2	8	1

✓ Block times

WiFi	i LAA					
1	2	2	1			
3	4	4	1			
5	4	6	1			
7	3	8	1			

Energy detection for LAA

✤ LAA CCAED: -75 dBm

> This analysis matches the simulation results pretty well:

- ✓ From -65 to -70 dBm, WiFi nodes in the middle become worse;
- ✓ For -75 dBm, all nodes' performance decreases.

- A fixed energy detection threshold for LAA may have a negative impact on WiFi nodes in this layout.
- Need to consider the impact of interference, low threshold means high interference; this will decrease the successful transmission probability and may change the results.

Multi-carrier LBT

- Option 1: WiFi-like LBT (same location, same CW)
 - ✓ Single subchannel, effective bandwidth

W	iFi	LA	A
4.24	4.17	4.18	4.21

✓ 4 subchannels, AC: 1,2; LAA: 3,4

W	iFi	LAA		
17.2	16.8	17.1	17.8	

✓ 4 subchannels, AC: 1,2; LAA: 1,2

WiFi		LAA	
17.1	16.8	17.3	17.5

Multi-carrier LBT

- ✓ WiFi-like LAA coexist with 802.11ac pretty well.
- ✓ In this case, both WiFi and LAA will either work in the entire 80 MHz or not work. Thus, same results are obtained for Table 2 and Table 3.
- ✓ How to avoid this? 1) There are some nodes working only with 20 MHz and 40 MHz (802.11b, 802.11n); 2) Are there any services will not occupy 80 MHz even it's available? Like voice, small packet size.

Next steps

- ✓ Study the adaptive detection threshold problem, and consider the impact of interference.
- ✓ Simulate multi-carrier LBT with different locations, and continue to study the channel selection problem.